xref: /linux/mm/vma.c (revision c060f8168bdf22aa986970955af99702d142dfbe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * VMA-specific functions.
5  */
6 
7 #include "vma_internal.h"
8 #include "vma.h"
9 
10 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
11 {
12 	struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
13 
14 	if (!mpol_equal(vmg->policy, vma_policy(vma)))
15 		return false;
16 	/*
17 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
18 	 * match the flags but dirty bit -- the caller should mark
19 	 * merged VMA as dirty. If dirty bit won't be excluded from
20 	 * comparison, we increase pressure on the memory system forcing
21 	 * the kernel to generate new VMAs when old one could be
22 	 * extended instead.
23 	 */
24 	if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
25 		return false;
26 	if (vma->vm_file != vmg->file)
27 		return false;
28 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
29 		return false;
30 	if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
31 		return false;
32 	return true;
33 }
34 
35 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
36 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
37 {
38 	/*
39 	 * The list_is_singular() test is to avoid merging VMA cloned from
40 	 * parents. This can improve scalability caused by anon_vma lock.
41 	 */
42 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
43 		list_is_singular(&vma->anon_vma_chain)))
44 		return true;
45 	return anon_vma1 == anon_vma2;
46 }
47 
48 /* Are the anon_vma's belonging to each VMA compatible with one another? */
49 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
50 					    struct vm_area_struct *vma2)
51 {
52 	return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
53 }
54 
55 /*
56  * init_multi_vma_prep() - Initializer for struct vma_prepare
57  * @vp: The vma_prepare struct
58  * @vma: The vma that will be altered once locked
59  * @next: The next vma if it is to be adjusted
60  * @remove: The first vma to be removed
61  * @remove2: The second vma to be removed
62  */
63 static void init_multi_vma_prep(struct vma_prepare *vp,
64 				struct vm_area_struct *vma,
65 				struct vm_area_struct *next,
66 				struct vm_area_struct *remove,
67 				struct vm_area_struct *remove2)
68 {
69 	memset(vp, 0, sizeof(struct vma_prepare));
70 	vp->vma = vma;
71 	vp->anon_vma = vma->anon_vma;
72 	vp->remove = remove;
73 	vp->remove2 = remove2;
74 	vp->adj_next = next;
75 	if (!vp->anon_vma && next)
76 		vp->anon_vma = next->anon_vma;
77 
78 	vp->file = vma->vm_file;
79 	if (vp->file)
80 		vp->mapping = vma->vm_file->f_mapping;
81 
82 }
83 
84 /*
85  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
86  * in front of (at a lower virtual address and file offset than) the vma.
87  *
88  * We cannot merge two vmas if they have differently assigned (non-NULL)
89  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
90  *
91  * We don't check here for the merged mmap wrapping around the end of pagecache
92  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
93  * wrap, nor mmaps which cover the final page at index -1UL.
94  *
95  * We assume the vma may be removed as part of the merge.
96  */
97 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
98 {
99 	pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
100 
101 	if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
102 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
103 		if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
104 			return true;
105 	}
106 
107 	return false;
108 }
109 
110 /*
111  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
112  * beyond (at a higher virtual address and file offset than) the vma.
113  *
114  * We cannot merge two vmas if they have differently assigned (non-NULL)
115  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
116  *
117  * We assume that vma is not removed as part of the merge.
118  */
119 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
120 {
121 	if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
122 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
123 		if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
124 			return true;
125 	}
126 	return false;
127 }
128 
129 static void __vma_link_file(struct vm_area_struct *vma,
130 			    struct address_space *mapping)
131 {
132 	if (vma_is_shared_maywrite(vma))
133 		mapping_allow_writable(mapping);
134 
135 	flush_dcache_mmap_lock(mapping);
136 	vma_interval_tree_insert(vma, &mapping->i_mmap);
137 	flush_dcache_mmap_unlock(mapping);
138 }
139 
140 /*
141  * Requires inode->i_mapping->i_mmap_rwsem
142  */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 				      struct address_space *mapping)
145 {
146 	if (vma_is_shared_maywrite(vma))
147 		mapping_unmap_writable(mapping);
148 
149 	flush_dcache_mmap_lock(mapping);
150 	vma_interval_tree_remove(vma, &mapping->i_mmap);
151 	flush_dcache_mmap_unlock(mapping);
152 }
153 
154 /*
155  * vma_prepare() - Helper function for handling locking VMAs prior to altering
156  * @vp: The initialized vma_prepare struct
157  */
158 static void vma_prepare(struct vma_prepare *vp)
159 {
160 	if (vp->file) {
161 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
162 
163 		if (vp->adj_next)
164 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
165 				      vp->adj_next->vm_end);
166 
167 		i_mmap_lock_write(vp->mapping);
168 		if (vp->insert && vp->insert->vm_file) {
169 			/*
170 			 * Put into interval tree now, so instantiated pages
171 			 * are visible to arm/parisc __flush_dcache_page
172 			 * throughout; but we cannot insert into address
173 			 * space until vma start or end is updated.
174 			 */
175 			__vma_link_file(vp->insert,
176 					vp->insert->vm_file->f_mapping);
177 		}
178 	}
179 
180 	if (vp->anon_vma) {
181 		anon_vma_lock_write(vp->anon_vma);
182 		anon_vma_interval_tree_pre_update_vma(vp->vma);
183 		if (vp->adj_next)
184 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
185 	}
186 
187 	if (vp->file) {
188 		flush_dcache_mmap_lock(vp->mapping);
189 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
190 		if (vp->adj_next)
191 			vma_interval_tree_remove(vp->adj_next,
192 						 &vp->mapping->i_mmap);
193 	}
194 
195 }
196 
197 /*
198  * vma_complete- Helper function for handling the unlocking after altering VMAs,
199  * or for inserting a VMA.
200  *
201  * @vp: The vma_prepare struct
202  * @vmi: The vma iterator
203  * @mm: The mm_struct
204  */
205 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
206 			 struct mm_struct *mm)
207 {
208 	if (vp->file) {
209 		if (vp->adj_next)
210 			vma_interval_tree_insert(vp->adj_next,
211 						 &vp->mapping->i_mmap);
212 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
213 		flush_dcache_mmap_unlock(vp->mapping);
214 	}
215 
216 	if (vp->remove && vp->file) {
217 		__remove_shared_vm_struct(vp->remove, vp->mapping);
218 		if (vp->remove2)
219 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
220 	} else if (vp->insert) {
221 		/*
222 		 * split_vma has split insert from vma, and needs
223 		 * us to insert it before dropping the locks
224 		 * (it may either follow vma or precede it).
225 		 */
226 		vma_iter_store(vmi, vp->insert);
227 		mm->map_count++;
228 	}
229 
230 	if (vp->anon_vma) {
231 		anon_vma_interval_tree_post_update_vma(vp->vma);
232 		if (vp->adj_next)
233 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
234 		anon_vma_unlock_write(vp->anon_vma);
235 	}
236 
237 	if (vp->file) {
238 		i_mmap_unlock_write(vp->mapping);
239 		uprobe_mmap(vp->vma);
240 
241 		if (vp->adj_next)
242 			uprobe_mmap(vp->adj_next);
243 	}
244 
245 	if (vp->remove) {
246 again:
247 		vma_mark_detached(vp->remove, true);
248 		if (vp->file) {
249 			uprobe_munmap(vp->remove, vp->remove->vm_start,
250 				      vp->remove->vm_end);
251 			fput(vp->file);
252 		}
253 		if (vp->remove->anon_vma)
254 			anon_vma_merge(vp->vma, vp->remove);
255 		mm->map_count--;
256 		mpol_put(vma_policy(vp->remove));
257 		if (!vp->remove2)
258 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
259 		vm_area_free(vp->remove);
260 
261 		/*
262 		 * In mprotect's case 6 (see comments on vma_merge),
263 		 * we are removing both mid and next vmas
264 		 */
265 		if (vp->remove2) {
266 			vp->remove = vp->remove2;
267 			vp->remove2 = NULL;
268 			goto again;
269 		}
270 	}
271 	if (vp->insert && vp->file)
272 		uprobe_mmap(vp->insert);
273 }
274 
275 /*
276  * init_vma_prep() - Initializer wrapper for vma_prepare struct
277  * @vp: The vma_prepare struct
278  * @vma: The vma that will be altered once locked
279  */
280 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
281 {
282 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
283 }
284 
285 /*
286  * Can the proposed VMA be merged with the left (previous) VMA taking into
287  * account the start position of the proposed range.
288  */
289 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
290 
291 {
292 	return vmg->prev && vmg->prev->vm_end == vmg->start &&
293 		can_vma_merge_after(vmg);
294 }
295 
296 /*
297  * Can the proposed VMA be merged with the right (next) VMA taking into
298  * account the end position of the proposed range.
299  *
300  * In addition, if we can merge with the left VMA, ensure that left and right
301  * anon_vma's are also compatible.
302  */
303 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
304 				bool can_merge_left)
305 {
306 	if (!vmg->next || vmg->end != vmg->next->vm_start ||
307 	    !can_vma_merge_before(vmg))
308 		return false;
309 
310 	if (!can_merge_left)
311 		return true;
312 
313 	/*
314 	 * If we can merge with prev (left) and next (right), indicating that
315 	 * each VMA's anon_vma is compatible with the proposed anon_vma, this
316 	 * does not mean prev and next are compatible with EACH OTHER.
317 	 *
318 	 * We therefore check this in addition to mergeability to either side.
319 	 */
320 	return are_anon_vmas_compatible(vmg->prev, vmg->next);
321 }
322 
323 /*
324  * Close a vm structure and free it.
325  */
326 void remove_vma(struct vm_area_struct *vma, bool unreachable)
327 {
328 	might_sleep();
329 	vma_close(vma);
330 	if (vma->vm_file)
331 		fput(vma->vm_file);
332 	mpol_put(vma_policy(vma));
333 	if (unreachable)
334 		__vm_area_free(vma);
335 	else
336 		vm_area_free(vma);
337 }
338 
339 /*
340  * Get rid of page table information in the indicated region.
341  *
342  * Called with the mm semaphore held.
343  */
344 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
345 		struct vm_area_struct *prev, struct vm_area_struct *next)
346 {
347 	struct mm_struct *mm = vma->vm_mm;
348 	struct mmu_gather tlb;
349 
350 	lru_add_drain();
351 	tlb_gather_mmu(&tlb, mm);
352 	update_hiwater_rss(mm);
353 	unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
354 		   /* mm_wr_locked = */ true);
355 	mas_set(mas, vma->vm_end);
356 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
357 		      next ? next->vm_start : USER_PGTABLES_CEILING,
358 		      /* mm_wr_locked = */ true);
359 	tlb_finish_mmu(&tlb);
360 }
361 
362 /*
363  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
364  * has already been checked or doesn't make sense to fail.
365  * VMA Iterator will point to the original VMA.
366  */
367 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
368 		       unsigned long addr, int new_below)
369 {
370 	struct vma_prepare vp;
371 	struct vm_area_struct *new;
372 	int err;
373 
374 	WARN_ON(vma->vm_start >= addr);
375 	WARN_ON(vma->vm_end <= addr);
376 
377 	if (vma->vm_ops && vma->vm_ops->may_split) {
378 		err = vma->vm_ops->may_split(vma, addr);
379 		if (err)
380 			return err;
381 	}
382 
383 	new = vm_area_dup(vma);
384 	if (!new)
385 		return -ENOMEM;
386 
387 	if (new_below) {
388 		new->vm_end = addr;
389 	} else {
390 		new->vm_start = addr;
391 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
392 	}
393 
394 	err = -ENOMEM;
395 	vma_iter_config(vmi, new->vm_start, new->vm_end);
396 	if (vma_iter_prealloc(vmi, new))
397 		goto out_free_vma;
398 
399 	err = vma_dup_policy(vma, new);
400 	if (err)
401 		goto out_free_vmi;
402 
403 	err = anon_vma_clone(new, vma);
404 	if (err)
405 		goto out_free_mpol;
406 
407 	if (new->vm_file)
408 		get_file(new->vm_file);
409 
410 	if (new->vm_ops && new->vm_ops->open)
411 		new->vm_ops->open(new);
412 
413 	vma_start_write(vma);
414 	vma_start_write(new);
415 
416 	init_vma_prep(&vp, vma);
417 	vp.insert = new;
418 	vma_prepare(&vp);
419 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
420 
421 	if (new_below) {
422 		vma->vm_start = addr;
423 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
424 	} else {
425 		vma->vm_end = addr;
426 	}
427 
428 	/* vma_complete stores the new vma */
429 	vma_complete(&vp, vmi, vma->vm_mm);
430 	validate_mm(vma->vm_mm);
431 
432 	/* Success. */
433 	if (new_below)
434 		vma_next(vmi);
435 	else
436 		vma_prev(vmi);
437 
438 	return 0;
439 
440 out_free_mpol:
441 	mpol_put(vma_policy(new));
442 out_free_vmi:
443 	vma_iter_free(vmi);
444 out_free_vma:
445 	vm_area_free(new);
446 	return err;
447 }
448 
449 /*
450  * Split a vma into two pieces at address 'addr', a new vma is allocated
451  * either for the first part or the tail.
452  */
453 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
454 		     unsigned long addr, int new_below)
455 {
456 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
457 		return -ENOMEM;
458 
459 	return __split_vma(vmi, vma, addr, new_below);
460 }
461 
462 /*
463  * vma has some anon_vma assigned, and is already inserted on that
464  * anon_vma's interval trees.
465  *
466  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
467  * vma must be removed from the anon_vma's interval trees using
468  * anon_vma_interval_tree_pre_update_vma().
469  *
470  * After the update, the vma will be reinserted using
471  * anon_vma_interval_tree_post_update_vma().
472  *
473  * The entire update must be protected by exclusive mmap_lock and by
474  * the root anon_vma's mutex.
475  */
476 void
477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
478 {
479 	struct anon_vma_chain *avc;
480 
481 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
483 }
484 
485 void
486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
487 {
488 	struct anon_vma_chain *avc;
489 
490 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
492 }
493 
494 /*
495  * dup_anon_vma() - Helper function to duplicate anon_vma
496  * @dst: The destination VMA
497  * @src: The source VMA
498  * @dup: Pointer to the destination VMA when successful.
499  *
500  * Returns: 0 on success.
501  */
502 static int dup_anon_vma(struct vm_area_struct *dst,
503 			struct vm_area_struct *src, struct vm_area_struct **dup)
504 {
505 	/*
506 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
507 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
508 	 * anon pages imported.
509 	 */
510 	if (src->anon_vma && !dst->anon_vma) {
511 		int ret;
512 
513 		vma_assert_write_locked(dst);
514 		dst->anon_vma = src->anon_vma;
515 		ret = anon_vma_clone(dst, src);
516 		if (ret)
517 			return ret;
518 
519 		*dup = dst;
520 	}
521 
522 	return 0;
523 }
524 
525 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
526 void validate_mm(struct mm_struct *mm)
527 {
528 	int bug = 0;
529 	int i = 0;
530 	struct vm_area_struct *vma;
531 	VMA_ITERATOR(vmi, mm, 0);
532 
533 	mt_validate(&mm->mm_mt);
534 	for_each_vma(vmi, vma) {
535 #ifdef CONFIG_DEBUG_VM_RB
536 		struct anon_vma *anon_vma = vma->anon_vma;
537 		struct anon_vma_chain *avc;
538 #endif
539 		unsigned long vmi_start, vmi_end;
540 		bool warn = 0;
541 
542 		vmi_start = vma_iter_addr(&vmi);
543 		vmi_end = vma_iter_end(&vmi);
544 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
545 			warn = 1;
546 
547 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
548 			warn = 1;
549 
550 		if (warn) {
551 			pr_emerg("issue in %s\n", current->comm);
552 			dump_stack();
553 			dump_vma(vma);
554 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
555 				 vmi_start, vmi_end - 1);
556 			vma_iter_dump_tree(&vmi);
557 		}
558 
559 #ifdef CONFIG_DEBUG_VM_RB
560 		if (anon_vma) {
561 			anon_vma_lock_read(anon_vma);
562 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
563 				anon_vma_interval_tree_verify(avc);
564 			anon_vma_unlock_read(anon_vma);
565 		}
566 #endif
567 		i++;
568 	}
569 	if (i != mm->map_count) {
570 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
571 		bug = 1;
572 	}
573 	VM_BUG_ON_MM(bug, mm);
574 }
575 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
576 
577 /* Actually perform the VMA merge operation. */
578 static int commit_merge(struct vma_merge_struct *vmg,
579 			struct vm_area_struct *adjust,
580 			struct vm_area_struct *remove,
581 			struct vm_area_struct *remove2,
582 			long adj_start,
583 			bool expanded)
584 {
585 	struct vma_prepare vp;
586 
587 	init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
588 
589 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
590 		   vp.anon_vma != adjust->anon_vma);
591 
592 	if (expanded) {
593 		/* Note: vma iterator must be pointing to 'start'. */
594 		vma_iter_config(vmg->vmi, vmg->start, vmg->end);
595 	} else {
596 		vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
597 				adjust->vm_end);
598 	}
599 
600 	if (vma_iter_prealloc(vmg->vmi, vmg->vma))
601 		return -ENOMEM;
602 
603 	vma_prepare(&vp);
604 	vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
605 	vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
606 
607 	if (expanded)
608 		vma_iter_store(vmg->vmi, vmg->vma);
609 
610 	if (adj_start) {
611 		adjust->vm_start += adj_start;
612 		adjust->vm_pgoff += PHYS_PFN(adj_start);
613 		if (adj_start < 0) {
614 			WARN_ON(expanded);
615 			vma_iter_store(vmg->vmi, adjust);
616 		}
617 	}
618 
619 	vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
620 
621 	return 0;
622 }
623 
624 /* We can only remove VMAs when merging if they do not have a close hook. */
625 static bool can_merge_remove_vma(struct vm_area_struct *vma)
626 {
627 	return !vma->vm_ops || !vma->vm_ops->close;
628 }
629 
630 /*
631  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
632  * attributes modified.
633  *
634  * @vmg: Describes the modifications being made to a VMA and associated
635  *       metadata.
636  *
637  * When the attributes of a range within a VMA change, then it might be possible
638  * for immediately adjacent VMAs to be merged into that VMA due to having
639  * identical properties.
640  *
641  * This function checks for the existence of any such mergeable VMAs and updates
642  * the maple tree describing the @vmg->vma->vm_mm address space to account for
643  * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
644  *
645  * As part of this operation, if a merge occurs, the @vmg object will have its
646  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
647  * calls to this function should reset these fields.
648  *
649  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
650  *
651  * ASSUMPTIONS:
652  * - The caller must assign the VMA to be modifed to @vmg->vma.
653  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
654  * - The caller must not set @vmg->next, as we determine this.
655  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
656  * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
657  */
658 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg)
659 {
660 	struct vm_area_struct *vma = vmg->vma;
661 	struct vm_area_struct *prev = vmg->prev;
662 	struct vm_area_struct *next, *res;
663 	struct vm_area_struct *anon_dup = NULL;
664 	struct vm_area_struct *adjust = NULL;
665 	unsigned long start = vmg->start;
666 	unsigned long end = vmg->end;
667 	bool left_side = vma && start == vma->vm_start;
668 	bool right_side = vma && end == vma->vm_end;
669 	int err = 0;
670 	long adj_start = 0;
671 	bool merge_will_delete_vma, merge_will_delete_next;
672 	bool merge_left, merge_right, merge_both;
673 	bool expanded;
674 
675 	mmap_assert_write_locked(vmg->mm);
676 	VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */
677 	VM_WARN_ON(vmg->next); /* We set this. */
678 	VM_WARN_ON(prev && start <= prev->vm_start);
679 	VM_WARN_ON(start >= end);
680 	/*
681 	 * If vma == prev, then we are offset into a VMA. Otherwise, if we are
682 	 * not, we must span a portion of the VMA.
683 	 */
684 	VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) ||
685 			   vmg->end > vma->vm_end));
686 	/* The vmi must be positioned within vmg->vma. */
687 	VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
688 			    vma_iter_addr(vmg->vmi) < vma->vm_end));
689 
690 	vmg->state = VMA_MERGE_NOMERGE;
691 
692 	/*
693 	 * If a special mapping or if the range being modified is neither at the
694 	 * furthermost left or right side of the VMA, then we have no chance of
695 	 * merging and should abort.
696 	 */
697 	if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
698 		return NULL;
699 
700 	if (left_side)
701 		merge_left = can_vma_merge_left(vmg);
702 	else
703 		merge_left = false;
704 
705 	if (right_side) {
706 		next = vmg->next = vma_iter_next_range(vmg->vmi);
707 		vma_iter_prev_range(vmg->vmi);
708 
709 		merge_right = can_vma_merge_right(vmg, merge_left);
710 	} else {
711 		merge_right = false;
712 		next = NULL;
713 	}
714 
715 	if (merge_left)		/* If merging prev, position iterator there. */
716 		vma_prev(vmg->vmi);
717 	else if (!merge_right)	/* If we have nothing to merge, abort. */
718 		return NULL;
719 
720 	merge_both = merge_left && merge_right;
721 	/* If we span the entire VMA, a merge implies it will be deleted. */
722 	merge_will_delete_vma = left_side && right_side;
723 
724 	/*
725 	 * If we need to remove vma in its entirety but are unable to do so,
726 	 * we have no sensible recourse but to abort the merge.
727 	 */
728 	if (merge_will_delete_vma && !can_merge_remove_vma(vma))
729 		return NULL;
730 
731 	/*
732 	 * If we merge both VMAs, then next is also deleted. This implies
733 	 * merge_will_delete_vma also.
734 	 */
735 	merge_will_delete_next = merge_both;
736 
737 	/*
738 	 * If we cannot delete next, then we can reduce the operation to merging
739 	 * prev and vma (thereby deleting vma).
740 	 */
741 	if (merge_will_delete_next && !can_merge_remove_vma(next)) {
742 		merge_will_delete_next = false;
743 		merge_right = false;
744 		merge_both = false;
745 	}
746 
747 	/* No matter what happens, we will be adjusting vma. */
748 	vma_start_write(vma);
749 
750 	if (merge_left)
751 		vma_start_write(prev);
752 
753 	if (merge_right)
754 		vma_start_write(next);
755 
756 	if (merge_both) {
757 		/*
758 		 *         |<----->|
759 		 * |-------*********-------|
760 		 *   prev     vma     next
761 		 *  extend   delete  delete
762 		 */
763 
764 		vmg->vma = prev;
765 		vmg->start = prev->vm_start;
766 		vmg->end = next->vm_end;
767 		vmg->pgoff = prev->vm_pgoff;
768 
769 		/*
770 		 * We already ensured anon_vma compatibility above, so now it's
771 		 * simply a case of, if prev has no anon_vma object, which of
772 		 * next or vma contains the anon_vma we must duplicate.
773 		 */
774 		err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
775 	} else if (merge_left) {
776 		/*
777 		 *         |<----->| OR
778 		 *         |<--------->|
779 		 * |-------*************
780 		 *   prev       vma
781 		 *  extend shrink/delete
782 		 */
783 
784 		vmg->vma = prev;
785 		vmg->start = prev->vm_start;
786 		vmg->pgoff = prev->vm_pgoff;
787 
788 		if (!merge_will_delete_vma) {
789 			adjust = vma;
790 			adj_start = vmg->end - vma->vm_start;
791 		}
792 
793 		err = dup_anon_vma(prev, vma, &anon_dup);
794 	} else { /* merge_right */
795 		/*
796 		 *     |<----->| OR
797 		 * |<--------->|
798 		 * *************-------|
799 		 *      vma       next
800 		 * shrink/delete extend
801 		 */
802 
803 		pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
804 
805 		VM_WARN_ON(!merge_right);
806 		/* If we are offset into a VMA, then prev must be vma. */
807 		VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev);
808 
809 		if (merge_will_delete_vma) {
810 			vmg->vma = next;
811 			vmg->end = next->vm_end;
812 			vmg->pgoff = next->vm_pgoff - pglen;
813 		} else {
814 			/*
815 			 * We shrink vma and expand next.
816 			 *
817 			 * IMPORTANT: This is the ONLY case where the final
818 			 * merged VMA is NOT vmg->vma, but rather vmg->next.
819 			 */
820 
821 			vmg->start = vma->vm_start;
822 			vmg->end = start;
823 			vmg->pgoff = vma->vm_pgoff;
824 
825 			adjust = next;
826 			adj_start = -(vma->vm_end - start);
827 		}
828 
829 		err = dup_anon_vma(next, vma, &anon_dup);
830 	}
831 
832 	if (err)
833 		goto abort;
834 
835 	/*
836 	 * In nearly all cases, we expand vmg->vma. There is one exception -
837 	 * merge_right where we partially span the VMA. In this case we shrink
838 	 * the end of vmg->vma and adjust the start of vmg->next accordingly.
839 	 */
840 	expanded = !merge_right || merge_will_delete_vma;
841 
842 	if (commit_merge(vmg, adjust,
843 			 merge_will_delete_vma ? vma : NULL,
844 			 merge_will_delete_next ? next : NULL,
845 			 adj_start, expanded)) {
846 		if (anon_dup)
847 			unlink_anon_vmas(anon_dup);
848 
849 		vmg->state = VMA_MERGE_ERROR_NOMEM;
850 		return NULL;
851 	}
852 
853 	res = merge_left ? prev : next;
854 	khugepaged_enter_vma(res, vmg->flags);
855 
856 	vmg->state = VMA_MERGE_SUCCESS;
857 	return res;
858 
859 abort:
860 	vma_iter_set(vmg->vmi, start);
861 	vma_iter_load(vmg->vmi);
862 	vmg->state = VMA_MERGE_ERROR_NOMEM;
863 	return NULL;
864 }
865 
866 /*
867  * vma_merge_new_range - Attempt to merge a new VMA into address space
868  *
869  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
870  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
871  *
872  * We are about to add a VMA to the address space starting at @vmg->start and
873  * ending at @vmg->end. There are three different possible scenarios:
874  *
875  * 1. There is a VMA with identical properties immediately adjacent to the
876  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
877  *    EXPAND that VMA:
878  *
879  * Proposed:       |-----|  or  |-----|
880  * Existing:  |----|                  |----|
881  *
882  * 2. There are VMAs with identical properties immediately adjacent to the
883  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
884  *    EXPAND the former and REMOVE the latter:
885  *
886  * Proposed:       |-----|
887  * Existing:  |----|     |----|
888  *
889  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
890  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
891  *
892  * In instances where we can merge, this function returns the expanded VMA which
893  * will have its range adjusted accordingly and the underlying maple tree also
894  * adjusted.
895  *
896  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
897  *          to the VMA we expanded.
898  *
899  * This function adjusts @vmg to provide @vmg->next if not already specified,
900  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
901  *
902  * ASSUMPTIONS:
903  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
904  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
905      other than VMAs that will be unmapped should the operation succeed.
906  * - The caller must have specified the previous vma in @vmg->prev.
907  * - The caller must have specified the next vma in @vmg->next.
908  * - The caller must have positioned the vmi at or before the gap.
909  */
910 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
911 {
912 	struct vm_area_struct *prev = vmg->prev;
913 	struct vm_area_struct *next = vmg->next;
914 	unsigned long start = vmg->start;
915 	unsigned long end = vmg->end;
916 	pgoff_t pgoff = vmg->pgoff;
917 	pgoff_t pglen = PHYS_PFN(end - start);
918 	bool can_merge_left, can_merge_right;
919 	bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
920 
921 	mmap_assert_write_locked(vmg->mm);
922 	VM_WARN_ON(vmg->vma);
923 	/* vmi must point at or before the gap. */
924 	VM_WARN_ON(vma_iter_addr(vmg->vmi) > end);
925 
926 	vmg->state = VMA_MERGE_NOMERGE;
927 
928 	/* Special VMAs are unmergeable, also if no prev/next. */
929 	if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
930 		return NULL;
931 
932 	can_merge_left = can_vma_merge_left(vmg);
933 	can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
934 
935 	/* If we can merge with the next VMA, adjust vmg accordingly. */
936 	if (can_merge_right) {
937 		vmg->end = next->vm_end;
938 		vmg->vma = next;
939 		vmg->pgoff = next->vm_pgoff - pglen;
940 	}
941 
942 	/* If we can merge with the previous VMA, adjust vmg accordingly. */
943 	if (can_merge_left) {
944 		vmg->start = prev->vm_start;
945 		vmg->vma = prev;
946 		vmg->pgoff = prev->vm_pgoff;
947 
948 		/*
949 		 * If this merge would result in removal of the next VMA but we
950 		 * are not permitted to do so, reduce the operation to merging
951 		 * prev and vma.
952 		 */
953 		if (can_merge_right && !can_merge_remove_vma(next))
954 			vmg->end = end;
955 
956 		/* In expand-only case we are already positioned at prev. */
957 		if (!just_expand) {
958 			/* Equivalent to going to the previous range. */
959 			vma_prev(vmg->vmi);
960 		}
961 	}
962 
963 	/*
964 	 * Now try to expand adjacent VMA(s). This takes care of removing the
965 	 * following VMA if we have VMAs on both sides.
966 	 */
967 	if (vmg->vma && !vma_expand(vmg)) {
968 		khugepaged_enter_vma(vmg->vma, vmg->flags);
969 		vmg->state = VMA_MERGE_SUCCESS;
970 		return vmg->vma;
971 	}
972 
973 	/* If expansion failed, reset state. Allows us to retry merge later. */
974 	if (!just_expand) {
975 		vmg->vma = NULL;
976 		vmg->start = start;
977 		vmg->end = end;
978 		vmg->pgoff = pgoff;
979 		if (vmg->vma == prev)
980 			vma_iter_set(vmg->vmi, start);
981 	}
982 
983 	return NULL;
984 }
985 
986 /*
987  * vma_expand - Expand an existing VMA
988  *
989  * @vmg: Describes a VMA expansion operation.
990  *
991  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
992  * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
993  * vmg->next->vm_end.  Checking if the vmg->vma can expand and merge with
994  * vmg->next needs to be handled by the caller.
995  *
996  * Returns: 0 on success.
997  *
998  * ASSUMPTIONS:
999  * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
1000  * - The caller must have set @vmg->vma and @vmg->next.
1001  */
1002 int vma_expand(struct vma_merge_struct *vmg)
1003 {
1004 	struct vm_area_struct *anon_dup = NULL;
1005 	bool remove_next = false;
1006 	struct vm_area_struct *vma = vmg->vma;
1007 	struct vm_area_struct *next = vmg->next;
1008 
1009 	mmap_assert_write_locked(vmg->mm);
1010 
1011 	vma_start_write(vma);
1012 	if (next && (vma != next) && (vmg->end == next->vm_end)) {
1013 		int ret;
1014 
1015 		remove_next = true;
1016 		/* This should already have been checked by this point. */
1017 		VM_WARN_ON(!can_merge_remove_vma(next));
1018 		vma_start_write(next);
1019 		ret = dup_anon_vma(vma, next, &anon_dup);
1020 		if (ret)
1021 			return ret;
1022 	}
1023 
1024 	/* Not merging but overwriting any part of next is not handled. */
1025 	VM_WARN_ON(next && !remove_next &&
1026 		  next != vma && vmg->end > next->vm_start);
1027 	/* Only handles expanding */
1028 	VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end);
1029 
1030 	if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1031 		goto nomem;
1032 
1033 	return 0;
1034 
1035 nomem:
1036 	vmg->state = VMA_MERGE_ERROR_NOMEM;
1037 	if (anon_dup)
1038 		unlink_anon_vmas(anon_dup);
1039 	return -ENOMEM;
1040 }
1041 
1042 /*
1043  * vma_shrink() - Reduce an existing VMAs memory area
1044  * @vmi: The vma iterator
1045  * @vma: The VMA to modify
1046  * @start: The new start
1047  * @end: The new end
1048  *
1049  * Returns: 0 on success, -ENOMEM otherwise
1050  */
1051 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1052 	       unsigned long start, unsigned long end, pgoff_t pgoff)
1053 {
1054 	struct vma_prepare vp;
1055 
1056 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1057 
1058 	if (vma->vm_start < start)
1059 		vma_iter_config(vmi, vma->vm_start, start);
1060 	else
1061 		vma_iter_config(vmi, end, vma->vm_end);
1062 
1063 	if (vma_iter_prealloc(vmi, NULL))
1064 		return -ENOMEM;
1065 
1066 	vma_start_write(vma);
1067 
1068 	init_vma_prep(&vp, vma);
1069 	vma_prepare(&vp);
1070 	vma_adjust_trans_huge(vma, start, end, 0);
1071 
1072 	vma_iter_clear(vmi);
1073 	vma_set_range(vma, start, end, pgoff);
1074 	vma_complete(&vp, vmi, vma->vm_mm);
1075 	validate_mm(vma->vm_mm);
1076 	return 0;
1077 }
1078 
1079 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1080 		    struct ma_state *mas_detach, bool mm_wr_locked)
1081 {
1082 	struct mmu_gather tlb;
1083 
1084 	if (!vms->clear_ptes) /* Nothing to do */
1085 		return;
1086 
1087 	/*
1088 	 * We can free page tables without write-locking mmap_lock because VMAs
1089 	 * were isolated before we downgraded mmap_lock.
1090 	 */
1091 	mas_set(mas_detach, 1);
1092 	lru_add_drain();
1093 	tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1094 	update_hiwater_rss(vms->vma->vm_mm);
1095 	unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1096 		   vms->vma_count, mm_wr_locked);
1097 
1098 	mas_set(mas_detach, 1);
1099 	/* start and end may be different if there is no prev or next vma. */
1100 	free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1101 		      vms->unmap_end, mm_wr_locked);
1102 	tlb_finish_mmu(&tlb);
1103 	vms->clear_ptes = false;
1104 }
1105 
1106 void vms_clean_up_area(struct vma_munmap_struct *vms,
1107 		struct ma_state *mas_detach)
1108 {
1109 	struct vm_area_struct *vma;
1110 
1111 	if (!vms->nr_pages)
1112 		return;
1113 
1114 	vms_clear_ptes(vms, mas_detach, true);
1115 	mas_set(mas_detach, 0);
1116 	mas_for_each(mas_detach, vma, ULONG_MAX)
1117 		vma_close(vma);
1118 }
1119 
1120 /*
1121  * vms_complete_munmap_vmas() - Finish the munmap() operation
1122  * @vms: The vma munmap struct
1123  * @mas_detach: The maple state of the detached vmas
1124  *
1125  * This updates the mm_struct, unmaps the region, frees the resources
1126  * used for the munmap() and may downgrade the lock - if requested.  Everything
1127  * needed to be done once the vma maple tree is updated.
1128  */
1129 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1130 		struct ma_state *mas_detach)
1131 {
1132 	struct vm_area_struct *vma;
1133 	struct mm_struct *mm;
1134 
1135 	mm = current->mm;
1136 	mm->map_count -= vms->vma_count;
1137 	mm->locked_vm -= vms->locked_vm;
1138 	if (vms->unlock)
1139 		mmap_write_downgrade(mm);
1140 
1141 	if (!vms->nr_pages)
1142 		return;
1143 
1144 	vms_clear_ptes(vms, mas_detach, !vms->unlock);
1145 	/* Update high watermark before we lower total_vm */
1146 	update_hiwater_vm(mm);
1147 	/* Stat accounting */
1148 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1149 	/* Paranoid bookkeeping */
1150 	VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1151 	VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1152 	VM_WARN_ON(vms->data_vm > mm->data_vm);
1153 	mm->exec_vm -= vms->exec_vm;
1154 	mm->stack_vm -= vms->stack_vm;
1155 	mm->data_vm -= vms->data_vm;
1156 
1157 	/* Remove and clean up vmas */
1158 	mas_set(mas_detach, 0);
1159 	mas_for_each(mas_detach, vma, ULONG_MAX)
1160 		remove_vma(vma, /* unreachable = */ false);
1161 
1162 	vm_unacct_memory(vms->nr_accounted);
1163 	validate_mm(mm);
1164 	if (vms->unlock)
1165 		mmap_read_unlock(mm);
1166 
1167 	__mt_destroy(mas_detach->tree);
1168 }
1169 
1170 /*
1171  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1172  * for removal at a later date.  Handles splitting first and last if necessary
1173  * and marking the vmas as isolated.
1174  *
1175  * @vms: The vma munmap struct
1176  * @mas_detach: The maple state tracking the detached tree
1177  *
1178  * Return: 0 on success, error otherwise
1179  */
1180 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1181 		struct ma_state *mas_detach)
1182 {
1183 	struct vm_area_struct *next = NULL;
1184 	int error;
1185 
1186 	/*
1187 	 * If we need to split any vma, do it now to save pain later.
1188 	 * Does it split the first one?
1189 	 */
1190 	if (vms->start > vms->vma->vm_start) {
1191 
1192 		/*
1193 		 * Make sure that map_count on return from munmap() will
1194 		 * not exceed its limit; but let map_count go just above
1195 		 * its limit temporarily, to help free resources as expected.
1196 		 */
1197 		if (vms->end < vms->vma->vm_end &&
1198 		    vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1199 			error = -ENOMEM;
1200 			goto map_count_exceeded;
1201 		}
1202 
1203 		/* Don't bother splitting the VMA if we can't unmap it anyway */
1204 		if (!can_modify_vma(vms->vma)) {
1205 			error = -EPERM;
1206 			goto start_split_failed;
1207 		}
1208 
1209 		error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1210 		if (error)
1211 			goto start_split_failed;
1212 	}
1213 	vms->prev = vma_prev(vms->vmi);
1214 	if (vms->prev)
1215 		vms->unmap_start = vms->prev->vm_end;
1216 
1217 	/*
1218 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
1219 	 * it is always overwritten.
1220 	 */
1221 	for_each_vma_range(*(vms->vmi), next, vms->end) {
1222 		long nrpages;
1223 
1224 		if (!can_modify_vma(next)) {
1225 			error = -EPERM;
1226 			goto modify_vma_failed;
1227 		}
1228 		/* Does it split the end? */
1229 		if (next->vm_end > vms->end) {
1230 			error = __split_vma(vms->vmi, next, vms->end, 0);
1231 			if (error)
1232 				goto end_split_failed;
1233 		}
1234 		vma_start_write(next);
1235 		mas_set(mas_detach, vms->vma_count++);
1236 		error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1237 		if (error)
1238 			goto munmap_gather_failed;
1239 
1240 		vma_mark_detached(next, true);
1241 		nrpages = vma_pages(next);
1242 
1243 		vms->nr_pages += nrpages;
1244 		if (next->vm_flags & VM_LOCKED)
1245 			vms->locked_vm += nrpages;
1246 
1247 		if (next->vm_flags & VM_ACCOUNT)
1248 			vms->nr_accounted += nrpages;
1249 
1250 		if (is_exec_mapping(next->vm_flags))
1251 			vms->exec_vm += nrpages;
1252 		else if (is_stack_mapping(next->vm_flags))
1253 			vms->stack_vm += nrpages;
1254 		else if (is_data_mapping(next->vm_flags))
1255 			vms->data_vm += nrpages;
1256 
1257 		if (unlikely(vms->uf)) {
1258 			/*
1259 			 * If userfaultfd_unmap_prep returns an error the vmas
1260 			 * will remain split, but userland will get a
1261 			 * highly unexpected error anyway. This is no
1262 			 * different than the case where the first of the two
1263 			 * __split_vma fails, but we don't undo the first
1264 			 * split, despite we could. This is unlikely enough
1265 			 * failure that it's not worth optimizing it for.
1266 			 */
1267 			error = userfaultfd_unmap_prep(next, vms->start,
1268 						       vms->end, vms->uf);
1269 			if (error)
1270 				goto userfaultfd_error;
1271 		}
1272 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1273 		BUG_ON(next->vm_start < vms->start);
1274 		BUG_ON(next->vm_start > vms->end);
1275 #endif
1276 	}
1277 
1278 	vms->next = vma_next(vms->vmi);
1279 	if (vms->next)
1280 		vms->unmap_end = vms->next->vm_start;
1281 
1282 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1283 	/* Make sure no VMAs are about to be lost. */
1284 	{
1285 		MA_STATE(test, mas_detach->tree, 0, 0);
1286 		struct vm_area_struct *vma_mas, *vma_test;
1287 		int test_count = 0;
1288 
1289 		vma_iter_set(vms->vmi, vms->start);
1290 		rcu_read_lock();
1291 		vma_test = mas_find(&test, vms->vma_count - 1);
1292 		for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1293 			BUG_ON(vma_mas != vma_test);
1294 			test_count++;
1295 			vma_test = mas_next(&test, vms->vma_count - 1);
1296 		}
1297 		rcu_read_unlock();
1298 		BUG_ON(vms->vma_count != test_count);
1299 	}
1300 #endif
1301 
1302 	while (vma_iter_addr(vms->vmi) > vms->start)
1303 		vma_iter_prev_range(vms->vmi);
1304 
1305 	vms->clear_ptes = true;
1306 	return 0;
1307 
1308 userfaultfd_error:
1309 munmap_gather_failed:
1310 end_split_failed:
1311 modify_vma_failed:
1312 	reattach_vmas(mas_detach);
1313 start_split_failed:
1314 map_count_exceeded:
1315 	return error;
1316 }
1317 
1318 /*
1319  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1320  * @vmi: The vma iterator
1321  * @vma: The starting vm_area_struct
1322  * @mm: The mm_struct
1323  * @start: The aligned start address to munmap.
1324  * @end: The aligned end address to munmap.
1325  * @uf: The userfaultfd list_head
1326  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1327  * success.
1328  *
1329  * Return: 0 on success and drops the lock if so directed, error and leaves the
1330  * lock held otherwise.
1331  */
1332 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1333 		struct mm_struct *mm, unsigned long start, unsigned long end,
1334 		struct list_head *uf, bool unlock)
1335 {
1336 	struct maple_tree mt_detach;
1337 	MA_STATE(mas_detach, &mt_detach, 0, 0);
1338 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1339 	mt_on_stack(mt_detach);
1340 	struct vma_munmap_struct vms;
1341 	int error;
1342 
1343 	init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1344 	error = vms_gather_munmap_vmas(&vms, &mas_detach);
1345 	if (error)
1346 		goto gather_failed;
1347 
1348 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1349 	if (error)
1350 		goto clear_tree_failed;
1351 
1352 	/* Point of no return */
1353 	vms_complete_munmap_vmas(&vms, &mas_detach);
1354 	return 0;
1355 
1356 clear_tree_failed:
1357 	reattach_vmas(&mas_detach);
1358 gather_failed:
1359 	validate_mm(mm);
1360 	return error;
1361 }
1362 
1363 /*
1364  * do_vmi_munmap() - munmap a given range.
1365  * @vmi: The vma iterator
1366  * @mm: The mm_struct
1367  * @start: The start address to munmap
1368  * @len: The length of the range to munmap
1369  * @uf: The userfaultfd list_head
1370  * @unlock: set to true if the user wants to drop the mmap_lock on success
1371  *
1372  * This function takes a @mas that is either pointing to the previous VMA or set
1373  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1374  * aligned.
1375  *
1376  * Return: 0 on success and drops the lock if so directed, error and leaves the
1377  * lock held otherwise.
1378  */
1379 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1380 		  unsigned long start, size_t len, struct list_head *uf,
1381 		  bool unlock)
1382 {
1383 	unsigned long end;
1384 	struct vm_area_struct *vma;
1385 
1386 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1387 		return -EINVAL;
1388 
1389 	end = start + PAGE_ALIGN(len);
1390 	if (end == start)
1391 		return -EINVAL;
1392 
1393 	/* Find the first overlapping VMA */
1394 	vma = vma_find(vmi, end);
1395 	if (!vma) {
1396 		if (unlock)
1397 			mmap_write_unlock(mm);
1398 		return 0;
1399 	}
1400 
1401 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1402 }
1403 
1404 /*
1405  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1406  * context and anonymous VMA name within the range [start, end).
1407  *
1408  * As a result, we might be able to merge the newly modified VMA range with an
1409  * adjacent VMA with identical properties.
1410  *
1411  * If no merge is possible and the range does not span the entirety of the VMA,
1412  * we then need to split the VMA to accommodate the change.
1413  *
1414  * The function returns either the merged VMA, the original VMA if a split was
1415  * required instead, or an error if the split failed.
1416  */
1417 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1418 {
1419 	struct vm_area_struct *vma = vmg->vma;
1420 	struct vm_area_struct *merged;
1421 
1422 	/* First, try to merge. */
1423 	merged = vma_merge_existing_range(vmg);
1424 	if (merged)
1425 		return merged;
1426 
1427 	/* Split any preceding portion of the VMA. */
1428 	if (vma->vm_start < vmg->start) {
1429 		int err = split_vma(vmg->vmi, vma, vmg->start, 1);
1430 
1431 		if (err)
1432 			return ERR_PTR(err);
1433 	}
1434 
1435 	/* Split any trailing portion of the VMA. */
1436 	if (vma->vm_end > vmg->end) {
1437 		int err = split_vma(vmg->vmi, vma, vmg->end, 0);
1438 
1439 		if (err)
1440 			return ERR_PTR(err);
1441 	}
1442 
1443 	return vma;
1444 }
1445 
1446 struct vm_area_struct *vma_modify_flags(
1447 	struct vma_iterator *vmi, struct vm_area_struct *prev,
1448 	struct vm_area_struct *vma, unsigned long start, unsigned long end,
1449 	unsigned long new_flags)
1450 {
1451 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1452 
1453 	vmg.flags = new_flags;
1454 
1455 	return vma_modify(&vmg);
1456 }
1457 
1458 struct vm_area_struct
1459 *vma_modify_flags_name(struct vma_iterator *vmi,
1460 		       struct vm_area_struct *prev,
1461 		       struct vm_area_struct *vma,
1462 		       unsigned long start,
1463 		       unsigned long end,
1464 		       unsigned long new_flags,
1465 		       struct anon_vma_name *new_name)
1466 {
1467 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1468 
1469 	vmg.flags = new_flags;
1470 	vmg.anon_name = new_name;
1471 
1472 	return vma_modify(&vmg);
1473 }
1474 
1475 struct vm_area_struct
1476 *vma_modify_policy(struct vma_iterator *vmi,
1477 		   struct vm_area_struct *prev,
1478 		   struct vm_area_struct *vma,
1479 		   unsigned long start, unsigned long end,
1480 		   struct mempolicy *new_pol)
1481 {
1482 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1483 
1484 	vmg.policy = new_pol;
1485 
1486 	return vma_modify(&vmg);
1487 }
1488 
1489 struct vm_area_struct
1490 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1491 		       struct vm_area_struct *prev,
1492 		       struct vm_area_struct *vma,
1493 		       unsigned long start, unsigned long end,
1494 		       unsigned long new_flags,
1495 		       struct vm_userfaultfd_ctx new_ctx)
1496 {
1497 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1498 
1499 	vmg.flags = new_flags;
1500 	vmg.uffd_ctx = new_ctx;
1501 
1502 	return vma_modify(&vmg);
1503 }
1504 
1505 /*
1506  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1507  * VMA with identical properties.
1508  */
1509 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1510 					struct vm_area_struct *vma,
1511 					unsigned long delta)
1512 {
1513 	VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1514 
1515 	vmg.next = vma_iter_next_rewind(vmi, NULL);
1516 	vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1517 
1518 	return vma_merge_new_range(&vmg);
1519 }
1520 
1521 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1522 {
1523 	vb->count = 0;
1524 }
1525 
1526 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1527 {
1528 	struct address_space *mapping;
1529 	int i;
1530 
1531 	mapping = vb->vmas[0]->vm_file->f_mapping;
1532 	i_mmap_lock_write(mapping);
1533 	for (i = 0; i < vb->count; i++) {
1534 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1535 		__remove_shared_vm_struct(vb->vmas[i], mapping);
1536 	}
1537 	i_mmap_unlock_write(mapping);
1538 
1539 	unlink_file_vma_batch_init(vb);
1540 }
1541 
1542 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1543 			       struct vm_area_struct *vma)
1544 {
1545 	if (vma->vm_file == NULL)
1546 		return;
1547 
1548 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1549 	    vb->count == ARRAY_SIZE(vb->vmas))
1550 		unlink_file_vma_batch_process(vb);
1551 
1552 	vb->vmas[vb->count] = vma;
1553 	vb->count++;
1554 }
1555 
1556 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1557 {
1558 	if (vb->count > 0)
1559 		unlink_file_vma_batch_process(vb);
1560 }
1561 
1562 /*
1563  * Unlink a file-based vm structure from its interval tree, to hide
1564  * vma from rmap and vmtruncate before freeing its page tables.
1565  */
1566 void unlink_file_vma(struct vm_area_struct *vma)
1567 {
1568 	struct file *file = vma->vm_file;
1569 
1570 	if (file) {
1571 		struct address_space *mapping = file->f_mapping;
1572 
1573 		i_mmap_lock_write(mapping);
1574 		__remove_shared_vm_struct(vma, mapping);
1575 		i_mmap_unlock_write(mapping);
1576 	}
1577 }
1578 
1579 void vma_link_file(struct vm_area_struct *vma)
1580 {
1581 	struct file *file = vma->vm_file;
1582 	struct address_space *mapping;
1583 
1584 	if (file) {
1585 		mapping = file->f_mapping;
1586 		i_mmap_lock_write(mapping);
1587 		__vma_link_file(vma, mapping);
1588 		i_mmap_unlock_write(mapping);
1589 	}
1590 }
1591 
1592 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1593 {
1594 	VMA_ITERATOR(vmi, mm, 0);
1595 
1596 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1597 	if (vma_iter_prealloc(&vmi, vma))
1598 		return -ENOMEM;
1599 
1600 	vma_start_write(vma);
1601 	vma_iter_store(&vmi, vma);
1602 	vma_link_file(vma);
1603 	mm->map_count++;
1604 	validate_mm(mm);
1605 	return 0;
1606 }
1607 
1608 /*
1609  * Copy the vma structure to a new location in the same mm,
1610  * prior to moving page table entries, to effect an mremap move.
1611  */
1612 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1613 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1614 	bool *need_rmap_locks)
1615 {
1616 	struct vm_area_struct *vma = *vmap;
1617 	unsigned long vma_start = vma->vm_start;
1618 	struct mm_struct *mm = vma->vm_mm;
1619 	struct vm_area_struct *new_vma;
1620 	bool faulted_in_anon_vma = true;
1621 	VMA_ITERATOR(vmi, mm, addr);
1622 	VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1623 
1624 	/*
1625 	 * If anonymous vma has not yet been faulted, update new pgoff
1626 	 * to match new location, to increase its chance of merging.
1627 	 */
1628 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1629 		pgoff = addr >> PAGE_SHIFT;
1630 		faulted_in_anon_vma = false;
1631 	}
1632 
1633 	new_vma = find_vma_prev(mm, addr, &vmg.prev);
1634 	if (new_vma && new_vma->vm_start < addr + len)
1635 		return NULL;	/* should never get here */
1636 
1637 	vmg.vma = NULL; /* New VMA range. */
1638 	vmg.pgoff = pgoff;
1639 	vmg.next = vma_iter_next_rewind(&vmi, NULL);
1640 	new_vma = vma_merge_new_range(&vmg);
1641 
1642 	if (new_vma) {
1643 		/*
1644 		 * Source vma may have been merged into new_vma
1645 		 */
1646 		if (unlikely(vma_start >= new_vma->vm_start &&
1647 			     vma_start < new_vma->vm_end)) {
1648 			/*
1649 			 * The only way we can get a vma_merge with
1650 			 * self during an mremap is if the vma hasn't
1651 			 * been faulted in yet and we were allowed to
1652 			 * reset the dst vma->vm_pgoff to the
1653 			 * destination address of the mremap to allow
1654 			 * the merge to happen. mremap must change the
1655 			 * vm_pgoff linearity between src and dst vmas
1656 			 * (in turn preventing a vma_merge) to be
1657 			 * safe. It is only safe to keep the vm_pgoff
1658 			 * linear if there are no pages mapped yet.
1659 			 */
1660 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1661 			*vmap = vma = new_vma;
1662 		}
1663 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1664 	} else {
1665 		new_vma = vm_area_dup(vma);
1666 		if (!new_vma)
1667 			goto out;
1668 		vma_set_range(new_vma, addr, addr + len, pgoff);
1669 		if (vma_dup_policy(vma, new_vma))
1670 			goto out_free_vma;
1671 		if (anon_vma_clone(new_vma, vma))
1672 			goto out_free_mempol;
1673 		if (new_vma->vm_file)
1674 			get_file(new_vma->vm_file);
1675 		if (new_vma->vm_ops && new_vma->vm_ops->open)
1676 			new_vma->vm_ops->open(new_vma);
1677 		if (vma_link(mm, new_vma))
1678 			goto out_vma_link;
1679 		*need_rmap_locks = false;
1680 	}
1681 	return new_vma;
1682 
1683 out_vma_link:
1684 	vma_close(new_vma);
1685 
1686 	if (new_vma->vm_file)
1687 		fput(new_vma->vm_file);
1688 
1689 	unlink_anon_vmas(new_vma);
1690 out_free_mempol:
1691 	mpol_put(vma_policy(new_vma));
1692 out_free_vma:
1693 	vm_area_free(new_vma);
1694 out:
1695 	return NULL;
1696 }
1697 
1698 /*
1699  * Rough compatibility check to quickly see if it's even worth looking
1700  * at sharing an anon_vma.
1701  *
1702  * They need to have the same vm_file, and the flags can only differ
1703  * in things that mprotect may change.
1704  *
1705  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1706  * we can merge the two vma's. For example, we refuse to merge a vma if
1707  * there is a vm_ops->close() function, because that indicates that the
1708  * driver is doing some kind of reference counting. But that doesn't
1709  * really matter for the anon_vma sharing case.
1710  */
1711 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1712 {
1713 	return a->vm_end == b->vm_start &&
1714 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1715 		a->vm_file == b->vm_file &&
1716 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1717 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1718 }
1719 
1720 /*
1721  * Do some basic sanity checking to see if we can re-use the anon_vma
1722  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1723  * the same as 'old', the other will be the new one that is trying
1724  * to share the anon_vma.
1725  *
1726  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1727  * the anon_vma of 'old' is concurrently in the process of being set up
1728  * by another page fault trying to merge _that_. But that's ok: if it
1729  * is being set up, that automatically means that it will be a singleton
1730  * acceptable for merging, so we can do all of this optimistically. But
1731  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1732  *
1733  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1734  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1735  * is to return an anon_vma that is "complex" due to having gone through
1736  * a fork).
1737  *
1738  * We also make sure that the two vma's are compatible (adjacent,
1739  * and with the same memory policies). That's all stable, even with just
1740  * a read lock on the mmap_lock.
1741  */
1742 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1743 					  struct vm_area_struct *a,
1744 					  struct vm_area_struct *b)
1745 {
1746 	if (anon_vma_compatible(a, b)) {
1747 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1748 
1749 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1750 			return anon_vma;
1751 	}
1752 	return NULL;
1753 }
1754 
1755 /*
1756  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1757  * neighbouring vmas for a suitable anon_vma, before it goes off
1758  * to allocate a new anon_vma.  It checks because a repetitive
1759  * sequence of mprotects and faults may otherwise lead to distinct
1760  * anon_vmas being allocated, preventing vma merge in subsequent
1761  * mprotect.
1762  */
1763 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1764 {
1765 	struct anon_vma *anon_vma = NULL;
1766 	struct vm_area_struct *prev, *next;
1767 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1768 
1769 	/* Try next first. */
1770 	next = vma_iter_load(&vmi);
1771 	if (next) {
1772 		anon_vma = reusable_anon_vma(next, vma, next);
1773 		if (anon_vma)
1774 			return anon_vma;
1775 	}
1776 
1777 	prev = vma_prev(&vmi);
1778 	VM_BUG_ON_VMA(prev != vma, vma);
1779 	prev = vma_prev(&vmi);
1780 	/* Try prev next. */
1781 	if (prev)
1782 		anon_vma = reusable_anon_vma(prev, prev, vma);
1783 
1784 	/*
1785 	 * We might reach here with anon_vma == NULL if we can't find
1786 	 * any reusable anon_vma.
1787 	 * There's no absolute need to look only at touching neighbours:
1788 	 * we could search further afield for "compatible" anon_vmas.
1789 	 * But it would probably just be a waste of time searching,
1790 	 * or lead to too many vmas hanging off the same anon_vma.
1791 	 * We're trying to allow mprotect remerging later on,
1792 	 * not trying to minimize memory used for anon_vmas.
1793 	 */
1794 	return anon_vma;
1795 }
1796 
1797 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1798 {
1799 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1800 }
1801 
1802 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1803 {
1804 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1805 		(VM_WRITE | VM_SHARED);
1806 }
1807 
1808 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1809 {
1810 	/* No managed pages to writeback. */
1811 	if (vma->vm_flags & VM_PFNMAP)
1812 		return false;
1813 
1814 	return vma->vm_file && vma->vm_file->f_mapping &&
1815 		mapping_can_writeback(vma->vm_file->f_mapping);
1816 }
1817 
1818 /*
1819  * Does this VMA require the underlying folios to have their dirty state
1820  * tracked?
1821  */
1822 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1823 {
1824 	/* Only shared, writable VMAs require dirty tracking. */
1825 	if (!vma_is_shared_writable(vma))
1826 		return false;
1827 
1828 	/* Does the filesystem need to be notified? */
1829 	if (vm_ops_needs_writenotify(vma->vm_ops))
1830 		return true;
1831 
1832 	/*
1833 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1834 	 * can writeback, dirty tracking is still required.
1835 	 */
1836 	return vma_fs_can_writeback(vma);
1837 }
1838 
1839 /*
1840  * Some shared mappings will want the pages marked read-only
1841  * to track write events. If so, we'll downgrade vm_page_prot
1842  * to the private version (using protection_map[] without the
1843  * VM_SHARED bit).
1844  */
1845 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1846 {
1847 	/* If it was private or non-writable, the write bit is already clear */
1848 	if (!vma_is_shared_writable(vma))
1849 		return false;
1850 
1851 	/* The backer wishes to know when pages are first written to? */
1852 	if (vm_ops_needs_writenotify(vma->vm_ops))
1853 		return true;
1854 
1855 	/* The open routine did something to the protections that pgprot_modify
1856 	 * won't preserve? */
1857 	if (pgprot_val(vm_page_prot) !=
1858 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1859 		return false;
1860 
1861 	/*
1862 	 * Do we need to track softdirty? hugetlb does not support softdirty
1863 	 * tracking yet.
1864 	 */
1865 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1866 		return true;
1867 
1868 	/* Do we need write faults for uffd-wp tracking? */
1869 	if (userfaultfd_wp(vma))
1870 		return true;
1871 
1872 	/* Can the mapping track the dirty pages? */
1873 	return vma_fs_can_writeback(vma);
1874 }
1875 
1876 static DEFINE_MUTEX(mm_all_locks_mutex);
1877 
1878 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1879 {
1880 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1881 		/*
1882 		 * The LSB of head.next can't change from under us
1883 		 * because we hold the mm_all_locks_mutex.
1884 		 */
1885 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1886 		/*
1887 		 * We can safely modify head.next after taking the
1888 		 * anon_vma->root->rwsem. If some other vma in this mm shares
1889 		 * the same anon_vma we won't take it again.
1890 		 *
1891 		 * No need of atomic instructions here, head.next
1892 		 * can't change from under us thanks to the
1893 		 * anon_vma->root->rwsem.
1894 		 */
1895 		if (__test_and_set_bit(0, (unsigned long *)
1896 				       &anon_vma->root->rb_root.rb_root.rb_node))
1897 			BUG();
1898 	}
1899 }
1900 
1901 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1902 {
1903 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1904 		/*
1905 		 * AS_MM_ALL_LOCKS can't change from under us because
1906 		 * we hold the mm_all_locks_mutex.
1907 		 *
1908 		 * Operations on ->flags have to be atomic because
1909 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
1910 		 * mm_all_locks_mutex, there may be other cpus
1911 		 * changing other bitflags in parallel to us.
1912 		 */
1913 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
1914 			BUG();
1915 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
1916 	}
1917 }
1918 
1919 /*
1920  * This operation locks against the VM for all pte/vma/mm related
1921  * operations that could ever happen on a certain mm. This includes
1922  * vmtruncate, try_to_unmap, and all page faults.
1923  *
1924  * The caller must take the mmap_lock in write mode before calling
1925  * mm_take_all_locks(). The caller isn't allowed to release the
1926  * mmap_lock until mm_drop_all_locks() returns.
1927  *
1928  * mmap_lock in write mode is required in order to block all operations
1929  * that could modify pagetables and free pages without need of
1930  * altering the vma layout. It's also needed in write mode to avoid new
1931  * anon_vmas to be associated with existing vmas.
1932  *
1933  * A single task can't take more than one mm_take_all_locks() in a row
1934  * or it would deadlock.
1935  *
1936  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
1937  * mapping->flags avoid to take the same lock twice, if more than one
1938  * vma in this mm is backed by the same anon_vma or address_space.
1939  *
1940  * We take locks in following order, accordingly to comment at beginning
1941  * of mm/rmap.c:
1942  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
1943  *     hugetlb mapping);
1944  *   - all vmas marked locked
1945  *   - all i_mmap_rwsem locks;
1946  *   - all anon_vma->rwseml
1947  *
1948  * We can take all locks within these types randomly because the VM code
1949  * doesn't nest them and we protected from parallel mm_take_all_locks() by
1950  * mm_all_locks_mutex.
1951  *
1952  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
1953  * that may have to take thousand of locks.
1954  *
1955  * mm_take_all_locks() can fail if it's interrupted by signals.
1956  */
1957 int mm_take_all_locks(struct mm_struct *mm)
1958 {
1959 	struct vm_area_struct *vma;
1960 	struct anon_vma_chain *avc;
1961 	VMA_ITERATOR(vmi, mm, 0);
1962 
1963 	mmap_assert_write_locked(mm);
1964 
1965 	mutex_lock(&mm_all_locks_mutex);
1966 
1967 	/*
1968 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
1969 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
1970 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
1971 	 * is reached.
1972 	 */
1973 	for_each_vma(vmi, vma) {
1974 		if (signal_pending(current))
1975 			goto out_unlock;
1976 		vma_start_write(vma);
1977 	}
1978 
1979 	vma_iter_init(&vmi, mm, 0);
1980 	for_each_vma(vmi, vma) {
1981 		if (signal_pending(current))
1982 			goto out_unlock;
1983 		if (vma->vm_file && vma->vm_file->f_mapping &&
1984 				is_vm_hugetlb_page(vma))
1985 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
1986 	}
1987 
1988 	vma_iter_init(&vmi, mm, 0);
1989 	for_each_vma(vmi, vma) {
1990 		if (signal_pending(current))
1991 			goto out_unlock;
1992 		if (vma->vm_file && vma->vm_file->f_mapping &&
1993 				!is_vm_hugetlb_page(vma))
1994 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
1995 	}
1996 
1997 	vma_iter_init(&vmi, mm, 0);
1998 	for_each_vma(vmi, vma) {
1999 		if (signal_pending(current))
2000 			goto out_unlock;
2001 		if (vma->anon_vma)
2002 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2003 				vm_lock_anon_vma(mm, avc->anon_vma);
2004 	}
2005 
2006 	return 0;
2007 
2008 out_unlock:
2009 	mm_drop_all_locks(mm);
2010 	return -EINTR;
2011 }
2012 
2013 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2014 {
2015 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2016 		/*
2017 		 * The LSB of head.next can't change to 0 from under
2018 		 * us because we hold the mm_all_locks_mutex.
2019 		 *
2020 		 * We must however clear the bitflag before unlocking
2021 		 * the vma so the users using the anon_vma->rb_root will
2022 		 * never see our bitflag.
2023 		 *
2024 		 * No need of atomic instructions here, head.next
2025 		 * can't change from under us until we release the
2026 		 * anon_vma->root->rwsem.
2027 		 */
2028 		if (!__test_and_clear_bit(0, (unsigned long *)
2029 					  &anon_vma->root->rb_root.rb_root.rb_node))
2030 			BUG();
2031 		anon_vma_unlock_write(anon_vma);
2032 	}
2033 }
2034 
2035 static void vm_unlock_mapping(struct address_space *mapping)
2036 {
2037 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2038 		/*
2039 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2040 		 * because we hold the mm_all_locks_mutex.
2041 		 */
2042 		i_mmap_unlock_write(mapping);
2043 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2044 					&mapping->flags))
2045 			BUG();
2046 	}
2047 }
2048 
2049 /*
2050  * The mmap_lock cannot be released by the caller until
2051  * mm_drop_all_locks() returns.
2052  */
2053 void mm_drop_all_locks(struct mm_struct *mm)
2054 {
2055 	struct vm_area_struct *vma;
2056 	struct anon_vma_chain *avc;
2057 	VMA_ITERATOR(vmi, mm, 0);
2058 
2059 	mmap_assert_write_locked(mm);
2060 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2061 
2062 	for_each_vma(vmi, vma) {
2063 		if (vma->anon_vma)
2064 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2065 				vm_unlock_anon_vma(avc->anon_vma);
2066 		if (vma->vm_file && vma->vm_file->f_mapping)
2067 			vm_unlock_mapping(vma->vm_file->f_mapping);
2068 	}
2069 
2070 	mutex_unlock(&mm_all_locks_mutex);
2071 }
2072