1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 21 unsigned long charged; 22 bool retry_merge; 23 24 struct vm_area_struct *prev; 25 struct vm_area_struct *next; 26 27 /* Unmapping state. */ 28 struct vma_munmap_struct vms; 29 struct ma_state mas_detach; 30 struct maple_tree mt_detach; 31 }; 32 33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 34 struct mmap_state name = { \ 35 .mm = mm_, \ 36 .vmi = vmi_, \ 37 .addr = addr_, \ 38 .end = (addr_) + (len_), \ 39 .pgoff = pgoff_, \ 40 .pglen = PHYS_PFN(len_), \ 41 .flags = flags_, \ 42 .file = file_, \ 43 } 44 45 #define VMG_MMAP_STATE(name, map_, vma_) \ 46 struct vma_merge_struct name = { \ 47 .mm = (map_)->mm, \ 48 .vmi = (map_)->vmi, \ 49 .start = (map_)->addr, \ 50 .end = (map_)->end, \ 51 .flags = (map_)->flags, \ 52 .pgoff = (map_)->pgoff, \ 53 .file = (map_)->file, \ 54 .prev = (map_)->prev, \ 55 .vma = vma_, \ 56 .next = (vma_) ? NULL : (map_)->next, \ 57 .state = VMA_MERGE_START, \ 58 .merge_flags = VMG_FLAG_DEFAULT, \ 59 } 60 61 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 62 { 63 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 64 65 if (!mpol_equal(vmg->policy, vma_policy(vma))) 66 return false; 67 /* 68 * VM_SOFTDIRTY should not prevent from VMA merging, if we 69 * match the flags but dirty bit -- the caller should mark 70 * merged VMA as dirty. If dirty bit won't be excluded from 71 * comparison, we increase pressure on the memory system forcing 72 * the kernel to generate new VMAs when old one could be 73 * extended instead. 74 */ 75 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 76 return false; 77 if (vma->vm_file != vmg->file) 78 return false; 79 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 80 return false; 81 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 82 return false; 83 return true; 84 } 85 86 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 87 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 88 { 89 /* 90 * The list_is_singular() test is to avoid merging VMA cloned from 91 * parents. This can improve scalability caused by anon_vma lock. 92 */ 93 if ((!anon_vma1 || !anon_vma2) && (!vma || 94 list_is_singular(&vma->anon_vma_chain))) 95 return true; 96 return anon_vma1 == anon_vma2; 97 } 98 99 /* Are the anon_vma's belonging to each VMA compatible with one another? */ 100 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, 101 struct vm_area_struct *vma2) 102 { 103 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); 104 } 105 106 /* 107 * init_multi_vma_prep() - Initializer for struct vma_prepare 108 * @vp: The vma_prepare struct 109 * @vma: The vma that will be altered once locked 110 * @next: The next vma if it is to be adjusted 111 * @remove: The first vma to be removed 112 * @remove2: The second vma to be removed 113 */ 114 static void init_multi_vma_prep(struct vma_prepare *vp, 115 struct vm_area_struct *vma, 116 struct vm_area_struct *next, 117 struct vm_area_struct *remove, 118 struct vm_area_struct *remove2) 119 { 120 memset(vp, 0, sizeof(struct vma_prepare)); 121 vp->vma = vma; 122 vp->anon_vma = vma->anon_vma; 123 vp->remove = remove; 124 vp->remove2 = remove2; 125 vp->adj_next = next; 126 if (!vp->anon_vma && next) 127 vp->anon_vma = next->anon_vma; 128 129 vp->file = vma->vm_file; 130 if (vp->file) 131 vp->mapping = vma->vm_file->f_mapping; 132 133 } 134 135 /* 136 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 137 * in front of (at a lower virtual address and file offset than) the vma. 138 * 139 * We cannot merge two vmas if they have differently assigned (non-NULL) 140 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 141 * 142 * We don't check here for the merged mmap wrapping around the end of pagecache 143 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 144 * wrap, nor mmaps which cover the final page at index -1UL. 145 * 146 * We assume the vma may be removed as part of the merge. 147 */ 148 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 149 { 150 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 151 152 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 153 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 154 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 155 return true; 156 } 157 158 return false; 159 } 160 161 /* 162 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 163 * beyond (at a higher virtual address and file offset than) the vma. 164 * 165 * We cannot merge two vmas if they have differently assigned (non-NULL) 166 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 167 * 168 * We assume that vma is not removed as part of the merge. 169 */ 170 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 171 { 172 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 173 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 174 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 175 return true; 176 } 177 return false; 178 } 179 180 static void __vma_link_file(struct vm_area_struct *vma, 181 struct address_space *mapping) 182 { 183 if (vma_is_shared_maywrite(vma)) 184 mapping_allow_writable(mapping); 185 186 flush_dcache_mmap_lock(mapping); 187 vma_interval_tree_insert(vma, &mapping->i_mmap); 188 flush_dcache_mmap_unlock(mapping); 189 } 190 191 /* 192 * Requires inode->i_mapping->i_mmap_rwsem 193 */ 194 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 195 struct address_space *mapping) 196 { 197 if (vma_is_shared_maywrite(vma)) 198 mapping_unmap_writable(mapping); 199 200 flush_dcache_mmap_lock(mapping); 201 vma_interval_tree_remove(vma, &mapping->i_mmap); 202 flush_dcache_mmap_unlock(mapping); 203 } 204 205 /* 206 * vma has some anon_vma assigned, and is already inserted on that 207 * anon_vma's interval trees. 208 * 209 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 210 * vma must be removed from the anon_vma's interval trees using 211 * anon_vma_interval_tree_pre_update_vma(). 212 * 213 * After the update, the vma will be reinserted using 214 * anon_vma_interval_tree_post_update_vma(). 215 * 216 * The entire update must be protected by exclusive mmap_lock and by 217 * the root anon_vma's mutex. 218 */ 219 static void 220 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 221 { 222 struct anon_vma_chain *avc; 223 224 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 225 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 226 } 227 228 static void 229 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 230 { 231 struct anon_vma_chain *avc; 232 233 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 234 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 235 } 236 237 /* 238 * vma_prepare() - Helper function for handling locking VMAs prior to altering 239 * @vp: The initialized vma_prepare struct 240 */ 241 static void vma_prepare(struct vma_prepare *vp) 242 { 243 if (vp->file) { 244 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 245 246 if (vp->adj_next) 247 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 248 vp->adj_next->vm_end); 249 250 i_mmap_lock_write(vp->mapping); 251 if (vp->insert && vp->insert->vm_file) { 252 /* 253 * Put into interval tree now, so instantiated pages 254 * are visible to arm/parisc __flush_dcache_page 255 * throughout; but we cannot insert into address 256 * space until vma start or end is updated. 257 */ 258 __vma_link_file(vp->insert, 259 vp->insert->vm_file->f_mapping); 260 } 261 } 262 263 if (vp->anon_vma) { 264 anon_vma_lock_write(vp->anon_vma); 265 anon_vma_interval_tree_pre_update_vma(vp->vma); 266 if (vp->adj_next) 267 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 268 } 269 270 if (vp->file) { 271 flush_dcache_mmap_lock(vp->mapping); 272 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 273 if (vp->adj_next) 274 vma_interval_tree_remove(vp->adj_next, 275 &vp->mapping->i_mmap); 276 } 277 278 } 279 280 /* 281 * vma_complete- Helper function for handling the unlocking after altering VMAs, 282 * or for inserting a VMA. 283 * 284 * @vp: The vma_prepare struct 285 * @vmi: The vma iterator 286 * @mm: The mm_struct 287 */ 288 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 289 struct mm_struct *mm) 290 { 291 if (vp->file) { 292 if (vp->adj_next) 293 vma_interval_tree_insert(vp->adj_next, 294 &vp->mapping->i_mmap); 295 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 296 flush_dcache_mmap_unlock(vp->mapping); 297 } 298 299 if (vp->remove && vp->file) { 300 __remove_shared_vm_struct(vp->remove, vp->mapping); 301 if (vp->remove2) 302 __remove_shared_vm_struct(vp->remove2, vp->mapping); 303 } else if (vp->insert) { 304 /* 305 * split_vma has split insert from vma, and needs 306 * us to insert it before dropping the locks 307 * (it may either follow vma or precede it). 308 */ 309 vma_iter_store(vmi, vp->insert); 310 mm->map_count++; 311 } 312 313 if (vp->anon_vma) { 314 anon_vma_interval_tree_post_update_vma(vp->vma); 315 if (vp->adj_next) 316 anon_vma_interval_tree_post_update_vma(vp->adj_next); 317 anon_vma_unlock_write(vp->anon_vma); 318 } 319 320 if (vp->file) { 321 i_mmap_unlock_write(vp->mapping); 322 uprobe_mmap(vp->vma); 323 324 if (vp->adj_next) 325 uprobe_mmap(vp->adj_next); 326 } 327 328 if (vp->remove) { 329 again: 330 vma_mark_detached(vp->remove, true); 331 if (vp->file) { 332 uprobe_munmap(vp->remove, vp->remove->vm_start, 333 vp->remove->vm_end); 334 fput(vp->file); 335 } 336 if (vp->remove->anon_vma) 337 anon_vma_merge(vp->vma, vp->remove); 338 mm->map_count--; 339 mpol_put(vma_policy(vp->remove)); 340 if (!vp->remove2) 341 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 342 vm_area_free(vp->remove); 343 344 /* 345 * In mprotect's case 6 (see comments on vma_merge), 346 * we are removing both mid and next vmas 347 */ 348 if (vp->remove2) { 349 vp->remove = vp->remove2; 350 vp->remove2 = NULL; 351 goto again; 352 } 353 } 354 if (vp->insert && vp->file) 355 uprobe_mmap(vp->insert); 356 } 357 358 /* 359 * init_vma_prep() - Initializer wrapper for vma_prepare struct 360 * @vp: The vma_prepare struct 361 * @vma: The vma that will be altered once locked 362 */ 363 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 364 { 365 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 366 } 367 368 /* 369 * Can the proposed VMA be merged with the left (previous) VMA taking into 370 * account the start position of the proposed range. 371 */ 372 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 373 374 { 375 return vmg->prev && vmg->prev->vm_end == vmg->start && 376 can_vma_merge_after(vmg); 377 } 378 379 /* 380 * Can the proposed VMA be merged with the right (next) VMA taking into 381 * account the end position of the proposed range. 382 * 383 * In addition, if we can merge with the left VMA, ensure that left and right 384 * anon_vma's are also compatible. 385 */ 386 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 387 bool can_merge_left) 388 { 389 if (!vmg->next || vmg->end != vmg->next->vm_start || 390 !can_vma_merge_before(vmg)) 391 return false; 392 393 if (!can_merge_left) 394 return true; 395 396 /* 397 * If we can merge with prev (left) and next (right), indicating that 398 * each VMA's anon_vma is compatible with the proposed anon_vma, this 399 * does not mean prev and next are compatible with EACH OTHER. 400 * 401 * We therefore check this in addition to mergeability to either side. 402 */ 403 return are_anon_vmas_compatible(vmg->prev, vmg->next); 404 } 405 406 /* 407 * Close a vm structure and free it. 408 */ 409 void remove_vma(struct vm_area_struct *vma, bool unreachable) 410 { 411 might_sleep(); 412 vma_close(vma); 413 if (vma->vm_file) 414 fput(vma->vm_file); 415 mpol_put(vma_policy(vma)); 416 if (unreachable) 417 __vm_area_free(vma); 418 else 419 vm_area_free(vma); 420 } 421 422 /* 423 * Get rid of page table information in the indicated region. 424 * 425 * Called with the mm semaphore held. 426 */ 427 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 428 struct vm_area_struct *prev, struct vm_area_struct *next) 429 { 430 struct mm_struct *mm = vma->vm_mm; 431 struct mmu_gather tlb; 432 433 tlb_gather_mmu(&tlb, mm); 434 update_hiwater_rss(mm); 435 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 436 /* mm_wr_locked = */ true); 437 mas_set(mas, vma->vm_end); 438 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 439 next ? next->vm_start : USER_PGTABLES_CEILING, 440 /* mm_wr_locked = */ true); 441 tlb_finish_mmu(&tlb); 442 } 443 444 /* 445 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 446 * has already been checked or doesn't make sense to fail. 447 * VMA Iterator will point to the original VMA. 448 */ 449 static __must_check int 450 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 451 unsigned long addr, int new_below) 452 { 453 struct vma_prepare vp; 454 struct vm_area_struct *new; 455 int err; 456 457 WARN_ON(vma->vm_start >= addr); 458 WARN_ON(vma->vm_end <= addr); 459 460 if (vma->vm_ops && vma->vm_ops->may_split) { 461 err = vma->vm_ops->may_split(vma, addr); 462 if (err) 463 return err; 464 } 465 466 new = vm_area_dup(vma); 467 if (!new) 468 return -ENOMEM; 469 470 if (new_below) { 471 new->vm_end = addr; 472 } else { 473 new->vm_start = addr; 474 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 475 } 476 477 err = -ENOMEM; 478 vma_iter_config(vmi, new->vm_start, new->vm_end); 479 if (vma_iter_prealloc(vmi, new)) 480 goto out_free_vma; 481 482 err = vma_dup_policy(vma, new); 483 if (err) 484 goto out_free_vmi; 485 486 err = anon_vma_clone(new, vma); 487 if (err) 488 goto out_free_mpol; 489 490 if (new->vm_file) 491 get_file(new->vm_file); 492 493 if (new->vm_ops && new->vm_ops->open) 494 new->vm_ops->open(new); 495 496 vma_start_write(vma); 497 vma_start_write(new); 498 499 init_vma_prep(&vp, vma); 500 vp.insert = new; 501 vma_prepare(&vp); 502 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 503 504 if (new_below) { 505 vma->vm_start = addr; 506 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 507 } else { 508 vma->vm_end = addr; 509 } 510 511 /* vma_complete stores the new vma */ 512 vma_complete(&vp, vmi, vma->vm_mm); 513 validate_mm(vma->vm_mm); 514 515 /* Success. */ 516 if (new_below) 517 vma_next(vmi); 518 else 519 vma_prev(vmi); 520 521 return 0; 522 523 out_free_mpol: 524 mpol_put(vma_policy(new)); 525 out_free_vmi: 526 vma_iter_free(vmi); 527 out_free_vma: 528 vm_area_free(new); 529 return err; 530 } 531 532 /* 533 * Split a vma into two pieces at address 'addr', a new vma is allocated 534 * either for the first part or the tail. 535 */ 536 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 537 unsigned long addr, int new_below) 538 { 539 if (vma->vm_mm->map_count >= sysctl_max_map_count) 540 return -ENOMEM; 541 542 return __split_vma(vmi, vma, addr, new_below); 543 } 544 545 /* 546 * dup_anon_vma() - Helper function to duplicate anon_vma 547 * @dst: The destination VMA 548 * @src: The source VMA 549 * @dup: Pointer to the destination VMA when successful. 550 * 551 * Returns: 0 on success. 552 */ 553 static int dup_anon_vma(struct vm_area_struct *dst, 554 struct vm_area_struct *src, struct vm_area_struct **dup) 555 { 556 /* 557 * Easily overlooked: when mprotect shifts the boundary, make sure the 558 * expanding vma has anon_vma set if the shrinking vma had, to cover any 559 * anon pages imported. 560 */ 561 if (src->anon_vma && !dst->anon_vma) { 562 int ret; 563 564 vma_assert_write_locked(dst); 565 dst->anon_vma = src->anon_vma; 566 ret = anon_vma_clone(dst, src); 567 if (ret) 568 return ret; 569 570 *dup = dst; 571 } 572 573 return 0; 574 } 575 576 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 577 void validate_mm(struct mm_struct *mm) 578 { 579 int bug = 0; 580 int i = 0; 581 struct vm_area_struct *vma; 582 VMA_ITERATOR(vmi, mm, 0); 583 584 mt_validate(&mm->mm_mt); 585 for_each_vma(vmi, vma) { 586 #ifdef CONFIG_DEBUG_VM_RB 587 struct anon_vma *anon_vma = vma->anon_vma; 588 struct anon_vma_chain *avc; 589 #endif 590 unsigned long vmi_start, vmi_end; 591 bool warn = 0; 592 593 vmi_start = vma_iter_addr(&vmi); 594 vmi_end = vma_iter_end(&vmi); 595 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 596 warn = 1; 597 598 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 599 warn = 1; 600 601 if (warn) { 602 pr_emerg("issue in %s\n", current->comm); 603 dump_stack(); 604 dump_vma(vma); 605 pr_emerg("tree range: %px start %lx end %lx\n", vma, 606 vmi_start, vmi_end - 1); 607 vma_iter_dump_tree(&vmi); 608 } 609 610 #ifdef CONFIG_DEBUG_VM_RB 611 if (anon_vma) { 612 anon_vma_lock_read(anon_vma); 613 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 614 anon_vma_interval_tree_verify(avc); 615 anon_vma_unlock_read(anon_vma); 616 } 617 #endif 618 /* Check for a infinite loop */ 619 if (++i > mm->map_count + 10) { 620 i = -1; 621 break; 622 } 623 } 624 if (i != mm->map_count) { 625 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 626 bug = 1; 627 } 628 VM_BUG_ON_MM(bug, mm); 629 } 630 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 631 632 /* Actually perform the VMA merge operation. */ 633 static int commit_merge(struct vma_merge_struct *vmg, 634 struct vm_area_struct *adjust, 635 struct vm_area_struct *remove, 636 struct vm_area_struct *remove2, 637 long adj_start, 638 bool expanded) 639 { 640 struct vma_prepare vp; 641 642 init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2); 643 644 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 645 vp.anon_vma != adjust->anon_vma); 646 647 if (expanded) { 648 /* Note: vma iterator must be pointing to 'start'. */ 649 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 650 } else { 651 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start, 652 adjust->vm_end); 653 } 654 655 if (vma_iter_prealloc(vmg->vmi, vmg->vma)) 656 return -ENOMEM; 657 658 vma_prepare(&vp); 659 vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start); 660 vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff); 661 662 if (expanded) 663 vma_iter_store(vmg->vmi, vmg->vma); 664 665 if (adj_start) { 666 adjust->vm_start += adj_start; 667 adjust->vm_pgoff += PHYS_PFN(adj_start); 668 if (adj_start < 0) { 669 WARN_ON(expanded); 670 vma_iter_store(vmg->vmi, adjust); 671 } 672 } 673 674 vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm); 675 676 return 0; 677 } 678 679 /* We can only remove VMAs when merging if they do not have a close hook. */ 680 static bool can_merge_remove_vma(struct vm_area_struct *vma) 681 { 682 return !vma->vm_ops || !vma->vm_ops->close; 683 } 684 685 /* 686 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 687 * attributes modified. 688 * 689 * @vmg: Describes the modifications being made to a VMA and associated 690 * metadata. 691 * 692 * When the attributes of a range within a VMA change, then it might be possible 693 * for immediately adjacent VMAs to be merged into that VMA due to having 694 * identical properties. 695 * 696 * This function checks for the existence of any such mergeable VMAs and updates 697 * the maple tree describing the @vmg->vma->vm_mm address space to account for 698 * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge. 699 * 700 * As part of this operation, if a merge occurs, the @vmg object will have its 701 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 702 * calls to this function should reset these fields. 703 * 704 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 705 * 706 * ASSUMPTIONS: 707 * - The caller must assign the VMA to be modifed to @vmg->vma. 708 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 709 * - The caller must not set @vmg->next, as we determine this. 710 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 711 * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end). 712 */ 713 static __must_check struct vm_area_struct *vma_merge_existing_range( 714 struct vma_merge_struct *vmg) 715 { 716 struct vm_area_struct *vma = vmg->vma; 717 struct vm_area_struct *prev = vmg->prev; 718 struct vm_area_struct *next, *res; 719 struct vm_area_struct *anon_dup = NULL; 720 struct vm_area_struct *adjust = NULL; 721 unsigned long start = vmg->start; 722 unsigned long end = vmg->end; 723 bool left_side = vma && start == vma->vm_start; 724 bool right_side = vma && end == vma->vm_end; 725 int err = 0; 726 long adj_start = 0; 727 bool merge_will_delete_vma, merge_will_delete_next; 728 bool merge_left, merge_right, merge_both; 729 bool expanded; 730 731 mmap_assert_write_locked(vmg->mm); 732 VM_WARN_ON_VMG(!vma, vmg); /* We are modifying a VMA, so caller must specify. */ 733 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 734 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 735 VM_WARN_ON_VMG(start >= end, vmg); 736 737 /* 738 * If vma == prev, then we are offset into a VMA. Otherwise, if we are 739 * not, we must span a portion of the VMA. 740 */ 741 VM_WARN_ON_VMG(vma && ((vma != prev && vmg->start != vma->vm_start) || 742 vmg->end > vma->vm_end), vmg); 743 /* The vmi must be positioned within vmg->vma. */ 744 VM_WARN_ON_VMG(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start && 745 vma_iter_addr(vmg->vmi) < vma->vm_end), vmg); 746 747 vmg->state = VMA_MERGE_NOMERGE; 748 749 /* 750 * If a special mapping or if the range being modified is neither at the 751 * furthermost left or right side of the VMA, then we have no chance of 752 * merging and should abort. 753 */ 754 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 755 return NULL; 756 757 if (left_side) 758 merge_left = can_vma_merge_left(vmg); 759 else 760 merge_left = false; 761 762 if (right_side) { 763 next = vmg->next = vma_iter_next_range(vmg->vmi); 764 vma_iter_prev_range(vmg->vmi); 765 766 merge_right = can_vma_merge_right(vmg, merge_left); 767 } else { 768 merge_right = false; 769 next = NULL; 770 } 771 772 if (merge_left) /* If merging prev, position iterator there. */ 773 vma_prev(vmg->vmi); 774 else if (!merge_right) /* If we have nothing to merge, abort. */ 775 return NULL; 776 777 merge_both = merge_left && merge_right; 778 /* If we span the entire VMA, a merge implies it will be deleted. */ 779 merge_will_delete_vma = left_side && right_side; 780 781 /* 782 * If we need to remove vma in its entirety but are unable to do so, 783 * we have no sensible recourse but to abort the merge. 784 */ 785 if (merge_will_delete_vma && !can_merge_remove_vma(vma)) 786 return NULL; 787 788 /* 789 * If we merge both VMAs, then next is also deleted. This implies 790 * merge_will_delete_vma also. 791 */ 792 merge_will_delete_next = merge_both; 793 794 /* 795 * If we cannot delete next, then we can reduce the operation to merging 796 * prev and vma (thereby deleting vma). 797 */ 798 if (merge_will_delete_next && !can_merge_remove_vma(next)) { 799 merge_will_delete_next = false; 800 merge_right = false; 801 merge_both = false; 802 } 803 804 /* No matter what happens, we will be adjusting vma. */ 805 vma_start_write(vma); 806 807 if (merge_left) 808 vma_start_write(prev); 809 810 if (merge_right) 811 vma_start_write(next); 812 813 if (merge_both) { 814 /* 815 * |<----->| 816 * |-------*********-------| 817 * prev vma next 818 * extend delete delete 819 */ 820 821 vmg->vma = prev; 822 vmg->start = prev->vm_start; 823 vmg->end = next->vm_end; 824 vmg->pgoff = prev->vm_pgoff; 825 826 /* 827 * We already ensured anon_vma compatibility above, so now it's 828 * simply a case of, if prev has no anon_vma object, which of 829 * next or vma contains the anon_vma we must duplicate. 830 */ 831 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup); 832 } else if (merge_left) { 833 /* 834 * |<----->| OR 835 * |<--------->| 836 * |-------************* 837 * prev vma 838 * extend shrink/delete 839 */ 840 841 vmg->vma = prev; 842 vmg->start = prev->vm_start; 843 vmg->pgoff = prev->vm_pgoff; 844 845 if (!merge_will_delete_vma) { 846 adjust = vma; 847 adj_start = vmg->end - vma->vm_start; 848 } 849 850 err = dup_anon_vma(prev, vma, &anon_dup); 851 } else { /* merge_right */ 852 /* 853 * |<----->| OR 854 * |<--------->| 855 * *************-------| 856 * vma next 857 * shrink/delete extend 858 */ 859 860 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 861 862 VM_WARN_ON_VMG(!merge_right, vmg); 863 /* If we are offset into a VMA, then prev must be vma. */ 864 VM_WARN_ON_VMG(vmg->start > vma->vm_start && prev && vma != prev, vmg); 865 866 if (merge_will_delete_vma) { 867 vmg->vma = next; 868 vmg->end = next->vm_end; 869 vmg->pgoff = next->vm_pgoff - pglen; 870 } else { 871 /* 872 * We shrink vma and expand next. 873 * 874 * IMPORTANT: This is the ONLY case where the final 875 * merged VMA is NOT vmg->vma, but rather vmg->next. 876 */ 877 878 vmg->start = vma->vm_start; 879 vmg->end = start; 880 vmg->pgoff = vma->vm_pgoff; 881 882 adjust = next; 883 adj_start = -(vma->vm_end - start); 884 } 885 886 err = dup_anon_vma(next, vma, &anon_dup); 887 } 888 889 if (err) 890 goto abort; 891 892 /* 893 * In nearly all cases, we expand vmg->vma. There is one exception - 894 * merge_right where we partially span the VMA. In this case we shrink 895 * the end of vmg->vma and adjust the start of vmg->next accordingly. 896 */ 897 expanded = !merge_right || merge_will_delete_vma; 898 899 if (commit_merge(vmg, adjust, 900 merge_will_delete_vma ? vma : NULL, 901 merge_will_delete_next ? next : NULL, 902 adj_start, expanded)) { 903 if (anon_dup) 904 unlink_anon_vmas(anon_dup); 905 906 vmg->state = VMA_MERGE_ERROR_NOMEM; 907 return NULL; 908 } 909 910 res = merge_left ? prev : next; 911 khugepaged_enter_vma(res, vmg->flags); 912 913 vmg->state = VMA_MERGE_SUCCESS; 914 return res; 915 916 abort: 917 vma_iter_set(vmg->vmi, start); 918 vma_iter_load(vmg->vmi); 919 vmg->state = VMA_MERGE_ERROR_NOMEM; 920 return NULL; 921 } 922 923 /* 924 * vma_merge_new_range - Attempt to merge a new VMA into address space 925 * 926 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 927 * (exclusive), which we try to merge with any adjacent VMAs if possible. 928 * 929 * We are about to add a VMA to the address space starting at @vmg->start and 930 * ending at @vmg->end. There are three different possible scenarios: 931 * 932 * 1. There is a VMA with identical properties immediately adjacent to the 933 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 934 * EXPAND that VMA: 935 * 936 * Proposed: |-----| or |-----| 937 * Existing: |----| |----| 938 * 939 * 2. There are VMAs with identical properties immediately adjacent to the 940 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 941 * EXPAND the former and REMOVE the latter: 942 * 943 * Proposed: |-----| 944 * Existing: |----| |----| 945 * 946 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 947 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 948 * 949 * In instances where we can merge, this function returns the expanded VMA which 950 * will have its range adjusted accordingly and the underlying maple tree also 951 * adjusted. 952 * 953 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 954 * to the VMA we expanded. 955 * 956 * This function adjusts @vmg to provide @vmg->next if not already specified, 957 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 958 * 959 * ASSUMPTIONS: 960 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 961 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 962 other than VMAs that will be unmapped should the operation succeed. 963 * - The caller must have specified the previous vma in @vmg->prev. 964 * - The caller must have specified the next vma in @vmg->next. 965 * - The caller must have positioned the vmi at or before the gap. 966 */ 967 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 968 { 969 struct vm_area_struct *prev = vmg->prev; 970 struct vm_area_struct *next = vmg->next; 971 unsigned long end = vmg->end; 972 bool can_merge_left, can_merge_right; 973 bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND; 974 975 mmap_assert_write_locked(vmg->mm); 976 VM_WARN_ON_VMG(vmg->vma, vmg); 977 /* vmi must point at or before the gap. */ 978 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 979 980 vmg->state = VMA_MERGE_NOMERGE; 981 982 /* Special VMAs are unmergeable, also if no prev/next. */ 983 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 984 return NULL; 985 986 can_merge_left = can_vma_merge_left(vmg); 987 can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left); 988 989 /* If we can merge with the next VMA, adjust vmg accordingly. */ 990 if (can_merge_right) { 991 vmg->end = next->vm_end; 992 vmg->vma = next; 993 } 994 995 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 996 if (can_merge_left) { 997 vmg->start = prev->vm_start; 998 vmg->vma = prev; 999 vmg->pgoff = prev->vm_pgoff; 1000 1001 /* 1002 * If this merge would result in removal of the next VMA but we 1003 * are not permitted to do so, reduce the operation to merging 1004 * prev and vma. 1005 */ 1006 if (can_merge_right && !can_merge_remove_vma(next)) 1007 vmg->end = end; 1008 1009 /* In expand-only case we are already positioned at prev. */ 1010 if (!just_expand) { 1011 /* Equivalent to going to the previous range. */ 1012 vma_prev(vmg->vmi); 1013 } 1014 } 1015 1016 /* 1017 * Now try to expand adjacent VMA(s). This takes care of removing the 1018 * following VMA if we have VMAs on both sides. 1019 */ 1020 if (vmg->vma && !vma_expand(vmg)) { 1021 khugepaged_enter_vma(vmg->vma, vmg->flags); 1022 vmg->state = VMA_MERGE_SUCCESS; 1023 return vmg->vma; 1024 } 1025 1026 return NULL; 1027 } 1028 1029 /* 1030 * vma_expand - Expand an existing VMA 1031 * 1032 * @vmg: Describes a VMA expansion operation. 1033 * 1034 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1035 * Will expand over vmg->next if it's different from vmg->vma and vmg->end == 1036 * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with 1037 * vmg->next needs to be handled by the caller. 1038 * 1039 * Returns: 0 on success. 1040 * 1041 * ASSUMPTIONS: 1042 * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock. 1043 * - The caller must have set @vmg->vma and @vmg->next. 1044 */ 1045 int vma_expand(struct vma_merge_struct *vmg) 1046 { 1047 struct vm_area_struct *anon_dup = NULL; 1048 bool remove_next = false; 1049 struct vm_area_struct *vma = vmg->vma; 1050 struct vm_area_struct *next = vmg->next; 1051 1052 mmap_assert_write_locked(vmg->mm); 1053 1054 vma_start_write(vma); 1055 if (next && (vma != next) && (vmg->end == next->vm_end)) { 1056 int ret; 1057 1058 remove_next = true; 1059 /* This should already have been checked by this point. */ 1060 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1061 vma_start_write(next); 1062 ret = dup_anon_vma(vma, next, &anon_dup); 1063 if (ret) 1064 return ret; 1065 } 1066 1067 /* Not merging but overwriting any part of next is not handled. */ 1068 VM_WARN_ON_VMG(next && !remove_next && 1069 next != vma && vmg->end > next->vm_start, vmg); 1070 /* Only handles expanding */ 1071 VM_WARN_ON_VMG(vma->vm_start < vmg->start || vma->vm_end > vmg->end, vmg); 1072 1073 if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true)) 1074 goto nomem; 1075 1076 return 0; 1077 1078 nomem: 1079 vmg->state = VMA_MERGE_ERROR_NOMEM; 1080 if (anon_dup) 1081 unlink_anon_vmas(anon_dup); 1082 return -ENOMEM; 1083 } 1084 1085 /* 1086 * vma_shrink() - Reduce an existing VMAs memory area 1087 * @vmi: The vma iterator 1088 * @vma: The VMA to modify 1089 * @start: The new start 1090 * @end: The new end 1091 * 1092 * Returns: 0 on success, -ENOMEM otherwise 1093 */ 1094 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1095 unsigned long start, unsigned long end, pgoff_t pgoff) 1096 { 1097 struct vma_prepare vp; 1098 1099 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1100 1101 if (vma->vm_start < start) 1102 vma_iter_config(vmi, vma->vm_start, start); 1103 else 1104 vma_iter_config(vmi, end, vma->vm_end); 1105 1106 if (vma_iter_prealloc(vmi, NULL)) 1107 return -ENOMEM; 1108 1109 vma_start_write(vma); 1110 1111 init_vma_prep(&vp, vma); 1112 vma_prepare(&vp); 1113 vma_adjust_trans_huge(vma, start, end, 0); 1114 1115 vma_iter_clear(vmi); 1116 vma_set_range(vma, start, end, pgoff); 1117 vma_complete(&vp, vmi, vma->vm_mm); 1118 validate_mm(vma->vm_mm); 1119 return 0; 1120 } 1121 1122 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1123 struct ma_state *mas_detach, bool mm_wr_locked) 1124 { 1125 struct mmu_gather tlb; 1126 1127 if (!vms->clear_ptes) /* Nothing to do */ 1128 return; 1129 1130 /* 1131 * We can free page tables without write-locking mmap_lock because VMAs 1132 * were isolated before we downgraded mmap_lock. 1133 */ 1134 mas_set(mas_detach, 1); 1135 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1136 update_hiwater_rss(vms->vma->vm_mm); 1137 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1138 vms->vma_count, mm_wr_locked); 1139 1140 mas_set(mas_detach, 1); 1141 /* start and end may be different if there is no prev or next vma. */ 1142 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1143 vms->unmap_end, mm_wr_locked); 1144 tlb_finish_mmu(&tlb); 1145 vms->clear_ptes = false; 1146 } 1147 1148 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1149 struct ma_state *mas_detach) 1150 { 1151 struct vm_area_struct *vma; 1152 1153 if (!vms->nr_pages) 1154 return; 1155 1156 vms_clear_ptes(vms, mas_detach, true); 1157 mas_set(mas_detach, 0); 1158 mas_for_each(mas_detach, vma, ULONG_MAX) 1159 vma_close(vma); 1160 } 1161 1162 /* 1163 * vms_complete_munmap_vmas() - Finish the munmap() operation 1164 * @vms: The vma munmap struct 1165 * @mas_detach: The maple state of the detached vmas 1166 * 1167 * This updates the mm_struct, unmaps the region, frees the resources 1168 * used for the munmap() and may downgrade the lock - if requested. Everything 1169 * needed to be done once the vma maple tree is updated. 1170 */ 1171 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1172 struct ma_state *mas_detach) 1173 { 1174 struct vm_area_struct *vma; 1175 struct mm_struct *mm; 1176 1177 mm = current->mm; 1178 mm->map_count -= vms->vma_count; 1179 mm->locked_vm -= vms->locked_vm; 1180 if (vms->unlock) 1181 mmap_write_downgrade(mm); 1182 1183 if (!vms->nr_pages) 1184 return; 1185 1186 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1187 /* Update high watermark before we lower total_vm */ 1188 update_hiwater_vm(mm); 1189 /* Stat accounting */ 1190 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1191 /* Paranoid bookkeeping */ 1192 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1193 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1194 VM_WARN_ON(vms->data_vm > mm->data_vm); 1195 mm->exec_vm -= vms->exec_vm; 1196 mm->stack_vm -= vms->stack_vm; 1197 mm->data_vm -= vms->data_vm; 1198 1199 /* Remove and clean up vmas */ 1200 mas_set(mas_detach, 0); 1201 mas_for_each(mas_detach, vma, ULONG_MAX) 1202 remove_vma(vma, /* unreachable = */ false); 1203 1204 vm_unacct_memory(vms->nr_accounted); 1205 validate_mm(mm); 1206 if (vms->unlock) 1207 mmap_read_unlock(mm); 1208 1209 __mt_destroy(mas_detach->tree); 1210 } 1211 1212 /* 1213 * reattach_vmas() - Undo any munmap work and free resources 1214 * @mas_detach: The maple state with the detached maple tree 1215 * 1216 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1217 */ 1218 static void reattach_vmas(struct ma_state *mas_detach) 1219 { 1220 struct vm_area_struct *vma; 1221 1222 mas_set(mas_detach, 0); 1223 mas_for_each(mas_detach, vma, ULONG_MAX) 1224 vma_mark_detached(vma, false); 1225 1226 __mt_destroy(mas_detach->tree); 1227 } 1228 1229 /* 1230 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1231 * for removal at a later date. Handles splitting first and last if necessary 1232 * and marking the vmas as isolated. 1233 * 1234 * @vms: The vma munmap struct 1235 * @mas_detach: The maple state tracking the detached tree 1236 * 1237 * Return: 0 on success, error otherwise 1238 */ 1239 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1240 struct ma_state *mas_detach) 1241 { 1242 struct vm_area_struct *next = NULL; 1243 int error; 1244 1245 /* 1246 * If we need to split any vma, do it now to save pain later. 1247 * Does it split the first one? 1248 */ 1249 if (vms->start > vms->vma->vm_start) { 1250 1251 /* 1252 * Make sure that map_count on return from munmap() will 1253 * not exceed its limit; but let map_count go just above 1254 * its limit temporarily, to help free resources as expected. 1255 */ 1256 if (vms->end < vms->vma->vm_end && 1257 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1258 error = -ENOMEM; 1259 goto map_count_exceeded; 1260 } 1261 1262 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1263 if (!can_modify_vma(vms->vma)) { 1264 error = -EPERM; 1265 goto start_split_failed; 1266 } 1267 1268 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1269 if (error) 1270 goto start_split_failed; 1271 } 1272 vms->prev = vma_prev(vms->vmi); 1273 if (vms->prev) 1274 vms->unmap_start = vms->prev->vm_end; 1275 1276 /* 1277 * Detach a range of VMAs from the mm. Using next as a temp variable as 1278 * it is always overwritten. 1279 */ 1280 for_each_vma_range(*(vms->vmi), next, vms->end) { 1281 long nrpages; 1282 1283 if (!can_modify_vma(next)) { 1284 error = -EPERM; 1285 goto modify_vma_failed; 1286 } 1287 /* Does it split the end? */ 1288 if (next->vm_end > vms->end) { 1289 error = __split_vma(vms->vmi, next, vms->end, 0); 1290 if (error) 1291 goto end_split_failed; 1292 } 1293 vma_start_write(next); 1294 mas_set(mas_detach, vms->vma_count++); 1295 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1296 if (error) 1297 goto munmap_gather_failed; 1298 1299 vma_mark_detached(next, true); 1300 nrpages = vma_pages(next); 1301 1302 vms->nr_pages += nrpages; 1303 if (next->vm_flags & VM_LOCKED) 1304 vms->locked_vm += nrpages; 1305 1306 if (next->vm_flags & VM_ACCOUNT) 1307 vms->nr_accounted += nrpages; 1308 1309 if (is_exec_mapping(next->vm_flags)) 1310 vms->exec_vm += nrpages; 1311 else if (is_stack_mapping(next->vm_flags)) 1312 vms->stack_vm += nrpages; 1313 else if (is_data_mapping(next->vm_flags)) 1314 vms->data_vm += nrpages; 1315 1316 if (vms->uf) { 1317 /* 1318 * If userfaultfd_unmap_prep returns an error the vmas 1319 * will remain split, but userland will get a 1320 * highly unexpected error anyway. This is no 1321 * different than the case where the first of the two 1322 * __split_vma fails, but we don't undo the first 1323 * split, despite we could. This is unlikely enough 1324 * failure that it's not worth optimizing it for. 1325 */ 1326 error = userfaultfd_unmap_prep(next, vms->start, 1327 vms->end, vms->uf); 1328 if (error) 1329 goto userfaultfd_error; 1330 } 1331 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1332 BUG_ON(next->vm_start < vms->start); 1333 BUG_ON(next->vm_start > vms->end); 1334 #endif 1335 } 1336 1337 vms->next = vma_next(vms->vmi); 1338 if (vms->next) 1339 vms->unmap_end = vms->next->vm_start; 1340 1341 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1342 /* Make sure no VMAs are about to be lost. */ 1343 { 1344 MA_STATE(test, mas_detach->tree, 0, 0); 1345 struct vm_area_struct *vma_mas, *vma_test; 1346 int test_count = 0; 1347 1348 vma_iter_set(vms->vmi, vms->start); 1349 rcu_read_lock(); 1350 vma_test = mas_find(&test, vms->vma_count - 1); 1351 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1352 BUG_ON(vma_mas != vma_test); 1353 test_count++; 1354 vma_test = mas_next(&test, vms->vma_count - 1); 1355 } 1356 rcu_read_unlock(); 1357 BUG_ON(vms->vma_count != test_count); 1358 } 1359 #endif 1360 1361 while (vma_iter_addr(vms->vmi) > vms->start) 1362 vma_iter_prev_range(vms->vmi); 1363 1364 vms->clear_ptes = true; 1365 return 0; 1366 1367 userfaultfd_error: 1368 munmap_gather_failed: 1369 end_split_failed: 1370 modify_vma_failed: 1371 reattach_vmas(mas_detach); 1372 start_split_failed: 1373 map_count_exceeded: 1374 return error; 1375 } 1376 1377 /* 1378 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1379 * @vms: The vma munmap struct 1380 * @vmi: The vma iterator 1381 * @vma: The first vm_area_struct to munmap 1382 * @start: The aligned start address to munmap 1383 * @end: The aligned end address to munmap 1384 * @uf: The userfaultfd list_head 1385 * @unlock: Unlock after the operation. Only unlocked on success 1386 */ 1387 static void init_vma_munmap(struct vma_munmap_struct *vms, 1388 struct vma_iterator *vmi, struct vm_area_struct *vma, 1389 unsigned long start, unsigned long end, struct list_head *uf, 1390 bool unlock) 1391 { 1392 vms->vmi = vmi; 1393 vms->vma = vma; 1394 if (vma) { 1395 vms->start = start; 1396 vms->end = end; 1397 } else { 1398 vms->start = vms->end = 0; 1399 } 1400 vms->unlock = unlock; 1401 vms->uf = uf; 1402 vms->vma_count = 0; 1403 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1404 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1405 vms->unmap_start = FIRST_USER_ADDRESS; 1406 vms->unmap_end = USER_PGTABLES_CEILING; 1407 vms->clear_ptes = false; 1408 } 1409 1410 /* 1411 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1412 * @vmi: The vma iterator 1413 * @vma: The starting vm_area_struct 1414 * @mm: The mm_struct 1415 * @start: The aligned start address to munmap. 1416 * @end: The aligned end address to munmap. 1417 * @uf: The userfaultfd list_head 1418 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1419 * success. 1420 * 1421 * Return: 0 on success and drops the lock if so directed, error and leaves the 1422 * lock held otherwise. 1423 */ 1424 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1425 struct mm_struct *mm, unsigned long start, unsigned long end, 1426 struct list_head *uf, bool unlock) 1427 { 1428 struct maple_tree mt_detach; 1429 MA_STATE(mas_detach, &mt_detach, 0, 0); 1430 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1431 mt_on_stack(mt_detach); 1432 struct vma_munmap_struct vms; 1433 int error; 1434 1435 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1436 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1437 if (error) 1438 goto gather_failed; 1439 1440 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1441 if (error) 1442 goto clear_tree_failed; 1443 1444 /* Point of no return */ 1445 vms_complete_munmap_vmas(&vms, &mas_detach); 1446 return 0; 1447 1448 clear_tree_failed: 1449 reattach_vmas(&mas_detach); 1450 gather_failed: 1451 validate_mm(mm); 1452 return error; 1453 } 1454 1455 /* 1456 * do_vmi_munmap() - munmap a given range. 1457 * @vmi: The vma iterator 1458 * @mm: The mm_struct 1459 * @start: The start address to munmap 1460 * @len: The length of the range to munmap 1461 * @uf: The userfaultfd list_head 1462 * @unlock: set to true if the user wants to drop the mmap_lock on success 1463 * 1464 * This function takes a @mas that is either pointing to the previous VMA or set 1465 * to MA_START and sets it up to remove the mapping(s). The @len will be 1466 * aligned. 1467 * 1468 * Return: 0 on success and drops the lock if so directed, error and leaves the 1469 * lock held otherwise. 1470 */ 1471 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1472 unsigned long start, size_t len, struct list_head *uf, 1473 bool unlock) 1474 { 1475 unsigned long end; 1476 struct vm_area_struct *vma; 1477 1478 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1479 return -EINVAL; 1480 1481 end = start + PAGE_ALIGN(len); 1482 if (end == start) 1483 return -EINVAL; 1484 1485 /* Find the first overlapping VMA */ 1486 vma = vma_find(vmi, end); 1487 if (!vma) { 1488 if (unlock) 1489 mmap_write_unlock(mm); 1490 return 0; 1491 } 1492 1493 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1494 } 1495 1496 /* 1497 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1498 * context and anonymous VMA name within the range [start, end). 1499 * 1500 * As a result, we might be able to merge the newly modified VMA range with an 1501 * adjacent VMA with identical properties. 1502 * 1503 * If no merge is possible and the range does not span the entirety of the VMA, 1504 * we then need to split the VMA to accommodate the change. 1505 * 1506 * The function returns either the merged VMA, the original VMA if a split was 1507 * required instead, or an error if the split failed. 1508 */ 1509 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1510 { 1511 struct vm_area_struct *vma = vmg->vma; 1512 struct vm_area_struct *merged; 1513 1514 /* First, try to merge. */ 1515 merged = vma_merge_existing_range(vmg); 1516 if (merged) 1517 return merged; 1518 1519 /* Split any preceding portion of the VMA. */ 1520 if (vma->vm_start < vmg->start) { 1521 int err = split_vma(vmg->vmi, vma, vmg->start, 1); 1522 1523 if (err) 1524 return ERR_PTR(err); 1525 } 1526 1527 /* Split any trailing portion of the VMA. */ 1528 if (vma->vm_end > vmg->end) { 1529 int err = split_vma(vmg->vmi, vma, vmg->end, 0); 1530 1531 if (err) 1532 return ERR_PTR(err); 1533 } 1534 1535 return vma; 1536 } 1537 1538 struct vm_area_struct *vma_modify_flags( 1539 struct vma_iterator *vmi, struct vm_area_struct *prev, 1540 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1541 unsigned long new_flags) 1542 { 1543 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1544 1545 vmg.flags = new_flags; 1546 1547 return vma_modify(&vmg); 1548 } 1549 1550 struct vm_area_struct 1551 *vma_modify_flags_name(struct vma_iterator *vmi, 1552 struct vm_area_struct *prev, 1553 struct vm_area_struct *vma, 1554 unsigned long start, 1555 unsigned long end, 1556 unsigned long new_flags, 1557 struct anon_vma_name *new_name) 1558 { 1559 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1560 1561 vmg.flags = new_flags; 1562 vmg.anon_name = new_name; 1563 1564 return vma_modify(&vmg); 1565 } 1566 1567 struct vm_area_struct 1568 *vma_modify_policy(struct vma_iterator *vmi, 1569 struct vm_area_struct *prev, 1570 struct vm_area_struct *vma, 1571 unsigned long start, unsigned long end, 1572 struct mempolicy *new_pol) 1573 { 1574 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1575 1576 vmg.policy = new_pol; 1577 1578 return vma_modify(&vmg); 1579 } 1580 1581 struct vm_area_struct 1582 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1583 struct vm_area_struct *prev, 1584 struct vm_area_struct *vma, 1585 unsigned long start, unsigned long end, 1586 unsigned long new_flags, 1587 struct vm_userfaultfd_ctx new_ctx) 1588 { 1589 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1590 1591 vmg.flags = new_flags; 1592 vmg.uffd_ctx = new_ctx; 1593 1594 return vma_modify(&vmg); 1595 } 1596 1597 /* 1598 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1599 * VMA with identical properties. 1600 */ 1601 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1602 struct vm_area_struct *vma, 1603 unsigned long delta) 1604 { 1605 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1606 1607 vmg.next = vma_iter_next_rewind(vmi, NULL); 1608 vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */ 1609 1610 return vma_merge_new_range(&vmg); 1611 } 1612 1613 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1614 { 1615 vb->count = 0; 1616 } 1617 1618 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1619 { 1620 struct address_space *mapping; 1621 int i; 1622 1623 mapping = vb->vmas[0]->vm_file->f_mapping; 1624 i_mmap_lock_write(mapping); 1625 for (i = 0; i < vb->count; i++) { 1626 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1627 __remove_shared_vm_struct(vb->vmas[i], mapping); 1628 } 1629 i_mmap_unlock_write(mapping); 1630 1631 unlink_file_vma_batch_init(vb); 1632 } 1633 1634 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1635 struct vm_area_struct *vma) 1636 { 1637 if (vma->vm_file == NULL) 1638 return; 1639 1640 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1641 vb->count == ARRAY_SIZE(vb->vmas)) 1642 unlink_file_vma_batch_process(vb); 1643 1644 vb->vmas[vb->count] = vma; 1645 vb->count++; 1646 } 1647 1648 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1649 { 1650 if (vb->count > 0) 1651 unlink_file_vma_batch_process(vb); 1652 } 1653 1654 /* 1655 * Unlink a file-based vm structure from its interval tree, to hide 1656 * vma from rmap and vmtruncate before freeing its page tables. 1657 */ 1658 void unlink_file_vma(struct vm_area_struct *vma) 1659 { 1660 struct file *file = vma->vm_file; 1661 1662 if (file) { 1663 struct address_space *mapping = file->f_mapping; 1664 1665 i_mmap_lock_write(mapping); 1666 __remove_shared_vm_struct(vma, mapping); 1667 i_mmap_unlock_write(mapping); 1668 } 1669 } 1670 1671 void vma_link_file(struct vm_area_struct *vma) 1672 { 1673 struct file *file = vma->vm_file; 1674 struct address_space *mapping; 1675 1676 if (file) { 1677 mapping = file->f_mapping; 1678 i_mmap_lock_write(mapping); 1679 __vma_link_file(vma, mapping); 1680 i_mmap_unlock_write(mapping); 1681 } 1682 } 1683 1684 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1685 { 1686 VMA_ITERATOR(vmi, mm, 0); 1687 1688 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1689 if (vma_iter_prealloc(&vmi, vma)) 1690 return -ENOMEM; 1691 1692 vma_start_write(vma); 1693 vma_iter_store(&vmi, vma); 1694 vma_link_file(vma); 1695 mm->map_count++; 1696 validate_mm(mm); 1697 return 0; 1698 } 1699 1700 /* 1701 * Copy the vma structure to a new location in the same mm, 1702 * prior to moving page table entries, to effect an mremap move. 1703 */ 1704 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1705 unsigned long addr, unsigned long len, pgoff_t pgoff, 1706 bool *need_rmap_locks) 1707 { 1708 struct vm_area_struct *vma = *vmap; 1709 unsigned long vma_start = vma->vm_start; 1710 struct mm_struct *mm = vma->vm_mm; 1711 struct vm_area_struct *new_vma; 1712 bool faulted_in_anon_vma = true; 1713 VMA_ITERATOR(vmi, mm, addr); 1714 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1715 1716 /* 1717 * If anonymous vma has not yet been faulted, update new pgoff 1718 * to match new location, to increase its chance of merging. 1719 */ 1720 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1721 pgoff = addr >> PAGE_SHIFT; 1722 faulted_in_anon_vma = false; 1723 } 1724 1725 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1726 if (new_vma && new_vma->vm_start < addr + len) 1727 return NULL; /* should never get here */ 1728 1729 vmg.vma = NULL; /* New VMA range. */ 1730 vmg.pgoff = pgoff; 1731 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1732 new_vma = vma_merge_new_range(&vmg); 1733 1734 if (new_vma) { 1735 /* 1736 * Source vma may have been merged into new_vma 1737 */ 1738 if (unlikely(vma_start >= new_vma->vm_start && 1739 vma_start < new_vma->vm_end)) { 1740 /* 1741 * The only way we can get a vma_merge with 1742 * self during an mremap is if the vma hasn't 1743 * been faulted in yet and we were allowed to 1744 * reset the dst vma->vm_pgoff to the 1745 * destination address of the mremap to allow 1746 * the merge to happen. mremap must change the 1747 * vm_pgoff linearity between src and dst vmas 1748 * (in turn preventing a vma_merge) to be 1749 * safe. It is only safe to keep the vm_pgoff 1750 * linear if there are no pages mapped yet. 1751 */ 1752 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1753 *vmap = vma = new_vma; 1754 } 1755 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1756 } else { 1757 new_vma = vm_area_dup(vma); 1758 if (!new_vma) 1759 goto out; 1760 vma_set_range(new_vma, addr, addr + len, pgoff); 1761 if (vma_dup_policy(vma, new_vma)) 1762 goto out_free_vma; 1763 if (anon_vma_clone(new_vma, vma)) 1764 goto out_free_mempol; 1765 if (new_vma->vm_file) 1766 get_file(new_vma->vm_file); 1767 if (new_vma->vm_ops && new_vma->vm_ops->open) 1768 new_vma->vm_ops->open(new_vma); 1769 if (vma_link(mm, new_vma)) 1770 goto out_vma_link; 1771 *need_rmap_locks = false; 1772 } 1773 return new_vma; 1774 1775 out_vma_link: 1776 vma_close(new_vma); 1777 1778 if (new_vma->vm_file) 1779 fput(new_vma->vm_file); 1780 1781 unlink_anon_vmas(new_vma); 1782 out_free_mempol: 1783 mpol_put(vma_policy(new_vma)); 1784 out_free_vma: 1785 vm_area_free(new_vma); 1786 out: 1787 return NULL; 1788 } 1789 1790 /* 1791 * Rough compatibility check to quickly see if it's even worth looking 1792 * at sharing an anon_vma. 1793 * 1794 * They need to have the same vm_file, and the flags can only differ 1795 * in things that mprotect may change. 1796 * 1797 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1798 * we can merge the two vma's. For example, we refuse to merge a vma if 1799 * there is a vm_ops->close() function, because that indicates that the 1800 * driver is doing some kind of reference counting. But that doesn't 1801 * really matter for the anon_vma sharing case. 1802 */ 1803 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1804 { 1805 return a->vm_end == b->vm_start && 1806 mpol_equal(vma_policy(a), vma_policy(b)) && 1807 a->vm_file == b->vm_file && 1808 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1809 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1810 } 1811 1812 /* 1813 * Do some basic sanity checking to see if we can re-use the anon_vma 1814 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1815 * the same as 'old', the other will be the new one that is trying 1816 * to share the anon_vma. 1817 * 1818 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1819 * the anon_vma of 'old' is concurrently in the process of being set up 1820 * by another page fault trying to merge _that_. But that's ok: if it 1821 * is being set up, that automatically means that it will be a singleton 1822 * acceptable for merging, so we can do all of this optimistically. But 1823 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1824 * 1825 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1826 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1827 * is to return an anon_vma that is "complex" due to having gone through 1828 * a fork). 1829 * 1830 * We also make sure that the two vma's are compatible (adjacent, 1831 * and with the same memory policies). That's all stable, even with just 1832 * a read lock on the mmap_lock. 1833 */ 1834 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1835 struct vm_area_struct *a, 1836 struct vm_area_struct *b) 1837 { 1838 if (anon_vma_compatible(a, b)) { 1839 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1840 1841 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1842 return anon_vma; 1843 } 1844 return NULL; 1845 } 1846 1847 /* 1848 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1849 * neighbouring vmas for a suitable anon_vma, before it goes off 1850 * to allocate a new anon_vma. It checks because a repetitive 1851 * sequence of mprotects and faults may otherwise lead to distinct 1852 * anon_vmas being allocated, preventing vma merge in subsequent 1853 * mprotect. 1854 */ 1855 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1856 { 1857 struct anon_vma *anon_vma = NULL; 1858 struct vm_area_struct *prev, *next; 1859 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1860 1861 /* Try next first. */ 1862 next = vma_iter_load(&vmi); 1863 if (next) { 1864 anon_vma = reusable_anon_vma(next, vma, next); 1865 if (anon_vma) 1866 return anon_vma; 1867 } 1868 1869 prev = vma_prev(&vmi); 1870 VM_BUG_ON_VMA(prev != vma, vma); 1871 prev = vma_prev(&vmi); 1872 /* Try prev next. */ 1873 if (prev) 1874 anon_vma = reusable_anon_vma(prev, prev, vma); 1875 1876 /* 1877 * We might reach here with anon_vma == NULL if we can't find 1878 * any reusable anon_vma. 1879 * There's no absolute need to look only at touching neighbours: 1880 * we could search further afield for "compatible" anon_vmas. 1881 * But it would probably just be a waste of time searching, 1882 * or lead to too many vmas hanging off the same anon_vma. 1883 * We're trying to allow mprotect remerging later on, 1884 * not trying to minimize memory used for anon_vmas. 1885 */ 1886 return anon_vma; 1887 } 1888 1889 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1890 { 1891 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1892 } 1893 1894 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1895 { 1896 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1897 (VM_WRITE | VM_SHARED); 1898 } 1899 1900 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1901 { 1902 /* No managed pages to writeback. */ 1903 if (vma->vm_flags & VM_PFNMAP) 1904 return false; 1905 1906 return vma->vm_file && vma->vm_file->f_mapping && 1907 mapping_can_writeback(vma->vm_file->f_mapping); 1908 } 1909 1910 /* 1911 * Does this VMA require the underlying folios to have their dirty state 1912 * tracked? 1913 */ 1914 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1915 { 1916 /* Only shared, writable VMAs require dirty tracking. */ 1917 if (!vma_is_shared_writable(vma)) 1918 return false; 1919 1920 /* Does the filesystem need to be notified? */ 1921 if (vm_ops_needs_writenotify(vma->vm_ops)) 1922 return true; 1923 1924 /* 1925 * Even if the filesystem doesn't indicate a need for writenotify, if it 1926 * can writeback, dirty tracking is still required. 1927 */ 1928 return vma_fs_can_writeback(vma); 1929 } 1930 1931 /* 1932 * Some shared mappings will want the pages marked read-only 1933 * to track write events. If so, we'll downgrade vm_page_prot 1934 * to the private version (using protection_map[] without the 1935 * VM_SHARED bit). 1936 */ 1937 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1938 { 1939 /* If it was private or non-writable, the write bit is already clear */ 1940 if (!vma_is_shared_writable(vma)) 1941 return false; 1942 1943 /* The backer wishes to know when pages are first written to? */ 1944 if (vm_ops_needs_writenotify(vma->vm_ops)) 1945 return true; 1946 1947 /* The open routine did something to the protections that pgprot_modify 1948 * won't preserve? */ 1949 if (pgprot_val(vm_page_prot) != 1950 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1951 return false; 1952 1953 /* 1954 * Do we need to track softdirty? hugetlb does not support softdirty 1955 * tracking yet. 1956 */ 1957 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1958 return true; 1959 1960 /* Do we need write faults for uffd-wp tracking? */ 1961 if (userfaultfd_wp(vma)) 1962 return true; 1963 1964 /* Can the mapping track the dirty pages? */ 1965 return vma_fs_can_writeback(vma); 1966 } 1967 1968 static DEFINE_MUTEX(mm_all_locks_mutex); 1969 1970 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1971 { 1972 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1973 /* 1974 * The LSB of head.next can't change from under us 1975 * because we hold the mm_all_locks_mutex. 1976 */ 1977 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1978 /* 1979 * We can safely modify head.next after taking the 1980 * anon_vma->root->rwsem. If some other vma in this mm shares 1981 * the same anon_vma we won't take it again. 1982 * 1983 * No need of atomic instructions here, head.next 1984 * can't change from under us thanks to the 1985 * anon_vma->root->rwsem. 1986 */ 1987 if (__test_and_set_bit(0, (unsigned long *) 1988 &anon_vma->root->rb_root.rb_root.rb_node)) 1989 BUG(); 1990 } 1991 } 1992 1993 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 1994 { 1995 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1996 /* 1997 * AS_MM_ALL_LOCKS can't change from under us because 1998 * we hold the mm_all_locks_mutex. 1999 * 2000 * Operations on ->flags have to be atomic because 2001 * even if AS_MM_ALL_LOCKS is stable thanks to the 2002 * mm_all_locks_mutex, there may be other cpus 2003 * changing other bitflags in parallel to us. 2004 */ 2005 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2006 BUG(); 2007 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2008 } 2009 } 2010 2011 /* 2012 * This operation locks against the VM for all pte/vma/mm related 2013 * operations that could ever happen on a certain mm. This includes 2014 * vmtruncate, try_to_unmap, and all page faults. 2015 * 2016 * The caller must take the mmap_lock in write mode before calling 2017 * mm_take_all_locks(). The caller isn't allowed to release the 2018 * mmap_lock until mm_drop_all_locks() returns. 2019 * 2020 * mmap_lock in write mode is required in order to block all operations 2021 * that could modify pagetables and free pages without need of 2022 * altering the vma layout. It's also needed in write mode to avoid new 2023 * anon_vmas to be associated with existing vmas. 2024 * 2025 * A single task can't take more than one mm_take_all_locks() in a row 2026 * or it would deadlock. 2027 * 2028 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2029 * mapping->flags avoid to take the same lock twice, if more than one 2030 * vma in this mm is backed by the same anon_vma or address_space. 2031 * 2032 * We take locks in following order, accordingly to comment at beginning 2033 * of mm/rmap.c: 2034 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2035 * hugetlb mapping); 2036 * - all vmas marked locked 2037 * - all i_mmap_rwsem locks; 2038 * - all anon_vma->rwseml 2039 * 2040 * We can take all locks within these types randomly because the VM code 2041 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2042 * mm_all_locks_mutex. 2043 * 2044 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2045 * that may have to take thousand of locks. 2046 * 2047 * mm_take_all_locks() can fail if it's interrupted by signals. 2048 */ 2049 int mm_take_all_locks(struct mm_struct *mm) 2050 { 2051 struct vm_area_struct *vma; 2052 struct anon_vma_chain *avc; 2053 VMA_ITERATOR(vmi, mm, 0); 2054 2055 mmap_assert_write_locked(mm); 2056 2057 mutex_lock(&mm_all_locks_mutex); 2058 2059 /* 2060 * vma_start_write() does not have a complement in mm_drop_all_locks() 2061 * because vma_start_write() is always asymmetrical; it marks a VMA as 2062 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2063 * is reached. 2064 */ 2065 for_each_vma(vmi, vma) { 2066 if (signal_pending(current)) 2067 goto out_unlock; 2068 vma_start_write(vma); 2069 } 2070 2071 vma_iter_init(&vmi, mm, 0); 2072 for_each_vma(vmi, vma) { 2073 if (signal_pending(current)) 2074 goto out_unlock; 2075 if (vma->vm_file && vma->vm_file->f_mapping && 2076 is_vm_hugetlb_page(vma)) 2077 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2078 } 2079 2080 vma_iter_init(&vmi, mm, 0); 2081 for_each_vma(vmi, vma) { 2082 if (signal_pending(current)) 2083 goto out_unlock; 2084 if (vma->vm_file && vma->vm_file->f_mapping && 2085 !is_vm_hugetlb_page(vma)) 2086 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2087 } 2088 2089 vma_iter_init(&vmi, mm, 0); 2090 for_each_vma(vmi, vma) { 2091 if (signal_pending(current)) 2092 goto out_unlock; 2093 if (vma->anon_vma) 2094 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2095 vm_lock_anon_vma(mm, avc->anon_vma); 2096 } 2097 2098 return 0; 2099 2100 out_unlock: 2101 mm_drop_all_locks(mm); 2102 return -EINTR; 2103 } 2104 2105 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2106 { 2107 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2108 /* 2109 * The LSB of head.next can't change to 0 from under 2110 * us because we hold the mm_all_locks_mutex. 2111 * 2112 * We must however clear the bitflag before unlocking 2113 * the vma so the users using the anon_vma->rb_root will 2114 * never see our bitflag. 2115 * 2116 * No need of atomic instructions here, head.next 2117 * can't change from under us until we release the 2118 * anon_vma->root->rwsem. 2119 */ 2120 if (!__test_and_clear_bit(0, (unsigned long *) 2121 &anon_vma->root->rb_root.rb_root.rb_node)) 2122 BUG(); 2123 anon_vma_unlock_write(anon_vma); 2124 } 2125 } 2126 2127 static void vm_unlock_mapping(struct address_space *mapping) 2128 { 2129 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2130 /* 2131 * AS_MM_ALL_LOCKS can't change to 0 from under us 2132 * because we hold the mm_all_locks_mutex. 2133 */ 2134 i_mmap_unlock_write(mapping); 2135 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2136 &mapping->flags)) 2137 BUG(); 2138 } 2139 } 2140 2141 /* 2142 * The mmap_lock cannot be released by the caller until 2143 * mm_drop_all_locks() returns. 2144 */ 2145 void mm_drop_all_locks(struct mm_struct *mm) 2146 { 2147 struct vm_area_struct *vma; 2148 struct anon_vma_chain *avc; 2149 VMA_ITERATOR(vmi, mm, 0); 2150 2151 mmap_assert_write_locked(mm); 2152 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2153 2154 for_each_vma(vmi, vma) { 2155 if (vma->anon_vma) 2156 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2157 vm_unlock_anon_vma(avc->anon_vma); 2158 if (vma->vm_file && vma->vm_file->f_mapping) 2159 vm_unlock_mapping(vma->vm_file->f_mapping); 2160 } 2161 2162 mutex_unlock(&mm_all_locks_mutex); 2163 } 2164 2165 /* 2166 * We account for memory if it's a private writeable mapping, 2167 * not hugepages and VM_NORESERVE wasn't set. 2168 */ 2169 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2170 { 2171 /* 2172 * hugetlb has its own accounting separate from the core VM 2173 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2174 */ 2175 if (file && is_file_hugepages(file)) 2176 return false; 2177 2178 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2179 } 2180 2181 /* 2182 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2183 * operation. 2184 * @vms: The vma unmap structure 2185 * @mas_detach: The maple state with the detached maple tree 2186 * 2187 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2188 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2189 * have been called), then a NULL is written over the vmas and the vmas are 2190 * removed (munmap() completed). 2191 */ 2192 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2193 struct ma_state *mas_detach) 2194 { 2195 struct ma_state *mas = &vms->vmi->mas; 2196 2197 if (!vms->nr_pages) 2198 return; 2199 2200 if (vms->clear_ptes) 2201 return reattach_vmas(mas_detach); 2202 2203 /* 2204 * Aborting cannot just call the vm_ops open() because they are often 2205 * not symmetrical and state data has been lost. Resort to the old 2206 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2207 */ 2208 mas_set_range(mas, vms->start, vms->end - 1); 2209 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2210 /* Clean up the insertion of the unfortunate gap */ 2211 vms_complete_munmap_vmas(vms, mas_detach); 2212 } 2213 2214 /* 2215 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2216 * unmapped once the map operation is completed, check limits, account mapping 2217 * and clean up any pre-existing VMAs. 2218 * 2219 * @map: Mapping state. 2220 * @uf: Userfaultfd context list. 2221 * 2222 * Returns: 0 on success, error code otherwise. 2223 */ 2224 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2225 { 2226 int error; 2227 struct vma_iterator *vmi = map->vmi; 2228 struct vma_munmap_struct *vms = &map->vms; 2229 2230 /* Find the first overlapping VMA and initialise unmap state. */ 2231 vms->vma = vma_find(vmi, map->end); 2232 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2233 /* unlock = */ false); 2234 2235 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2236 if (vms->vma) { 2237 mt_init_flags(&map->mt_detach, 2238 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2239 mt_on_stack(map->mt_detach); 2240 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2241 /* Prepare to unmap any existing mapping in the area */ 2242 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2243 if (error) { 2244 /* On error VMAs will already have been reattached. */ 2245 vms->nr_pages = 0; 2246 return error; 2247 } 2248 2249 map->next = vms->next; 2250 map->prev = vms->prev; 2251 } else { 2252 map->next = vma_iter_next_rewind(vmi, &map->prev); 2253 } 2254 2255 /* Check against address space limit. */ 2256 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2257 return -ENOMEM; 2258 2259 /* Private writable mapping: check memory availability. */ 2260 if (accountable_mapping(map->file, map->flags)) { 2261 map->charged = map->pglen; 2262 map->charged -= vms->nr_accounted; 2263 if (map->charged) { 2264 error = security_vm_enough_memory_mm(map->mm, map->charged); 2265 if (error) 2266 return error; 2267 } 2268 2269 vms->nr_accounted = 0; 2270 map->flags |= VM_ACCOUNT; 2271 } 2272 2273 /* 2274 * Clear PTEs while the vma is still in the tree so that rmap 2275 * cannot race with the freeing later in the truncate scenario. 2276 * This is also needed for mmap_file(), which is why vm_ops 2277 * close function is called. 2278 */ 2279 vms_clean_up_area(vms, &map->mas_detach); 2280 2281 return 0; 2282 } 2283 2284 2285 static int __mmap_new_file_vma(struct mmap_state *map, 2286 struct vm_area_struct *vma) 2287 { 2288 struct vma_iterator *vmi = map->vmi; 2289 int error; 2290 2291 vma->vm_file = get_file(map->file); 2292 error = mmap_file(vma->vm_file, vma); 2293 if (error) { 2294 fput(vma->vm_file); 2295 vma->vm_file = NULL; 2296 2297 vma_iter_set(vmi, vma->vm_end); 2298 /* Undo any partial mapping done by a device driver. */ 2299 unmap_region(&vmi->mas, vma, map->prev, map->next); 2300 2301 return error; 2302 } 2303 2304 /* Drivers cannot alter the address of the VMA. */ 2305 WARN_ON_ONCE(map->addr != vma->vm_start); 2306 /* 2307 * Drivers should not permit writability when previously it was 2308 * disallowed. 2309 */ 2310 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2311 !(map->flags & VM_MAYWRITE) && 2312 (vma->vm_flags & VM_MAYWRITE)); 2313 2314 /* If the flags change (and are mergeable), let's retry later. */ 2315 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); 2316 map->flags = vma->vm_flags; 2317 2318 return 0; 2319 } 2320 2321 /* 2322 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2323 * possible. 2324 * 2325 * @map: Mapping state. 2326 * @vmap: Output pointer for the new VMA. 2327 * 2328 * Returns: Zero on success, or an error. 2329 */ 2330 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2331 { 2332 struct vma_iterator *vmi = map->vmi; 2333 int error = 0; 2334 struct vm_area_struct *vma; 2335 2336 /* 2337 * Determine the object being mapped and call the appropriate 2338 * specific mapper. the address has already been validated, but 2339 * not unmapped, but the maps are removed from the list. 2340 */ 2341 vma = vm_area_alloc(map->mm); 2342 if (!vma) 2343 return -ENOMEM; 2344 2345 vma_iter_config(vmi, map->addr, map->end); 2346 vma_set_range(vma, map->addr, map->end, map->pgoff); 2347 vm_flags_init(vma, map->flags); 2348 vma->vm_page_prot = vm_get_page_prot(map->flags); 2349 2350 if (vma_iter_prealloc(vmi, vma)) { 2351 error = -ENOMEM; 2352 goto free_vma; 2353 } 2354 2355 if (map->file) 2356 error = __mmap_new_file_vma(map, vma); 2357 else if (map->flags & VM_SHARED) 2358 error = shmem_zero_setup(vma); 2359 else 2360 vma_set_anonymous(vma); 2361 2362 if (error) 2363 goto free_iter_vma; 2364 2365 #ifdef CONFIG_SPARC64 2366 /* TODO: Fix SPARC ADI! */ 2367 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2368 #endif 2369 2370 /* Lock the VMA since it is modified after insertion into VMA tree */ 2371 vma_start_write(vma); 2372 vma_iter_store(vmi, vma); 2373 map->mm->map_count++; 2374 vma_link_file(vma); 2375 2376 /* 2377 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2378 * call covers the non-merge case. 2379 */ 2380 khugepaged_enter_vma(vma, map->flags); 2381 ksm_add_vma(vma); 2382 *vmap = vma; 2383 return 0; 2384 2385 free_iter_vma: 2386 vma_iter_free(vmi); 2387 free_vma: 2388 vm_area_free(vma); 2389 return error; 2390 } 2391 2392 /* 2393 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2394 * statistics, handle locking and finalise the VMA. 2395 * 2396 * @map: Mapping state. 2397 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2398 */ 2399 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2400 { 2401 struct mm_struct *mm = map->mm; 2402 unsigned long vm_flags = vma->vm_flags; 2403 2404 perf_event_mmap(vma); 2405 2406 /* Unmap any existing mapping in the area. */ 2407 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2408 2409 vm_stat_account(mm, vma->vm_flags, map->pglen); 2410 if (vm_flags & VM_LOCKED) { 2411 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2412 is_vm_hugetlb_page(vma) || 2413 vma == get_gate_vma(mm)) 2414 vm_flags_clear(vma, VM_LOCKED_MASK); 2415 else 2416 mm->locked_vm += map->pglen; 2417 } 2418 2419 if (vma->vm_file) 2420 uprobe_mmap(vma); 2421 2422 /* 2423 * New (or expanded) vma always get soft dirty status. 2424 * Otherwise user-space soft-dirty page tracker won't 2425 * be able to distinguish situation when vma area unmapped, 2426 * then new mapped in-place (which must be aimed as 2427 * a completely new data area). 2428 */ 2429 vm_flags_set(vma, VM_SOFTDIRTY); 2430 2431 vma_set_page_prot(vma); 2432 } 2433 2434 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2435 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2436 struct list_head *uf) 2437 { 2438 struct mm_struct *mm = current->mm; 2439 struct vm_area_struct *vma = NULL; 2440 int error; 2441 VMA_ITERATOR(vmi, mm, addr); 2442 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2443 2444 error = __mmap_prepare(&map, uf); 2445 if (error) 2446 goto abort_munmap; 2447 2448 /* Attempt to merge with adjacent VMAs... */ 2449 if (map.prev || map.next) { 2450 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2451 2452 vma = vma_merge_new_range(&vmg); 2453 } 2454 2455 /* ...but if we can't, allocate a new VMA. */ 2456 if (!vma) { 2457 error = __mmap_new_vma(&map, &vma); 2458 if (error) 2459 goto unacct_error; 2460 } 2461 2462 /* If flags changed, we might be able to merge, so try again. */ 2463 if (map.retry_merge) { 2464 struct vm_area_struct *merged; 2465 VMG_MMAP_STATE(vmg, &map, vma); 2466 2467 vma_iter_config(map.vmi, map.addr, map.end); 2468 merged = vma_merge_existing_range(&vmg); 2469 if (merged) 2470 vma = merged; 2471 } 2472 2473 __mmap_complete(&map, vma); 2474 2475 return addr; 2476 2477 /* Accounting was done by __mmap_prepare(). */ 2478 unacct_error: 2479 if (map.charged) 2480 vm_unacct_memory(map.charged); 2481 abort_munmap: 2482 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2483 return error; 2484 } 2485 2486 /** 2487 * mmap_region() - Actually perform the userland mapping of a VMA into 2488 * current->mm with known, aligned and overflow-checked @addr and @len, and 2489 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2490 * 2491 * This is an internal memory management function, and should not be used 2492 * directly. 2493 * 2494 * The caller must write-lock current->mm->mmap_lock. 2495 * 2496 * @file: If a file-backed mapping, a pointer to the struct file describing the 2497 * file to be mapped, otherwise NULL. 2498 * @addr: The page-aligned address at which to perform the mapping. 2499 * @len: The page-aligned, non-zero, length of the mapping. 2500 * @vm_flags: The VMA flags which should be applied to the mapping. 2501 * @pgoff: If @file is specified, the page offset into the file, if not then 2502 * the virtual page offset in memory of the anonymous mapping. 2503 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2504 * events. 2505 * 2506 * Returns: Either an error, or the address at which the requested mapping has 2507 * been performed. 2508 */ 2509 unsigned long mmap_region(struct file *file, unsigned long addr, 2510 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2511 struct list_head *uf) 2512 { 2513 unsigned long ret; 2514 bool writable_file_mapping = false; 2515 2516 mmap_assert_write_locked(current->mm); 2517 2518 /* Check to see if MDWE is applicable. */ 2519 if (map_deny_write_exec(vm_flags, vm_flags)) 2520 return -EACCES; 2521 2522 /* Allow architectures to sanity-check the vm_flags. */ 2523 if (!arch_validate_flags(vm_flags)) 2524 return -EINVAL; 2525 2526 /* Map writable and ensure this isn't a sealed memfd. */ 2527 if (file && is_shared_maywrite(vm_flags)) { 2528 int error = mapping_map_writable(file->f_mapping); 2529 2530 if (error) 2531 return error; 2532 writable_file_mapping = true; 2533 } 2534 2535 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2536 2537 /* Clear our write mapping regardless of error. */ 2538 if (writable_file_mapping) 2539 mapping_unmap_writable(file->f_mapping); 2540 2541 validate_mm(current->mm); 2542 return ret; 2543 } 2544 2545 /* 2546 * do_brk_flags() - Increase the brk vma if the flags match. 2547 * @vmi: The vma iterator 2548 * @addr: The start address 2549 * @len: The length of the increase 2550 * @vma: The vma, 2551 * @flags: The VMA Flags 2552 * 2553 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2554 * do not match then create a new anonymous VMA. Eventually we may be able to 2555 * do some brk-specific accounting here. 2556 */ 2557 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2558 unsigned long addr, unsigned long len, unsigned long flags) 2559 { 2560 struct mm_struct *mm = current->mm; 2561 2562 /* 2563 * Check against address space limits by the changed size 2564 * Note: This happens *after* clearing old mappings in some code paths. 2565 */ 2566 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2567 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2568 return -ENOMEM; 2569 2570 if (mm->map_count > sysctl_max_map_count) 2571 return -ENOMEM; 2572 2573 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2574 return -ENOMEM; 2575 2576 /* 2577 * Expand the existing vma if possible; Note that singular lists do not 2578 * occur after forking, so the expand will only happen on new VMAs. 2579 */ 2580 if (vma && vma->vm_end == addr) { 2581 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 2582 2583 vmg.prev = vma; 2584 /* vmi is positioned at prev, which this mode expects. */ 2585 vmg.merge_flags = VMG_FLAG_JUST_EXPAND; 2586 2587 if (vma_merge_new_range(&vmg)) 2588 goto out; 2589 else if (vmg_nomem(&vmg)) 2590 goto unacct_fail; 2591 } 2592 2593 if (vma) 2594 vma_iter_next_range(vmi); 2595 /* create a vma struct for an anonymous mapping */ 2596 vma = vm_area_alloc(mm); 2597 if (!vma) 2598 goto unacct_fail; 2599 2600 vma_set_anonymous(vma); 2601 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2602 vm_flags_init(vma, flags); 2603 vma->vm_page_prot = vm_get_page_prot(flags); 2604 vma_start_write(vma); 2605 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2606 goto mas_store_fail; 2607 2608 mm->map_count++; 2609 validate_mm(mm); 2610 ksm_add_vma(vma); 2611 out: 2612 perf_event_mmap(vma); 2613 mm->total_vm += len >> PAGE_SHIFT; 2614 mm->data_vm += len >> PAGE_SHIFT; 2615 if (flags & VM_LOCKED) 2616 mm->locked_vm += (len >> PAGE_SHIFT); 2617 vm_flags_set(vma, VM_SOFTDIRTY); 2618 return 0; 2619 2620 mas_store_fail: 2621 vm_area_free(vma); 2622 unacct_fail: 2623 vm_unacct_memory(len >> PAGE_SHIFT); 2624 return -ENOMEM; 2625 } 2626 2627 /** 2628 * unmapped_area() - Find an area between the low_limit and the high_limit with 2629 * the correct alignment and offset, all from @info. Note: current->mm is used 2630 * for the search. 2631 * 2632 * @info: The unmapped area information including the range [low_limit - 2633 * high_limit), the alignment offset and mask. 2634 * 2635 * Return: A memory address or -ENOMEM. 2636 */ 2637 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2638 { 2639 unsigned long length, gap; 2640 unsigned long low_limit, high_limit; 2641 struct vm_area_struct *tmp; 2642 VMA_ITERATOR(vmi, current->mm, 0); 2643 2644 /* Adjust search length to account for worst case alignment overhead */ 2645 length = info->length + info->align_mask + info->start_gap; 2646 if (length < info->length) 2647 return -ENOMEM; 2648 2649 low_limit = info->low_limit; 2650 if (low_limit < mmap_min_addr) 2651 low_limit = mmap_min_addr; 2652 high_limit = info->high_limit; 2653 retry: 2654 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2655 return -ENOMEM; 2656 2657 /* 2658 * Adjust for the gap first so it doesn't interfere with the 2659 * later alignment. The first step is the minimum needed to 2660 * fulill the start gap, the next steps is the minimum to align 2661 * that. It is the minimum needed to fulill both. 2662 */ 2663 gap = vma_iter_addr(&vmi) + info->start_gap; 2664 gap += (info->align_offset - gap) & info->align_mask; 2665 tmp = vma_next(&vmi); 2666 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2667 if (vm_start_gap(tmp) < gap + length - 1) { 2668 low_limit = tmp->vm_end; 2669 vma_iter_reset(&vmi); 2670 goto retry; 2671 } 2672 } else { 2673 tmp = vma_prev(&vmi); 2674 if (tmp && vm_end_gap(tmp) > gap) { 2675 low_limit = vm_end_gap(tmp); 2676 vma_iter_reset(&vmi); 2677 goto retry; 2678 } 2679 } 2680 2681 return gap; 2682 } 2683 2684 /** 2685 * unmapped_area_topdown() - Find an area between the low_limit and the 2686 * high_limit with the correct alignment and offset at the highest available 2687 * address, all from @info. Note: current->mm is used for the search. 2688 * 2689 * @info: The unmapped area information including the range [low_limit - 2690 * high_limit), the alignment offset and mask. 2691 * 2692 * Return: A memory address or -ENOMEM. 2693 */ 2694 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2695 { 2696 unsigned long length, gap, gap_end; 2697 unsigned long low_limit, high_limit; 2698 struct vm_area_struct *tmp; 2699 VMA_ITERATOR(vmi, current->mm, 0); 2700 2701 /* Adjust search length to account for worst case alignment overhead */ 2702 length = info->length + info->align_mask + info->start_gap; 2703 if (length < info->length) 2704 return -ENOMEM; 2705 2706 low_limit = info->low_limit; 2707 if (low_limit < mmap_min_addr) 2708 low_limit = mmap_min_addr; 2709 high_limit = info->high_limit; 2710 retry: 2711 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2712 return -ENOMEM; 2713 2714 gap = vma_iter_end(&vmi) - info->length; 2715 gap -= (gap - info->align_offset) & info->align_mask; 2716 gap_end = vma_iter_end(&vmi); 2717 tmp = vma_next(&vmi); 2718 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2719 if (vm_start_gap(tmp) < gap_end) { 2720 high_limit = vm_start_gap(tmp); 2721 vma_iter_reset(&vmi); 2722 goto retry; 2723 } 2724 } else { 2725 tmp = vma_prev(&vmi); 2726 if (tmp && vm_end_gap(tmp) > gap) { 2727 high_limit = tmp->vm_start; 2728 vma_iter_reset(&vmi); 2729 goto retry; 2730 } 2731 } 2732 2733 return gap; 2734 } 2735 2736 /* 2737 * Verify that the stack growth is acceptable and 2738 * update accounting. This is shared with both the 2739 * grow-up and grow-down cases. 2740 */ 2741 static int acct_stack_growth(struct vm_area_struct *vma, 2742 unsigned long size, unsigned long grow) 2743 { 2744 struct mm_struct *mm = vma->vm_mm; 2745 unsigned long new_start; 2746 2747 /* address space limit tests */ 2748 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2749 return -ENOMEM; 2750 2751 /* Stack limit test */ 2752 if (size > rlimit(RLIMIT_STACK)) 2753 return -ENOMEM; 2754 2755 /* mlock limit tests */ 2756 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2757 return -ENOMEM; 2758 2759 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2760 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2761 vma->vm_end - size; 2762 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2763 return -EFAULT; 2764 2765 /* 2766 * Overcommit.. This must be the final test, as it will 2767 * update security statistics. 2768 */ 2769 if (security_vm_enough_memory_mm(mm, grow)) 2770 return -ENOMEM; 2771 2772 return 0; 2773 } 2774 2775 #if defined(CONFIG_STACK_GROWSUP) 2776 /* 2777 * PA-RISC uses this for its stack. 2778 * vma is the last one with address > vma->vm_end. Have to extend vma. 2779 */ 2780 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2781 { 2782 struct mm_struct *mm = vma->vm_mm; 2783 struct vm_area_struct *next; 2784 unsigned long gap_addr; 2785 int error = 0; 2786 VMA_ITERATOR(vmi, mm, vma->vm_start); 2787 2788 if (!(vma->vm_flags & VM_GROWSUP)) 2789 return -EFAULT; 2790 2791 mmap_assert_write_locked(mm); 2792 2793 /* Guard against exceeding limits of the address space. */ 2794 address &= PAGE_MASK; 2795 if (address >= (TASK_SIZE & PAGE_MASK)) 2796 return -ENOMEM; 2797 address += PAGE_SIZE; 2798 2799 /* Enforce stack_guard_gap */ 2800 gap_addr = address + stack_guard_gap; 2801 2802 /* Guard against overflow */ 2803 if (gap_addr < address || gap_addr > TASK_SIZE) 2804 gap_addr = TASK_SIZE; 2805 2806 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2807 if (next && vma_is_accessible(next)) { 2808 if (!(next->vm_flags & VM_GROWSUP)) 2809 return -ENOMEM; 2810 /* Check that both stack segments have the same anon_vma? */ 2811 } 2812 2813 if (next) 2814 vma_iter_prev_range_limit(&vmi, address); 2815 2816 vma_iter_config(&vmi, vma->vm_start, address); 2817 if (vma_iter_prealloc(&vmi, vma)) 2818 return -ENOMEM; 2819 2820 /* We must make sure the anon_vma is allocated. */ 2821 if (unlikely(anon_vma_prepare(vma))) { 2822 vma_iter_free(&vmi); 2823 return -ENOMEM; 2824 } 2825 2826 /* Lock the VMA before expanding to prevent concurrent page faults */ 2827 vma_start_write(vma); 2828 /* We update the anon VMA tree. */ 2829 anon_vma_lock_write(vma->anon_vma); 2830 2831 /* Somebody else might have raced and expanded it already */ 2832 if (address > vma->vm_end) { 2833 unsigned long size, grow; 2834 2835 size = address - vma->vm_start; 2836 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2837 2838 error = -ENOMEM; 2839 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2840 error = acct_stack_growth(vma, size, grow); 2841 if (!error) { 2842 if (vma->vm_flags & VM_LOCKED) 2843 mm->locked_vm += grow; 2844 vm_stat_account(mm, vma->vm_flags, grow); 2845 anon_vma_interval_tree_pre_update_vma(vma); 2846 vma->vm_end = address; 2847 /* Overwrite old entry in mtree. */ 2848 vma_iter_store(&vmi, vma); 2849 anon_vma_interval_tree_post_update_vma(vma); 2850 2851 perf_event_mmap(vma); 2852 } 2853 } 2854 } 2855 anon_vma_unlock_write(vma->anon_vma); 2856 vma_iter_free(&vmi); 2857 validate_mm(mm); 2858 return error; 2859 } 2860 #endif /* CONFIG_STACK_GROWSUP */ 2861 2862 /* 2863 * vma is the first one with address < vma->vm_start. Have to extend vma. 2864 * mmap_lock held for writing. 2865 */ 2866 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2867 { 2868 struct mm_struct *mm = vma->vm_mm; 2869 struct vm_area_struct *prev; 2870 int error = 0; 2871 VMA_ITERATOR(vmi, mm, vma->vm_start); 2872 2873 if (!(vma->vm_flags & VM_GROWSDOWN)) 2874 return -EFAULT; 2875 2876 mmap_assert_write_locked(mm); 2877 2878 address &= PAGE_MASK; 2879 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2880 return -EPERM; 2881 2882 /* Enforce stack_guard_gap */ 2883 prev = vma_prev(&vmi); 2884 /* Check that both stack segments have the same anon_vma? */ 2885 if (prev) { 2886 if (!(prev->vm_flags & VM_GROWSDOWN) && 2887 vma_is_accessible(prev) && 2888 (address - prev->vm_end < stack_guard_gap)) 2889 return -ENOMEM; 2890 } 2891 2892 if (prev) 2893 vma_iter_next_range_limit(&vmi, vma->vm_start); 2894 2895 vma_iter_config(&vmi, address, vma->vm_end); 2896 if (vma_iter_prealloc(&vmi, vma)) 2897 return -ENOMEM; 2898 2899 /* We must make sure the anon_vma is allocated. */ 2900 if (unlikely(anon_vma_prepare(vma))) { 2901 vma_iter_free(&vmi); 2902 return -ENOMEM; 2903 } 2904 2905 /* Lock the VMA before expanding to prevent concurrent page faults */ 2906 vma_start_write(vma); 2907 /* We update the anon VMA tree. */ 2908 anon_vma_lock_write(vma->anon_vma); 2909 2910 /* Somebody else might have raced and expanded it already */ 2911 if (address < vma->vm_start) { 2912 unsigned long size, grow; 2913 2914 size = vma->vm_end - address; 2915 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2916 2917 error = -ENOMEM; 2918 if (grow <= vma->vm_pgoff) { 2919 error = acct_stack_growth(vma, size, grow); 2920 if (!error) { 2921 if (vma->vm_flags & VM_LOCKED) 2922 mm->locked_vm += grow; 2923 vm_stat_account(mm, vma->vm_flags, grow); 2924 anon_vma_interval_tree_pre_update_vma(vma); 2925 vma->vm_start = address; 2926 vma->vm_pgoff -= grow; 2927 /* Overwrite old entry in mtree. */ 2928 vma_iter_store(&vmi, vma); 2929 anon_vma_interval_tree_post_update_vma(vma); 2930 2931 perf_event_mmap(vma); 2932 } 2933 } 2934 } 2935 anon_vma_unlock_write(vma->anon_vma); 2936 vma_iter_free(&vmi); 2937 validate_mm(mm); 2938 return error; 2939 } 2940 2941 int __vm_munmap(unsigned long start, size_t len, bool unlock) 2942 { 2943 int ret; 2944 struct mm_struct *mm = current->mm; 2945 LIST_HEAD(uf); 2946 VMA_ITERATOR(vmi, mm, start); 2947 2948 if (mmap_write_lock_killable(mm)) 2949 return -EINTR; 2950 2951 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2952 if (ret || !unlock) 2953 mmap_write_unlock(mm); 2954 2955 userfaultfd_unmap_complete(mm, &uf); 2956 return ret; 2957 } 2958