xref: /linux/mm/vma.c (revision bdd4f86c97e60b748027bdf6f6a3729c8a12da15)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * VMA-specific functions.
5  */
6 
7 #include "vma_internal.h"
8 #include "vma.h"
9 
10 struct mmap_state {
11 	struct mm_struct *mm;
12 	struct vma_iterator *vmi;
13 
14 	unsigned long addr;
15 	unsigned long end;
16 	pgoff_t pgoff;
17 	unsigned long pglen;
18 	unsigned long flags;
19 	struct file *file;
20 
21 	unsigned long charged;
22 	bool retry_merge;
23 
24 	struct vm_area_struct *prev;
25 	struct vm_area_struct *next;
26 
27 	/* Unmapping state. */
28 	struct vma_munmap_struct vms;
29 	struct ma_state mas_detach;
30 	struct maple_tree mt_detach;
31 };
32 
33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \
34 	struct mmap_state name = {					\
35 		.mm = mm_,						\
36 		.vmi = vmi_,						\
37 		.addr = addr_,						\
38 		.end = (addr_) + (len_),				\
39 		.pgoff = pgoff_,					\
40 		.pglen = PHYS_PFN(len_),				\
41 		.flags = flags_,					\
42 		.file = file_,						\
43 	}
44 
45 #define VMG_MMAP_STATE(name, map_, vma_)				\
46 	struct vma_merge_struct name = {				\
47 		.mm = (map_)->mm,					\
48 		.vmi = (map_)->vmi,					\
49 		.start = (map_)->addr,					\
50 		.end = (map_)->end,					\
51 		.flags = (map_)->flags,					\
52 		.pgoff = (map_)->pgoff,					\
53 		.file = (map_)->file,					\
54 		.prev = (map_)->prev,					\
55 		.vma = vma_,						\
56 		.next = (vma_) ? NULL : (map_)->next,			\
57 		.state = VMA_MERGE_START,				\
58 		.merge_flags = VMG_FLAG_DEFAULT,			\
59 	}
60 
61 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
62 {
63 	struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
64 
65 	if (!mpol_equal(vmg->policy, vma_policy(vma)))
66 		return false;
67 	/*
68 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
69 	 * match the flags but dirty bit -- the caller should mark
70 	 * merged VMA as dirty. If dirty bit won't be excluded from
71 	 * comparison, we increase pressure on the memory system forcing
72 	 * the kernel to generate new VMAs when old one could be
73 	 * extended instead.
74 	 */
75 	if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
76 		return false;
77 	if (vma->vm_file != vmg->file)
78 		return false;
79 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
80 		return false;
81 	if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
82 		return false;
83 	return true;
84 }
85 
86 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
87 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
88 {
89 	/*
90 	 * The list_is_singular() test is to avoid merging VMA cloned from
91 	 * parents. This can improve scalability caused by anon_vma lock.
92 	 */
93 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
94 		list_is_singular(&vma->anon_vma_chain)))
95 		return true;
96 	return anon_vma1 == anon_vma2;
97 }
98 
99 /* Are the anon_vma's belonging to each VMA compatible with one another? */
100 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
101 					    struct vm_area_struct *vma2)
102 {
103 	return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
104 }
105 
106 /*
107  * init_multi_vma_prep() - Initializer for struct vma_prepare
108  * @vp: The vma_prepare struct
109  * @vma: The vma that will be altered once locked
110  * @next: The next vma if it is to be adjusted
111  * @remove: The first vma to be removed
112  * @remove2: The second vma to be removed
113  */
114 static void init_multi_vma_prep(struct vma_prepare *vp,
115 				struct vm_area_struct *vma,
116 				struct vm_area_struct *next,
117 				struct vm_area_struct *remove,
118 				struct vm_area_struct *remove2)
119 {
120 	memset(vp, 0, sizeof(struct vma_prepare));
121 	vp->vma = vma;
122 	vp->anon_vma = vma->anon_vma;
123 	vp->remove = remove;
124 	vp->remove2 = remove2;
125 	vp->adj_next = next;
126 	if (!vp->anon_vma && next)
127 		vp->anon_vma = next->anon_vma;
128 
129 	vp->file = vma->vm_file;
130 	if (vp->file)
131 		vp->mapping = vma->vm_file->f_mapping;
132 
133 }
134 
135 /*
136  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
137  * in front of (at a lower virtual address and file offset than) the vma.
138  *
139  * We cannot merge two vmas if they have differently assigned (non-NULL)
140  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
141  *
142  * We don't check here for the merged mmap wrapping around the end of pagecache
143  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
144  * wrap, nor mmaps which cover the final page at index -1UL.
145  *
146  * We assume the vma may be removed as part of the merge.
147  */
148 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
149 {
150 	pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
151 
152 	if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
153 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
154 		if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
155 			return true;
156 	}
157 
158 	return false;
159 }
160 
161 /*
162  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
163  * beyond (at a higher virtual address and file offset than) the vma.
164  *
165  * We cannot merge two vmas if they have differently assigned (non-NULL)
166  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
167  *
168  * We assume that vma is not removed as part of the merge.
169  */
170 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
171 {
172 	if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
173 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
174 		if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
175 			return true;
176 	}
177 	return false;
178 }
179 
180 static void __vma_link_file(struct vm_area_struct *vma,
181 			    struct address_space *mapping)
182 {
183 	if (vma_is_shared_maywrite(vma))
184 		mapping_allow_writable(mapping);
185 
186 	flush_dcache_mmap_lock(mapping);
187 	vma_interval_tree_insert(vma, &mapping->i_mmap);
188 	flush_dcache_mmap_unlock(mapping);
189 }
190 
191 /*
192  * Requires inode->i_mapping->i_mmap_rwsem
193  */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 				      struct address_space *mapping)
196 {
197 	if (vma_is_shared_maywrite(vma))
198 		mapping_unmap_writable(mapping);
199 
200 	flush_dcache_mmap_lock(mapping);
201 	vma_interval_tree_remove(vma, &mapping->i_mmap);
202 	flush_dcache_mmap_unlock(mapping);
203 }
204 
205 /*
206  * vma has some anon_vma assigned, and is already inserted on that
207  * anon_vma's interval trees.
208  *
209  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
210  * vma must be removed from the anon_vma's interval trees using
211  * anon_vma_interval_tree_pre_update_vma().
212  *
213  * After the update, the vma will be reinserted using
214  * anon_vma_interval_tree_post_update_vma().
215  *
216  * The entire update must be protected by exclusive mmap_lock and by
217  * the root anon_vma's mutex.
218  */
219 static void
220 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
221 {
222 	struct anon_vma_chain *avc;
223 
224 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
225 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
226 }
227 
228 static void
229 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
230 {
231 	struct anon_vma_chain *avc;
232 
233 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
234 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
235 }
236 
237 /*
238  * vma_prepare() - Helper function for handling locking VMAs prior to altering
239  * @vp: The initialized vma_prepare struct
240  */
241 static void vma_prepare(struct vma_prepare *vp)
242 {
243 	if (vp->file) {
244 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
245 
246 		if (vp->adj_next)
247 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
248 				      vp->adj_next->vm_end);
249 
250 		i_mmap_lock_write(vp->mapping);
251 		if (vp->insert && vp->insert->vm_file) {
252 			/*
253 			 * Put into interval tree now, so instantiated pages
254 			 * are visible to arm/parisc __flush_dcache_page
255 			 * throughout; but we cannot insert into address
256 			 * space until vma start or end is updated.
257 			 */
258 			__vma_link_file(vp->insert,
259 					vp->insert->vm_file->f_mapping);
260 		}
261 	}
262 
263 	if (vp->anon_vma) {
264 		anon_vma_lock_write(vp->anon_vma);
265 		anon_vma_interval_tree_pre_update_vma(vp->vma);
266 		if (vp->adj_next)
267 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
268 	}
269 
270 	if (vp->file) {
271 		flush_dcache_mmap_lock(vp->mapping);
272 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
273 		if (vp->adj_next)
274 			vma_interval_tree_remove(vp->adj_next,
275 						 &vp->mapping->i_mmap);
276 	}
277 
278 }
279 
280 /*
281  * vma_complete- Helper function for handling the unlocking after altering VMAs,
282  * or for inserting a VMA.
283  *
284  * @vp: The vma_prepare struct
285  * @vmi: The vma iterator
286  * @mm: The mm_struct
287  */
288 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
289 			 struct mm_struct *mm)
290 {
291 	if (vp->file) {
292 		if (vp->adj_next)
293 			vma_interval_tree_insert(vp->adj_next,
294 						 &vp->mapping->i_mmap);
295 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
296 		flush_dcache_mmap_unlock(vp->mapping);
297 	}
298 
299 	if (vp->remove && vp->file) {
300 		__remove_shared_vm_struct(vp->remove, vp->mapping);
301 		if (vp->remove2)
302 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
303 	} else if (vp->insert) {
304 		/*
305 		 * split_vma has split insert from vma, and needs
306 		 * us to insert it before dropping the locks
307 		 * (it may either follow vma or precede it).
308 		 */
309 		vma_iter_store(vmi, vp->insert);
310 		mm->map_count++;
311 	}
312 
313 	if (vp->anon_vma) {
314 		anon_vma_interval_tree_post_update_vma(vp->vma);
315 		if (vp->adj_next)
316 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
317 		anon_vma_unlock_write(vp->anon_vma);
318 	}
319 
320 	if (vp->file) {
321 		i_mmap_unlock_write(vp->mapping);
322 		uprobe_mmap(vp->vma);
323 
324 		if (vp->adj_next)
325 			uprobe_mmap(vp->adj_next);
326 	}
327 
328 	if (vp->remove) {
329 again:
330 		vma_mark_detached(vp->remove, true);
331 		if (vp->file) {
332 			uprobe_munmap(vp->remove, vp->remove->vm_start,
333 				      vp->remove->vm_end);
334 			fput(vp->file);
335 		}
336 		if (vp->remove->anon_vma)
337 			anon_vma_merge(vp->vma, vp->remove);
338 		mm->map_count--;
339 		mpol_put(vma_policy(vp->remove));
340 		if (!vp->remove2)
341 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
342 		vm_area_free(vp->remove);
343 
344 		/*
345 		 * In mprotect's case 6 (see comments on vma_merge),
346 		 * we are removing both mid and next vmas
347 		 */
348 		if (vp->remove2) {
349 			vp->remove = vp->remove2;
350 			vp->remove2 = NULL;
351 			goto again;
352 		}
353 	}
354 	if (vp->insert && vp->file)
355 		uprobe_mmap(vp->insert);
356 }
357 
358 /*
359  * init_vma_prep() - Initializer wrapper for vma_prepare struct
360  * @vp: The vma_prepare struct
361  * @vma: The vma that will be altered once locked
362  */
363 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
364 {
365 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
366 }
367 
368 /*
369  * Can the proposed VMA be merged with the left (previous) VMA taking into
370  * account the start position of the proposed range.
371  */
372 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
373 
374 {
375 	return vmg->prev && vmg->prev->vm_end == vmg->start &&
376 		can_vma_merge_after(vmg);
377 }
378 
379 /*
380  * Can the proposed VMA be merged with the right (next) VMA taking into
381  * account the end position of the proposed range.
382  *
383  * In addition, if we can merge with the left VMA, ensure that left and right
384  * anon_vma's are also compatible.
385  */
386 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
387 				bool can_merge_left)
388 {
389 	if (!vmg->next || vmg->end != vmg->next->vm_start ||
390 	    !can_vma_merge_before(vmg))
391 		return false;
392 
393 	if (!can_merge_left)
394 		return true;
395 
396 	/*
397 	 * If we can merge with prev (left) and next (right), indicating that
398 	 * each VMA's anon_vma is compatible with the proposed anon_vma, this
399 	 * does not mean prev and next are compatible with EACH OTHER.
400 	 *
401 	 * We therefore check this in addition to mergeability to either side.
402 	 */
403 	return are_anon_vmas_compatible(vmg->prev, vmg->next);
404 }
405 
406 /*
407  * Close a vm structure and free it.
408  */
409 void remove_vma(struct vm_area_struct *vma, bool unreachable)
410 {
411 	might_sleep();
412 	vma_close(vma);
413 	if (vma->vm_file)
414 		fput(vma->vm_file);
415 	mpol_put(vma_policy(vma));
416 	if (unreachable)
417 		__vm_area_free(vma);
418 	else
419 		vm_area_free(vma);
420 }
421 
422 /*
423  * Get rid of page table information in the indicated region.
424  *
425  * Called with the mm semaphore held.
426  */
427 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
428 		struct vm_area_struct *prev, struct vm_area_struct *next)
429 {
430 	struct mm_struct *mm = vma->vm_mm;
431 	struct mmu_gather tlb;
432 
433 	tlb_gather_mmu(&tlb, mm);
434 	update_hiwater_rss(mm);
435 	unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
436 		   /* mm_wr_locked = */ true);
437 	mas_set(mas, vma->vm_end);
438 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
439 		      next ? next->vm_start : USER_PGTABLES_CEILING,
440 		      /* mm_wr_locked = */ true);
441 	tlb_finish_mmu(&tlb);
442 }
443 
444 /*
445  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
446  * has already been checked or doesn't make sense to fail.
447  * VMA Iterator will point to the original VMA.
448  */
449 static __must_check int
450 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
451 	    unsigned long addr, int new_below)
452 {
453 	struct vma_prepare vp;
454 	struct vm_area_struct *new;
455 	int err;
456 
457 	WARN_ON(vma->vm_start >= addr);
458 	WARN_ON(vma->vm_end <= addr);
459 
460 	if (vma->vm_ops && vma->vm_ops->may_split) {
461 		err = vma->vm_ops->may_split(vma, addr);
462 		if (err)
463 			return err;
464 	}
465 
466 	new = vm_area_dup(vma);
467 	if (!new)
468 		return -ENOMEM;
469 
470 	if (new_below) {
471 		new->vm_end = addr;
472 	} else {
473 		new->vm_start = addr;
474 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
475 	}
476 
477 	err = -ENOMEM;
478 	vma_iter_config(vmi, new->vm_start, new->vm_end);
479 	if (vma_iter_prealloc(vmi, new))
480 		goto out_free_vma;
481 
482 	err = vma_dup_policy(vma, new);
483 	if (err)
484 		goto out_free_vmi;
485 
486 	err = anon_vma_clone(new, vma);
487 	if (err)
488 		goto out_free_mpol;
489 
490 	if (new->vm_file)
491 		get_file(new->vm_file);
492 
493 	if (new->vm_ops && new->vm_ops->open)
494 		new->vm_ops->open(new);
495 
496 	vma_start_write(vma);
497 	vma_start_write(new);
498 
499 	init_vma_prep(&vp, vma);
500 	vp.insert = new;
501 	vma_prepare(&vp);
502 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
503 
504 	if (new_below) {
505 		vma->vm_start = addr;
506 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
507 	} else {
508 		vma->vm_end = addr;
509 	}
510 
511 	/* vma_complete stores the new vma */
512 	vma_complete(&vp, vmi, vma->vm_mm);
513 	validate_mm(vma->vm_mm);
514 
515 	/* Success. */
516 	if (new_below)
517 		vma_next(vmi);
518 	else
519 		vma_prev(vmi);
520 
521 	return 0;
522 
523 out_free_mpol:
524 	mpol_put(vma_policy(new));
525 out_free_vmi:
526 	vma_iter_free(vmi);
527 out_free_vma:
528 	vm_area_free(new);
529 	return err;
530 }
531 
532 /*
533  * Split a vma into two pieces at address 'addr', a new vma is allocated
534  * either for the first part or the tail.
535  */
536 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
537 		     unsigned long addr, int new_below)
538 {
539 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
540 		return -ENOMEM;
541 
542 	return __split_vma(vmi, vma, addr, new_below);
543 }
544 
545 /*
546  * dup_anon_vma() - Helper function to duplicate anon_vma
547  * @dst: The destination VMA
548  * @src: The source VMA
549  * @dup: Pointer to the destination VMA when successful.
550  *
551  * Returns: 0 on success.
552  */
553 static int dup_anon_vma(struct vm_area_struct *dst,
554 			struct vm_area_struct *src, struct vm_area_struct **dup)
555 {
556 	/*
557 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
558 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
559 	 * anon pages imported.
560 	 */
561 	if (src->anon_vma && !dst->anon_vma) {
562 		int ret;
563 
564 		vma_assert_write_locked(dst);
565 		dst->anon_vma = src->anon_vma;
566 		ret = anon_vma_clone(dst, src);
567 		if (ret)
568 			return ret;
569 
570 		*dup = dst;
571 	}
572 
573 	return 0;
574 }
575 
576 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
577 void validate_mm(struct mm_struct *mm)
578 {
579 	int bug = 0;
580 	int i = 0;
581 	struct vm_area_struct *vma;
582 	VMA_ITERATOR(vmi, mm, 0);
583 
584 	mt_validate(&mm->mm_mt);
585 	for_each_vma(vmi, vma) {
586 #ifdef CONFIG_DEBUG_VM_RB
587 		struct anon_vma *anon_vma = vma->anon_vma;
588 		struct anon_vma_chain *avc;
589 #endif
590 		unsigned long vmi_start, vmi_end;
591 		bool warn = 0;
592 
593 		vmi_start = vma_iter_addr(&vmi);
594 		vmi_end = vma_iter_end(&vmi);
595 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
596 			warn = 1;
597 
598 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
599 			warn = 1;
600 
601 		if (warn) {
602 			pr_emerg("issue in %s\n", current->comm);
603 			dump_stack();
604 			dump_vma(vma);
605 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
606 				 vmi_start, vmi_end - 1);
607 			vma_iter_dump_tree(&vmi);
608 		}
609 
610 #ifdef CONFIG_DEBUG_VM_RB
611 		if (anon_vma) {
612 			anon_vma_lock_read(anon_vma);
613 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
614 				anon_vma_interval_tree_verify(avc);
615 			anon_vma_unlock_read(anon_vma);
616 		}
617 #endif
618 		/* Check for a infinite loop */
619 		if (++i > mm->map_count + 10) {
620 			i = -1;
621 			break;
622 		}
623 	}
624 	if (i != mm->map_count) {
625 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
626 		bug = 1;
627 	}
628 	VM_BUG_ON_MM(bug, mm);
629 }
630 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
631 
632 /* Actually perform the VMA merge operation. */
633 static int commit_merge(struct vma_merge_struct *vmg,
634 			struct vm_area_struct *adjust,
635 			struct vm_area_struct *remove,
636 			struct vm_area_struct *remove2,
637 			long adj_start,
638 			bool expanded)
639 {
640 	struct vma_prepare vp;
641 
642 	init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
643 
644 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
645 		   vp.anon_vma != adjust->anon_vma);
646 
647 	if (expanded) {
648 		/* Note: vma iterator must be pointing to 'start'. */
649 		vma_iter_config(vmg->vmi, vmg->start, vmg->end);
650 	} else {
651 		vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
652 				adjust->vm_end);
653 	}
654 
655 	if (vma_iter_prealloc(vmg->vmi, vmg->vma))
656 		return -ENOMEM;
657 
658 	vma_prepare(&vp);
659 	vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
660 	vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
661 
662 	if (expanded)
663 		vma_iter_store(vmg->vmi, vmg->vma);
664 
665 	if (adj_start) {
666 		adjust->vm_start += adj_start;
667 		adjust->vm_pgoff += PHYS_PFN(adj_start);
668 		if (adj_start < 0) {
669 			WARN_ON(expanded);
670 			vma_iter_store(vmg->vmi, adjust);
671 		}
672 	}
673 
674 	vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
675 
676 	return 0;
677 }
678 
679 /* We can only remove VMAs when merging if they do not have a close hook. */
680 static bool can_merge_remove_vma(struct vm_area_struct *vma)
681 {
682 	return !vma->vm_ops || !vma->vm_ops->close;
683 }
684 
685 /*
686  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
687  * attributes modified.
688  *
689  * @vmg: Describes the modifications being made to a VMA and associated
690  *       metadata.
691  *
692  * When the attributes of a range within a VMA change, then it might be possible
693  * for immediately adjacent VMAs to be merged into that VMA due to having
694  * identical properties.
695  *
696  * This function checks for the existence of any such mergeable VMAs and updates
697  * the maple tree describing the @vmg->vma->vm_mm address space to account for
698  * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
699  *
700  * As part of this operation, if a merge occurs, the @vmg object will have its
701  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
702  * calls to this function should reset these fields.
703  *
704  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
705  *
706  * ASSUMPTIONS:
707  * - The caller must assign the VMA to be modifed to @vmg->vma.
708  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
709  * - The caller must not set @vmg->next, as we determine this.
710  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
711  * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
712  */
713 static __must_check struct vm_area_struct *vma_merge_existing_range(
714 		struct vma_merge_struct *vmg)
715 {
716 	struct vm_area_struct *vma = vmg->vma;
717 	struct vm_area_struct *prev = vmg->prev;
718 	struct vm_area_struct *next, *res;
719 	struct vm_area_struct *anon_dup = NULL;
720 	struct vm_area_struct *adjust = NULL;
721 	unsigned long start = vmg->start;
722 	unsigned long end = vmg->end;
723 	bool left_side = vma && start == vma->vm_start;
724 	bool right_side = vma && end == vma->vm_end;
725 	int err = 0;
726 	long adj_start = 0;
727 	bool merge_will_delete_vma, merge_will_delete_next;
728 	bool merge_left, merge_right, merge_both;
729 	bool expanded;
730 
731 	mmap_assert_write_locked(vmg->mm);
732 	VM_WARN_ON_VMG(!vma, vmg); /* We are modifying a VMA, so caller must specify. */
733 	VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
734 	VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
735 	VM_WARN_ON_VMG(start >= end, vmg);
736 
737 	/*
738 	 * If vma == prev, then we are offset into a VMA. Otherwise, if we are
739 	 * not, we must span a portion of the VMA.
740 	 */
741 	VM_WARN_ON_VMG(vma && ((vma != prev && vmg->start != vma->vm_start) ||
742 			       vmg->end > vma->vm_end), vmg);
743 	/* The vmi must be positioned within vmg->vma. */
744 	VM_WARN_ON_VMG(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
745 				vma_iter_addr(vmg->vmi) < vma->vm_end), vmg);
746 
747 	vmg->state = VMA_MERGE_NOMERGE;
748 
749 	/*
750 	 * If a special mapping or if the range being modified is neither at the
751 	 * furthermost left or right side of the VMA, then we have no chance of
752 	 * merging and should abort.
753 	 */
754 	if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
755 		return NULL;
756 
757 	if (left_side)
758 		merge_left = can_vma_merge_left(vmg);
759 	else
760 		merge_left = false;
761 
762 	if (right_side) {
763 		next = vmg->next = vma_iter_next_range(vmg->vmi);
764 		vma_iter_prev_range(vmg->vmi);
765 
766 		merge_right = can_vma_merge_right(vmg, merge_left);
767 	} else {
768 		merge_right = false;
769 		next = NULL;
770 	}
771 
772 	if (merge_left)		/* If merging prev, position iterator there. */
773 		vma_prev(vmg->vmi);
774 	else if (!merge_right)	/* If we have nothing to merge, abort. */
775 		return NULL;
776 
777 	merge_both = merge_left && merge_right;
778 	/* If we span the entire VMA, a merge implies it will be deleted. */
779 	merge_will_delete_vma = left_side && right_side;
780 
781 	/*
782 	 * If we need to remove vma in its entirety but are unable to do so,
783 	 * we have no sensible recourse but to abort the merge.
784 	 */
785 	if (merge_will_delete_vma && !can_merge_remove_vma(vma))
786 		return NULL;
787 
788 	/*
789 	 * If we merge both VMAs, then next is also deleted. This implies
790 	 * merge_will_delete_vma also.
791 	 */
792 	merge_will_delete_next = merge_both;
793 
794 	/*
795 	 * If we cannot delete next, then we can reduce the operation to merging
796 	 * prev and vma (thereby deleting vma).
797 	 */
798 	if (merge_will_delete_next && !can_merge_remove_vma(next)) {
799 		merge_will_delete_next = false;
800 		merge_right = false;
801 		merge_both = false;
802 	}
803 
804 	/* No matter what happens, we will be adjusting vma. */
805 	vma_start_write(vma);
806 
807 	if (merge_left)
808 		vma_start_write(prev);
809 
810 	if (merge_right)
811 		vma_start_write(next);
812 
813 	if (merge_both) {
814 		/*
815 		 *         |<----->|
816 		 * |-------*********-------|
817 		 *   prev     vma     next
818 		 *  extend   delete  delete
819 		 */
820 
821 		vmg->vma = prev;
822 		vmg->start = prev->vm_start;
823 		vmg->end = next->vm_end;
824 		vmg->pgoff = prev->vm_pgoff;
825 
826 		/*
827 		 * We already ensured anon_vma compatibility above, so now it's
828 		 * simply a case of, if prev has no anon_vma object, which of
829 		 * next or vma contains the anon_vma we must duplicate.
830 		 */
831 		err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
832 	} else if (merge_left) {
833 		/*
834 		 *         |<----->| OR
835 		 *         |<--------->|
836 		 * |-------*************
837 		 *   prev       vma
838 		 *  extend shrink/delete
839 		 */
840 
841 		vmg->vma = prev;
842 		vmg->start = prev->vm_start;
843 		vmg->pgoff = prev->vm_pgoff;
844 
845 		if (!merge_will_delete_vma) {
846 			adjust = vma;
847 			adj_start = vmg->end - vma->vm_start;
848 		}
849 
850 		err = dup_anon_vma(prev, vma, &anon_dup);
851 	} else { /* merge_right */
852 		/*
853 		 *     |<----->| OR
854 		 * |<--------->|
855 		 * *************-------|
856 		 *      vma       next
857 		 * shrink/delete extend
858 		 */
859 
860 		pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
861 
862 		VM_WARN_ON_VMG(!merge_right, vmg);
863 		/* If we are offset into a VMA, then prev must be vma. */
864 		VM_WARN_ON_VMG(vmg->start > vma->vm_start && prev && vma != prev, vmg);
865 
866 		if (merge_will_delete_vma) {
867 			vmg->vma = next;
868 			vmg->end = next->vm_end;
869 			vmg->pgoff = next->vm_pgoff - pglen;
870 		} else {
871 			/*
872 			 * We shrink vma and expand next.
873 			 *
874 			 * IMPORTANT: This is the ONLY case where the final
875 			 * merged VMA is NOT vmg->vma, but rather vmg->next.
876 			 */
877 
878 			vmg->start = vma->vm_start;
879 			vmg->end = start;
880 			vmg->pgoff = vma->vm_pgoff;
881 
882 			adjust = next;
883 			adj_start = -(vma->vm_end - start);
884 		}
885 
886 		err = dup_anon_vma(next, vma, &anon_dup);
887 	}
888 
889 	if (err)
890 		goto abort;
891 
892 	/*
893 	 * In nearly all cases, we expand vmg->vma. There is one exception -
894 	 * merge_right where we partially span the VMA. In this case we shrink
895 	 * the end of vmg->vma and adjust the start of vmg->next accordingly.
896 	 */
897 	expanded = !merge_right || merge_will_delete_vma;
898 
899 	if (commit_merge(vmg, adjust,
900 			 merge_will_delete_vma ? vma : NULL,
901 			 merge_will_delete_next ? next : NULL,
902 			 adj_start, expanded)) {
903 		if (anon_dup)
904 			unlink_anon_vmas(anon_dup);
905 
906 		vmg->state = VMA_MERGE_ERROR_NOMEM;
907 		return NULL;
908 	}
909 
910 	res = merge_left ? prev : next;
911 	khugepaged_enter_vma(res, vmg->flags);
912 
913 	vmg->state = VMA_MERGE_SUCCESS;
914 	return res;
915 
916 abort:
917 	vma_iter_set(vmg->vmi, start);
918 	vma_iter_load(vmg->vmi);
919 	vmg->state = VMA_MERGE_ERROR_NOMEM;
920 	return NULL;
921 }
922 
923 /*
924  * vma_merge_new_range - Attempt to merge a new VMA into address space
925  *
926  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
927  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
928  *
929  * We are about to add a VMA to the address space starting at @vmg->start and
930  * ending at @vmg->end. There are three different possible scenarios:
931  *
932  * 1. There is a VMA with identical properties immediately adjacent to the
933  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
934  *    EXPAND that VMA:
935  *
936  * Proposed:       |-----|  or  |-----|
937  * Existing:  |----|                  |----|
938  *
939  * 2. There are VMAs with identical properties immediately adjacent to the
940  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
941  *    EXPAND the former and REMOVE the latter:
942  *
943  * Proposed:       |-----|
944  * Existing:  |----|     |----|
945  *
946  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
947  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
948  *
949  * In instances where we can merge, this function returns the expanded VMA which
950  * will have its range adjusted accordingly and the underlying maple tree also
951  * adjusted.
952  *
953  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
954  *          to the VMA we expanded.
955  *
956  * This function adjusts @vmg to provide @vmg->next if not already specified,
957  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
958  *
959  * ASSUMPTIONS:
960  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
961  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
962      other than VMAs that will be unmapped should the operation succeed.
963  * - The caller must have specified the previous vma in @vmg->prev.
964  * - The caller must have specified the next vma in @vmg->next.
965  * - The caller must have positioned the vmi at or before the gap.
966  */
967 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
968 {
969 	struct vm_area_struct *prev = vmg->prev;
970 	struct vm_area_struct *next = vmg->next;
971 	unsigned long end = vmg->end;
972 	bool can_merge_left, can_merge_right;
973 	bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
974 
975 	mmap_assert_write_locked(vmg->mm);
976 	VM_WARN_ON_VMG(vmg->vma, vmg);
977 	/* vmi must point at or before the gap. */
978 	VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
979 
980 	vmg->state = VMA_MERGE_NOMERGE;
981 
982 	/* Special VMAs are unmergeable, also if no prev/next. */
983 	if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
984 		return NULL;
985 
986 	can_merge_left = can_vma_merge_left(vmg);
987 	can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
988 
989 	/* If we can merge with the next VMA, adjust vmg accordingly. */
990 	if (can_merge_right) {
991 		vmg->end = next->vm_end;
992 		vmg->vma = next;
993 	}
994 
995 	/* If we can merge with the previous VMA, adjust vmg accordingly. */
996 	if (can_merge_left) {
997 		vmg->start = prev->vm_start;
998 		vmg->vma = prev;
999 		vmg->pgoff = prev->vm_pgoff;
1000 
1001 		/*
1002 		 * If this merge would result in removal of the next VMA but we
1003 		 * are not permitted to do so, reduce the operation to merging
1004 		 * prev and vma.
1005 		 */
1006 		if (can_merge_right && !can_merge_remove_vma(next))
1007 			vmg->end = end;
1008 
1009 		/* In expand-only case we are already positioned at prev. */
1010 		if (!just_expand) {
1011 			/* Equivalent to going to the previous range. */
1012 			vma_prev(vmg->vmi);
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Now try to expand adjacent VMA(s). This takes care of removing the
1018 	 * following VMA if we have VMAs on both sides.
1019 	 */
1020 	if (vmg->vma && !vma_expand(vmg)) {
1021 		khugepaged_enter_vma(vmg->vma, vmg->flags);
1022 		vmg->state = VMA_MERGE_SUCCESS;
1023 		return vmg->vma;
1024 	}
1025 
1026 	return NULL;
1027 }
1028 
1029 /*
1030  * vma_expand - Expand an existing VMA
1031  *
1032  * @vmg: Describes a VMA expansion operation.
1033  *
1034  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
1035  * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
1036  * vmg->next->vm_end.  Checking if the vmg->vma can expand and merge with
1037  * vmg->next needs to be handled by the caller.
1038  *
1039  * Returns: 0 on success.
1040  *
1041  * ASSUMPTIONS:
1042  * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
1043  * - The caller must have set @vmg->vma and @vmg->next.
1044  */
1045 int vma_expand(struct vma_merge_struct *vmg)
1046 {
1047 	struct vm_area_struct *anon_dup = NULL;
1048 	bool remove_next = false;
1049 	struct vm_area_struct *vma = vmg->vma;
1050 	struct vm_area_struct *next = vmg->next;
1051 
1052 	mmap_assert_write_locked(vmg->mm);
1053 
1054 	vma_start_write(vma);
1055 	if (next && (vma != next) && (vmg->end == next->vm_end)) {
1056 		int ret;
1057 
1058 		remove_next = true;
1059 		/* This should already have been checked by this point. */
1060 		VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg);
1061 		vma_start_write(next);
1062 		ret = dup_anon_vma(vma, next, &anon_dup);
1063 		if (ret)
1064 			return ret;
1065 	}
1066 
1067 	/* Not merging but overwriting any part of next is not handled. */
1068 	VM_WARN_ON_VMG(next && !remove_next &&
1069 		       next != vma && vmg->end > next->vm_start, vmg);
1070 	/* Only handles expanding */
1071 	VM_WARN_ON_VMG(vma->vm_start < vmg->start || vma->vm_end > vmg->end, vmg);
1072 
1073 	if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1074 		goto nomem;
1075 
1076 	return 0;
1077 
1078 nomem:
1079 	vmg->state = VMA_MERGE_ERROR_NOMEM;
1080 	if (anon_dup)
1081 		unlink_anon_vmas(anon_dup);
1082 	return -ENOMEM;
1083 }
1084 
1085 /*
1086  * vma_shrink() - Reduce an existing VMAs memory area
1087  * @vmi: The vma iterator
1088  * @vma: The VMA to modify
1089  * @start: The new start
1090  * @end: The new end
1091  *
1092  * Returns: 0 on success, -ENOMEM otherwise
1093  */
1094 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1095 	       unsigned long start, unsigned long end, pgoff_t pgoff)
1096 {
1097 	struct vma_prepare vp;
1098 
1099 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1100 
1101 	if (vma->vm_start < start)
1102 		vma_iter_config(vmi, vma->vm_start, start);
1103 	else
1104 		vma_iter_config(vmi, end, vma->vm_end);
1105 
1106 	if (vma_iter_prealloc(vmi, NULL))
1107 		return -ENOMEM;
1108 
1109 	vma_start_write(vma);
1110 
1111 	init_vma_prep(&vp, vma);
1112 	vma_prepare(&vp);
1113 	vma_adjust_trans_huge(vma, start, end, 0);
1114 
1115 	vma_iter_clear(vmi);
1116 	vma_set_range(vma, start, end, pgoff);
1117 	vma_complete(&vp, vmi, vma->vm_mm);
1118 	validate_mm(vma->vm_mm);
1119 	return 0;
1120 }
1121 
1122 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1123 		    struct ma_state *mas_detach, bool mm_wr_locked)
1124 {
1125 	struct mmu_gather tlb;
1126 
1127 	if (!vms->clear_ptes) /* Nothing to do */
1128 		return;
1129 
1130 	/*
1131 	 * We can free page tables without write-locking mmap_lock because VMAs
1132 	 * were isolated before we downgraded mmap_lock.
1133 	 */
1134 	mas_set(mas_detach, 1);
1135 	tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1136 	update_hiwater_rss(vms->vma->vm_mm);
1137 	unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1138 		   vms->vma_count, mm_wr_locked);
1139 
1140 	mas_set(mas_detach, 1);
1141 	/* start and end may be different if there is no prev or next vma. */
1142 	free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1143 		      vms->unmap_end, mm_wr_locked);
1144 	tlb_finish_mmu(&tlb);
1145 	vms->clear_ptes = false;
1146 }
1147 
1148 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1149 		struct ma_state *mas_detach)
1150 {
1151 	struct vm_area_struct *vma;
1152 
1153 	if (!vms->nr_pages)
1154 		return;
1155 
1156 	vms_clear_ptes(vms, mas_detach, true);
1157 	mas_set(mas_detach, 0);
1158 	mas_for_each(mas_detach, vma, ULONG_MAX)
1159 		vma_close(vma);
1160 }
1161 
1162 /*
1163  * vms_complete_munmap_vmas() - Finish the munmap() operation
1164  * @vms: The vma munmap struct
1165  * @mas_detach: The maple state of the detached vmas
1166  *
1167  * This updates the mm_struct, unmaps the region, frees the resources
1168  * used for the munmap() and may downgrade the lock - if requested.  Everything
1169  * needed to be done once the vma maple tree is updated.
1170  */
1171 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1172 		struct ma_state *mas_detach)
1173 {
1174 	struct vm_area_struct *vma;
1175 	struct mm_struct *mm;
1176 
1177 	mm = current->mm;
1178 	mm->map_count -= vms->vma_count;
1179 	mm->locked_vm -= vms->locked_vm;
1180 	if (vms->unlock)
1181 		mmap_write_downgrade(mm);
1182 
1183 	if (!vms->nr_pages)
1184 		return;
1185 
1186 	vms_clear_ptes(vms, mas_detach, !vms->unlock);
1187 	/* Update high watermark before we lower total_vm */
1188 	update_hiwater_vm(mm);
1189 	/* Stat accounting */
1190 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1191 	/* Paranoid bookkeeping */
1192 	VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1193 	VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1194 	VM_WARN_ON(vms->data_vm > mm->data_vm);
1195 	mm->exec_vm -= vms->exec_vm;
1196 	mm->stack_vm -= vms->stack_vm;
1197 	mm->data_vm -= vms->data_vm;
1198 
1199 	/* Remove and clean up vmas */
1200 	mas_set(mas_detach, 0);
1201 	mas_for_each(mas_detach, vma, ULONG_MAX)
1202 		remove_vma(vma, /* unreachable = */ false);
1203 
1204 	vm_unacct_memory(vms->nr_accounted);
1205 	validate_mm(mm);
1206 	if (vms->unlock)
1207 		mmap_read_unlock(mm);
1208 
1209 	__mt_destroy(mas_detach->tree);
1210 }
1211 
1212 /*
1213  * reattach_vmas() - Undo any munmap work and free resources
1214  * @mas_detach: The maple state with the detached maple tree
1215  *
1216  * Reattach any detached vmas and free up the maple tree used to track the vmas.
1217  */
1218 static void reattach_vmas(struct ma_state *mas_detach)
1219 {
1220 	struct vm_area_struct *vma;
1221 
1222 	mas_set(mas_detach, 0);
1223 	mas_for_each(mas_detach, vma, ULONG_MAX)
1224 		vma_mark_detached(vma, false);
1225 
1226 	__mt_destroy(mas_detach->tree);
1227 }
1228 
1229 /*
1230  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1231  * for removal at a later date.  Handles splitting first and last if necessary
1232  * and marking the vmas as isolated.
1233  *
1234  * @vms: The vma munmap struct
1235  * @mas_detach: The maple state tracking the detached tree
1236  *
1237  * Return: 0 on success, error otherwise
1238  */
1239 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1240 		struct ma_state *mas_detach)
1241 {
1242 	struct vm_area_struct *next = NULL;
1243 	int error;
1244 
1245 	/*
1246 	 * If we need to split any vma, do it now to save pain later.
1247 	 * Does it split the first one?
1248 	 */
1249 	if (vms->start > vms->vma->vm_start) {
1250 
1251 		/*
1252 		 * Make sure that map_count on return from munmap() will
1253 		 * not exceed its limit; but let map_count go just above
1254 		 * its limit temporarily, to help free resources as expected.
1255 		 */
1256 		if (vms->end < vms->vma->vm_end &&
1257 		    vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1258 			error = -ENOMEM;
1259 			goto map_count_exceeded;
1260 		}
1261 
1262 		/* Don't bother splitting the VMA if we can't unmap it anyway */
1263 		if (!can_modify_vma(vms->vma)) {
1264 			error = -EPERM;
1265 			goto start_split_failed;
1266 		}
1267 
1268 		error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1269 		if (error)
1270 			goto start_split_failed;
1271 	}
1272 	vms->prev = vma_prev(vms->vmi);
1273 	if (vms->prev)
1274 		vms->unmap_start = vms->prev->vm_end;
1275 
1276 	/*
1277 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
1278 	 * it is always overwritten.
1279 	 */
1280 	for_each_vma_range(*(vms->vmi), next, vms->end) {
1281 		long nrpages;
1282 
1283 		if (!can_modify_vma(next)) {
1284 			error = -EPERM;
1285 			goto modify_vma_failed;
1286 		}
1287 		/* Does it split the end? */
1288 		if (next->vm_end > vms->end) {
1289 			error = __split_vma(vms->vmi, next, vms->end, 0);
1290 			if (error)
1291 				goto end_split_failed;
1292 		}
1293 		vma_start_write(next);
1294 		mas_set(mas_detach, vms->vma_count++);
1295 		error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1296 		if (error)
1297 			goto munmap_gather_failed;
1298 
1299 		vma_mark_detached(next, true);
1300 		nrpages = vma_pages(next);
1301 
1302 		vms->nr_pages += nrpages;
1303 		if (next->vm_flags & VM_LOCKED)
1304 			vms->locked_vm += nrpages;
1305 
1306 		if (next->vm_flags & VM_ACCOUNT)
1307 			vms->nr_accounted += nrpages;
1308 
1309 		if (is_exec_mapping(next->vm_flags))
1310 			vms->exec_vm += nrpages;
1311 		else if (is_stack_mapping(next->vm_flags))
1312 			vms->stack_vm += nrpages;
1313 		else if (is_data_mapping(next->vm_flags))
1314 			vms->data_vm += nrpages;
1315 
1316 		if (vms->uf) {
1317 			/*
1318 			 * If userfaultfd_unmap_prep returns an error the vmas
1319 			 * will remain split, but userland will get a
1320 			 * highly unexpected error anyway. This is no
1321 			 * different than the case where the first of the two
1322 			 * __split_vma fails, but we don't undo the first
1323 			 * split, despite we could. This is unlikely enough
1324 			 * failure that it's not worth optimizing it for.
1325 			 */
1326 			error = userfaultfd_unmap_prep(next, vms->start,
1327 						       vms->end, vms->uf);
1328 			if (error)
1329 				goto userfaultfd_error;
1330 		}
1331 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1332 		BUG_ON(next->vm_start < vms->start);
1333 		BUG_ON(next->vm_start > vms->end);
1334 #endif
1335 	}
1336 
1337 	vms->next = vma_next(vms->vmi);
1338 	if (vms->next)
1339 		vms->unmap_end = vms->next->vm_start;
1340 
1341 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1342 	/* Make sure no VMAs are about to be lost. */
1343 	{
1344 		MA_STATE(test, mas_detach->tree, 0, 0);
1345 		struct vm_area_struct *vma_mas, *vma_test;
1346 		int test_count = 0;
1347 
1348 		vma_iter_set(vms->vmi, vms->start);
1349 		rcu_read_lock();
1350 		vma_test = mas_find(&test, vms->vma_count - 1);
1351 		for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1352 			BUG_ON(vma_mas != vma_test);
1353 			test_count++;
1354 			vma_test = mas_next(&test, vms->vma_count - 1);
1355 		}
1356 		rcu_read_unlock();
1357 		BUG_ON(vms->vma_count != test_count);
1358 	}
1359 #endif
1360 
1361 	while (vma_iter_addr(vms->vmi) > vms->start)
1362 		vma_iter_prev_range(vms->vmi);
1363 
1364 	vms->clear_ptes = true;
1365 	return 0;
1366 
1367 userfaultfd_error:
1368 munmap_gather_failed:
1369 end_split_failed:
1370 modify_vma_failed:
1371 	reattach_vmas(mas_detach);
1372 start_split_failed:
1373 map_count_exceeded:
1374 	return error;
1375 }
1376 
1377 /*
1378  * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1379  * @vms: The vma munmap struct
1380  * @vmi: The vma iterator
1381  * @vma: The first vm_area_struct to munmap
1382  * @start: The aligned start address to munmap
1383  * @end: The aligned end address to munmap
1384  * @uf: The userfaultfd list_head
1385  * @unlock: Unlock after the operation.  Only unlocked on success
1386  */
1387 static void init_vma_munmap(struct vma_munmap_struct *vms,
1388 		struct vma_iterator *vmi, struct vm_area_struct *vma,
1389 		unsigned long start, unsigned long end, struct list_head *uf,
1390 		bool unlock)
1391 {
1392 	vms->vmi = vmi;
1393 	vms->vma = vma;
1394 	if (vma) {
1395 		vms->start = start;
1396 		vms->end = end;
1397 	} else {
1398 		vms->start = vms->end = 0;
1399 	}
1400 	vms->unlock = unlock;
1401 	vms->uf = uf;
1402 	vms->vma_count = 0;
1403 	vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1404 	vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1405 	vms->unmap_start = FIRST_USER_ADDRESS;
1406 	vms->unmap_end = USER_PGTABLES_CEILING;
1407 	vms->clear_ptes = false;
1408 }
1409 
1410 /*
1411  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1412  * @vmi: The vma iterator
1413  * @vma: The starting vm_area_struct
1414  * @mm: The mm_struct
1415  * @start: The aligned start address to munmap.
1416  * @end: The aligned end address to munmap.
1417  * @uf: The userfaultfd list_head
1418  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1419  * success.
1420  *
1421  * Return: 0 on success and drops the lock if so directed, error and leaves the
1422  * lock held otherwise.
1423  */
1424 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1425 		struct mm_struct *mm, unsigned long start, unsigned long end,
1426 		struct list_head *uf, bool unlock)
1427 {
1428 	struct maple_tree mt_detach;
1429 	MA_STATE(mas_detach, &mt_detach, 0, 0);
1430 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1431 	mt_on_stack(mt_detach);
1432 	struct vma_munmap_struct vms;
1433 	int error;
1434 
1435 	init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1436 	error = vms_gather_munmap_vmas(&vms, &mas_detach);
1437 	if (error)
1438 		goto gather_failed;
1439 
1440 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1441 	if (error)
1442 		goto clear_tree_failed;
1443 
1444 	/* Point of no return */
1445 	vms_complete_munmap_vmas(&vms, &mas_detach);
1446 	return 0;
1447 
1448 clear_tree_failed:
1449 	reattach_vmas(&mas_detach);
1450 gather_failed:
1451 	validate_mm(mm);
1452 	return error;
1453 }
1454 
1455 /*
1456  * do_vmi_munmap() - munmap a given range.
1457  * @vmi: The vma iterator
1458  * @mm: The mm_struct
1459  * @start: The start address to munmap
1460  * @len: The length of the range to munmap
1461  * @uf: The userfaultfd list_head
1462  * @unlock: set to true if the user wants to drop the mmap_lock on success
1463  *
1464  * This function takes a @mas that is either pointing to the previous VMA or set
1465  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1466  * aligned.
1467  *
1468  * Return: 0 on success and drops the lock if so directed, error and leaves the
1469  * lock held otherwise.
1470  */
1471 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1472 		  unsigned long start, size_t len, struct list_head *uf,
1473 		  bool unlock)
1474 {
1475 	unsigned long end;
1476 	struct vm_area_struct *vma;
1477 
1478 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1479 		return -EINVAL;
1480 
1481 	end = start + PAGE_ALIGN(len);
1482 	if (end == start)
1483 		return -EINVAL;
1484 
1485 	/* Find the first overlapping VMA */
1486 	vma = vma_find(vmi, end);
1487 	if (!vma) {
1488 		if (unlock)
1489 			mmap_write_unlock(mm);
1490 		return 0;
1491 	}
1492 
1493 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1494 }
1495 
1496 /*
1497  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1498  * context and anonymous VMA name within the range [start, end).
1499  *
1500  * As a result, we might be able to merge the newly modified VMA range with an
1501  * adjacent VMA with identical properties.
1502  *
1503  * If no merge is possible and the range does not span the entirety of the VMA,
1504  * we then need to split the VMA to accommodate the change.
1505  *
1506  * The function returns either the merged VMA, the original VMA if a split was
1507  * required instead, or an error if the split failed.
1508  */
1509 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1510 {
1511 	struct vm_area_struct *vma = vmg->vma;
1512 	struct vm_area_struct *merged;
1513 
1514 	/* First, try to merge. */
1515 	merged = vma_merge_existing_range(vmg);
1516 	if (merged)
1517 		return merged;
1518 
1519 	/* Split any preceding portion of the VMA. */
1520 	if (vma->vm_start < vmg->start) {
1521 		int err = split_vma(vmg->vmi, vma, vmg->start, 1);
1522 
1523 		if (err)
1524 			return ERR_PTR(err);
1525 	}
1526 
1527 	/* Split any trailing portion of the VMA. */
1528 	if (vma->vm_end > vmg->end) {
1529 		int err = split_vma(vmg->vmi, vma, vmg->end, 0);
1530 
1531 		if (err)
1532 			return ERR_PTR(err);
1533 	}
1534 
1535 	return vma;
1536 }
1537 
1538 struct vm_area_struct *vma_modify_flags(
1539 	struct vma_iterator *vmi, struct vm_area_struct *prev,
1540 	struct vm_area_struct *vma, unsigned long start, unsigned long end,
1541 	unsigned long new_flags)
1542 {
1543 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1544 
1545 	vmg.flags = new_flags;
1546 
1547 	return vma_modify(&vmg);
1548 }
1549 
1550 struct vm_area_struct
1551 *vma_modify_flags_name(struct vma_iterator *vmi,
1552 		       struct vm_area_struct *prev,
1553 		       struct vm_area_struct *vma,
1554 		       unsigned long start,
1555 		       unsigned long end,
1556 		       unsigned long new_flags,
1557 		       struct anon_vma_name *new_name)
1558 {
1559 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1560 
1561 	vmg.flags = new_flags;
1562 	vmg.anon_name = new_name;
1563 
1564 	return vma_modify(&vmg);
1565 }
1566 
1567 struct vm_area_struct
1568 *vma_modify_policy(struct vma_iterator *vmi,
1569 		   struct vm_area_struct *prev,
1570 		   struct vm_area_struct *vma,
1571 		   unsigned long start, unsigned long end,
1572 		   struct mempolicy *new_pol)
1573 {
1574 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1575 
1576 	vmg.policy = new_pol;
1577 
1578 	return vma_modify(&vmg);
1579 }
1580 
1581 struct vm_area_struct
1582 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1583 		       struct vm_area_struct *prev,
1584 		       struct vm_area_struct *vma,
1585 		       unsigned long start, unsigned long end,
1586 		       unsigned long new_flags,
1587 		       struct vm_userfaultfd_ctx new_ctx)
1588 {
1589 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1590 
1591 	vmg.flags = new_flags;
1592 	vmg.uffd_ctx = new_ctx;
1593 
1594 	return vma_modify(&vmg);
1595 }
1596 
1597 /*
1598  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1599  * VMA with identical properties.
1600  */
1601 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1602 					struct vm_area_struct *vma,
1603 					unsigned long delta)
1604 {
1605 	VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1606 
1607 	vmg.next = vma_iter_next_rewind(vmi, NULL);
1608 	vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1609 
1610 	return vma_merge_new_range(&vmg);
1611 }
1612 
1613 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1614 {
1615 	vb->count = 0;
1616 }
1617 
1618 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1619 {
1620 	struct address_space *mapping;
1621 	int i;
1622 
1623 	mapping = vb->vmas[0]->vm_file->f_mapping;
1624 	i_mmap_lock_write(mapping);
1625 	for (i = 0; i < vb->count; i++) {
1626 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1627 		__remove_shared_vm_struct(vb->vmas[i], mapping);
1628 	}
1629 	i_mmap_unlock_write(mapping);
1630 
1631 	unlink_file_vma_batch_init(vb);
1632 }
1633 
1634 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1635 			       struct vm_area_struct *vma)
1636 {
1637 	if (vma->vm_file == NULL)
1638 		return;
1639 
1640 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1641 	    vb->count == ARRAY_SIZE(vb->vmas))
1642 		unlink_file_vma_batch_process(vb);
1643 
1644 	vb->vmas[vb->count] = vma;
1645 	vb->count++;
1646 }
1647 
1648 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1649 {
1650 	if (vb->count > 0)
1651 		unlink_file_vma_batch_process(vb);
1652 }
1653 
1654 /*
1655  * Unlink a file-based vm structure from its interval tree, to hide
1656  * vma from rmap and vmtruncate before freeing its page tables.
1657  */
1658 void unlink_file_vma(struct vm_area_struct *vma)
1659 {
1660 	struct file *file = vma->vm_file;
1661 
1662 	if (file) {
1663 		struct address_space *mapping = file->f_mapping;
1664 
1665 		i_mmap_lock_write(mapping);
1666 		__remove_shared_vm_struct(vma, mapping);
1667 		i_mmap_unlock_write(mapping);
1668 	}
1669 }
1670 
1671 void vma_link_file(struct vm_area_struct *vma)
1672 {
1673 	struct file *file = vma->vm_file;
1674 	struct address_space *mapping;
1675 
1676 	if (file) {
1677 		mapping = file->f_mapping;
1678 		i_mmap_lock_write(mapping);
1679 		__vma_link_file(vma, mapping);
1680 		i_mmap_unlock_write(mapping);
1681 	}
1682 }
1683 
1684 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1685 {
1686 	VMA_ITERATOR(vmi, mm, 0);
1687 
1688 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1689 	if (vma_iter_prealloc(&vmi, vma))
1690 		return -ENOMEM;
1691 
1692 	vma_start_write(vma);
1693 	vma_iter_store(&vmi, vma);
1694 	vma_link_file(vma);
1695 	mm->map_count++;
1696 	validate_mm(mm);
1697 	return 0;
1698 }
1699 
1700 /*
1701  * Copy the vma structure to a new location in the same mm,
1702  * prior to moving page table entries, to effect an mremap move.
1703  */
1704 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1705 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1706 	bool *need_rmap_locks)
1707 {
1708 	struct vm_area_struct *vma = *vmap;
1709 	unsigned long vma_start = vma->vm_start;
1710 	struct mm_struct *mm = vma->vm_mm;
1711 	struct vm_area_struct *new_vma;
1712 	bool faulted_in_anon_vma = true;
1713 	VMA_ITERATOR(vmi, mm, addr);
1714 	VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1715 
1716 	/*
1717 	 * If anonymous vma has not yet been faulted, update new pgoff
1718 	 * to match new location, to increase its chance of merging.
1719 	 */
1720 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1721 		pgoff = addr >> PAGE_SHIFT;
1722 		faulted_in_anon_vma = false;
1723 	}
1724 
1725 	new_vma = find_vma_prev(mm, addr, &vmg.prev);
1726 	if (new_vma && new_vma->vm_start < addr + len)
1727 		return NULL;	/* should never get here */
1728 
1729 	vmg.vma = NULL; /* New VMA range. */
1730 	vmg.pgoff = pgoff;
1731 	vmg.next = vma_iter_next_rewind(&vmi, NULL);
1732 	new_vma = vma_merge_new_range(&vmg);
1733 
1734 	if (new_vma) {
1735 		/*
1736 		 * Source vma may have been merged into new_vma
1737 		 */
1738 		if (unlikely(vma_start >= new_vma->vm_start &&
1739 			     vma_start < new_vma->vm_end)) {
1740 			/*
1741 			 * The only way we can get a vma_merge with
1742 			 * self during an mremap is if the vma hasn't
1743 			 * been faulted in yet and we were allowed to
1744 			 * reset the dst vma->vm_pgoff to the
1745 			 * destination address of the mremap to allow
1746 			 * the merge to happen. mremap must change the
1747 			 * vm_pgoff linearity between src and dst vmas
1748 			 * (in turn preventing a vma_merge) to be
1749 			 * safe. It is only safe to keep the vm_pgoff
1750 			 * linear if there are no pages mapped yet.
1751 			 */
1752 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1753 			*vmap = vma = new_vma;
1754 		}
1755 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1756 	} else {
1757 		new_vma = vm_area_dup(vma);
1758 		if (!new_vma)
1759 			goto out;
1760 		vma_set_range(new_vma, addr, addr + len, pgoff);
1761 		if (vma_dup_policy(vma, new_vma))
1762 			goto out_free_vma;
1763 		if (anon_vma_clone(new_vma, vma))
1764 			goto out_free_mempol;
1765 		if (new_vma->vm_file)
1766 			get_file(new_vma->vm_file);
1767 		if (new_vma->vm_ops && new_vma->vm_ops->open)
1768 			new_vma->vm_ops->open(new_vma);
1769 		if (vma_link(mm, new_vma))
1770 			goto out_vma_link;
1771 		*need_rmap_locks = false;
1772 	}
1773 	return new_vma;
1774 
1775 out_vma_link:
1776 	vma_close(new_vma);
1777 
1778 	if (new_vma->vm_file)
1779 		fput(new_vma->vm_file);
1780 
1781 	unlink_anon_vmas(new_vma);
1782 out_free_mempol:
1783 	mpol_put(vma_policy(new_vma));
1784 out_free_vma:
1785 	vm_area_free(new_vma);
1786 out:
1787 	return NULL;
1788 }
1789 
1790 /*
1791  * Rough compatibility check to quickly see if it's even worth looking
1792  * at sharing an anon_vma.
1793  *
1794  * They need to have the same vm_file, and the flags can only differ
1795  * in things that mprotect may change.
1796  *
1797  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1798  * we can merge the two vma's. For example, we refuse to merge a vma if
1799  * there is a vm_ops->close() function, because that indicates that the
1800  * driver is doing some kind of reference counting. But that doesn't
1801  * really matter for the anon_vma sharing case.
1802  */
1803 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1804 {
1805 	return a->vm_end == b->vm_start &&
1806 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1807 		a->vm_file == b->vm_file &&
1808 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1809 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1810 }
1811 
1812 /*
1813  * Do some basic sanity checking to see if we can re-use the anon_vma
1814  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1815  * the same as 'old', the other will be the new one that is trying
1816  * to share the anon_vma.
1817  *
1818  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1819  * the anon_vma of 'old' is concurrently in the process of being set up
1820  * by another page fault trying to merge _that_. But that's ok: if it
1821  * is being set up, that automatically means that it will be a singleton
1822  * acceptable for merging, so we can do all of this optimistically. But
1823  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1824  *
1825  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1826  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1827  * is to return an anon_vma that is "complex" due to having gone through
1828  * a fork).
1829  *
1830  * We also make sure that the two vma's are compatible (adjacent,
1831  * and with the same memory policies). That's all stable, even with just
1832  * a read lock on the mmap_lock.
1833  */
1834 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1835 					  struct vm_area_struct *a,
1836 					  struct vm_area_struct *b)
1837 {
1838 	if (anon_vma_compatible(a, b)) {
1839 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1840 
1841 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1842 			return anon_vma;
1843 	}
1844 	return NULL;
1845 }
1846 
1847 /*
1848  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1849  * neighbouring vmas for a suitable anon_vma, before it goes off
1850  * to allocate a new anon_vma.  It checks because a repetitive
1851  * sequence of mprotects and faults may otherwise lead to distinct
1852  * anon_vmas being allocated, preventing vma merge in subsequent
1853  * mprotect.
1854  */
1855 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1856 {
1857 	struct anon_vma *anon_vma = NULL;
1858 	struct vm_area_struct *prev, *next;
1859 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1860 
1861 	/* Try next first. */
1862 	next = vma_iter_load(&vmi);
1863 	if (next) {
1864 		anon_vma = reusable_anon_vma(next, vma, next);
1865 		if (anon_vma)
1866 			return anon_vma;
1867 	}
1868 
1869 	prev = vma_prev(&vmi);
1870 	VM_BUG_ON_VMA(prev != vma, vma);
1871 	prev = vma_prev(&vmi);
1872 	/* Try prev next. */
1873 	if (prev)
1874 		anon_vma = reusable_anon_vma(prev, prev, vma);
1875 
1876 	/*
1877 	 * We might reach here with anon_vma == NULL if we can't find
1878 	 * any reusable anon_vma.
1879 	 * There's no absolute need to look only at touching neighbours:
1880 	 * we could search further afield for "compatible" anon_vmas.
1881 	 * But it would probably just be a waste of time searching,
1882 	 * or lead to too many vmas hanging off the same anon_vma.
1883 	 * We're trying to allow mprotect remerging later on,
1884 	 * not trying to minimize memory used for anon_vmas.
1885 	 */
1886 	return anon_vma;
1887 }
1888 
1889 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1890 {
1891 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1892 }
1893 
1894 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1895 {
1896 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1897 		(VM_WRITE | VM_SHARED);
1898 }
1899 
1900 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1901 {
1902 	/* No managed pages to writeback. */
1903 	if (vma->vm_flags & VM_PFNMAP)
1904 		return false;
1905 
1906 	return vma->vm_file && vma->vm_file->f_mapping &&
1907 		mapping_can_writeback(vma->vm_file->f_mapping);
1908 }
1909 
1910 /*
1911  * Does this VMA require the underlying folios to have their dirty state
1912  * tracked?
1913  */
1914 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1915 {
1916 	/* Only shared, writable VMAs require dirty tracking. */
1917 	if (!vma_is_shared_writable(vma))
1918 		return false;
1919 
1920 	/* Does the filesystem need to be notified? */
1921 	if (vm_ops_needs_writenotify(vma->vm_ops))
1922 		return true;
1923 
1924 	/*
1925 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1926 	 * can writeback, dirty tracking is still required.
1927 	 */
1928 	return vma_fs_can_writeback(vma);
1929 }
1930 
1931 /*
1932  * Some shared mappings will want the pages marked read-only
1933  * to track write events. If so, we'll downgrade vm_page_prot
1934  * to the private version (using protection_map[] without the
1935  * VM_SHARED bit).
1936  */
1937 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1938 {
1939 	/* If it was private or non-writable, the write bit is already clear */
1940 	if (!vma_is_shared_writable(vma))
1941 		return false;
1942 
1943 	/* The backer wishes to know when pages are first written to? */
1944 	if (vm_ops_needs_writenotify(vma->vm_ops))
1945 		return true;
1946 
1947 	/* The open routine did something to the protections that pgprot_modify
1948 	 * won't preserve? */
1949 	if (pgprot_val(vm_page_prot) !=
1950 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1951 		return false;
1952 
1953 	/*
1954 	 * Do we need to track softdirty? hugetlb does not support softdirty
1955 	 * tracking yet.
1956 	 */
1957 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1958 		return true;
1959 
1960 	/* Do we need write faults for uffd-wp tracking? */
1961 	if (userfaultfd_wp(vma))
1962 		return true;
1963 
1964 	/* Can the mapping track the dirty pages? */
1965 	return vma_fs_can_writeback(vma);
1966 }
1967 
1968 static DEFINE_MUTEX(mm_all_locks_mutex);
1969 
1970 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1971 {
1972 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1973 		/*
1974 		 * The LSB of head.next can't change from under us
1975 		 * because we hold the mm_all_locks_mutex.
1976 		 */
1977 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1978 		/*
1979 		 * We can safely modify head.next after taking the
1980 		 * anon_vma->root->rwsem. If some other vma in this mm shares
1981 		 * the same anon_vma we won't take it again.
1982 		 *
1983 		 * No need of atomic instructions here, head.next
1984 		 * can't change from under us thanks to the
1985 		 * anon_vma->root->rwsem.
1986 		 */
1987 		if (__test_and_set_bit(0, (unsigned long *)
1988 				       &anon_vma->root->rb_root.rb_root.rb_node))
1989 			BUG();
1990 	}
1991 }
1992 
1993 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1994 {
1995 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1996 		/*
1997 		 * AS_MM_ALL_LOCKS can't change from under us because
1998 		 * we hold the mm_all_locks_mutex.
1999 		 *
2000 		 * Operations on ->flags have to be atomic because
2001 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2002 		 * mm_all_locks_mutex, there may be other cpus
2003 		 * changing other bitflags in parallel to us.
2004 		 */
2005 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2006 			BUG();
2007 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2008 	}
2009 }
2010 
2011 /*
2012  * This operation locks against the VM for all pte/vma/mm related
2013  * operations that could ever happen on a certain mm. This includes
2014  * vmtruncate, try_to_unmap, and all page faults.
2015  *
2016  * The caller must take the mmap_lock in write mode before calling
2017  * mm_take_all_locks(). The caller isn't allowed to release the
2018  * mmap_lock until mm_drop_all_locks() returns.
2019  *
2020  * mmap_lock in write mode is required in order to block all operations
2021  * that could modify pagetables and free pages without need of
2022  * altering the vma layout. It's also needed in write mode to avoid new
2023  * anon_vmas to be associated with existing vmas.
2024  *
2025  * A single task can't take more than one mm_take_all_locks() in a row
2026  * or it would deadlock.
2027  *
2028  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2029  * mapping->flags avoid to take the same lock twice, if more than one
2030  * vma in this mm is backed by the same anon_vma or address_space.
2031  *
2032  * We take locks in following order, accordingly to comment at beginning
2033  * of mm/rmap.c:
2034  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2035  *     hugetlb mapping);
2036  *   - all vmas marked locked
2037  *   - all i_mmap_rwsem locks;
2038  *   - all anon_vma->rwseml
2039  *
2040  * We can take all locks within these types randomly because the VM code
2041  * doesn't nest them and we protected from parallel mm_take_all_locks() by
2042  * mm_all_locks_mutex.
2043  *
2044  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2045  * that may have to take thousand of locks.
2046  *
2047  * mm_take_all_locks() can fail if it's interrupted by signals.
2048  */
2049 int mm_take_all_locks(struct mm_struct *mm)
2050 {
2051 	struct vm_area_struct *vma;
2052 	struct anon_vma_chain *avc;
2053 	VMA_ITERATOR(vmi, mm, 0);
2054 
2055 	mmap_assert_write_locked(mm);
2056 
2057 	mutex_lock(&mm_all_locks_mutex);
2058 
2059 	/*
2060 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
2061 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
2062 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2063 	 * is reached.
2064 	 */
2065 	for_each_vma(vmi, vma) {
2066 		if (signal_pending(current))
2067 			goto out_unlock;
2068 		vma_start_write(vma);
2069 	}
2070 
2071 	vma_iter_init(&vmi, mm, 0);
2072 	for_each_vma(vmi, vma) {
2073 		if (signal_pending(current))
2074 			goto out_unlock;
2075 		if (vma->vm_file && vma->vm_file->f_mapping &&
2076 				is_vm_hugetlb_page(vma))
2077 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2078 	}
2079 
2080 	vma_iter_init(&vmi, mm, 0);
2081 	for_each_vma(vmi, vma) {
2082 		if (signal_pending(current))
2083 			goto out_unlock;
2084 		if (vma->vm_file && vma->vm_file->f_mapping &&
2085 				!is_vm_hugetlb_page(vma))
2086 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2087 	}
2088 
2089 	vma_iter_init(&vmi, mm, 0);
2090 	for_each_vma(vmi, vma) {
2091 		if (signal_pending(current))
2092 			goto out_unlock;
2093 		if (vma->anon_vma)
2094 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2095 				vm_lock_anon_vma(mm, avc->anon_vma);
2096 	}
2097 
2098 	return 0;
2099 
2100 out_unlock:
2101 	mm_drop_all_locks(mm);
2102 	return -EINTR;
2103 }
2104 
2105 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2106 {
2107 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2108 		/*
2109 		 * The LSB of head.next can't change to 0 from under
2110 		 * us because we hold the mm_all_locks_mutex.
2111 		 *
2112 		 * We must however clear the bitflag before unlocking
2113 		 * the vma so the users using the anon_vma->rb_root will
2114 		 * never see our bitflag.
2115 		 *
2116 		 * No need of atomic instructions here, head.next
2117 		 * can't change from under us until we release the
2118 		 * anon_vma->root->rwsem.
2119 		 */
2120 		if (!__test_and_clear_bit(0, (unsigned long *)
2121 					  &anon_vma->root->rb_root.rb_root.rb_node))
2122 			BUG();
2123 		anon_vma_unlock_write(anon_vma);
2124 	}
2125 }
2126 
2127 static void vm_unlock_mapping(struct address_space *mapping)
2128 {
2129 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2130 		/*
2131 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2132 		 * because we hold the mm_all_locks_mutex.
2133 		 */
2134 		i_mmap_unlock_write(mapping);
2135 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2136 					&mapping->flags))
2137 			BUG();
2138 	}
2139 }
2140 
2141 /*
2142  * The mmap_lock cannot be released by the caller until
2143  * mm_drop_all_locks() returns.
2144  */
2145 void mm_drop_all_locks(struct mm_struct *mm)
2146 {
2147 	struct vm_area_struct *vma;
2148 	struct anon_vma_chain *avc;
2149 	VMA_ITERATOR(vmi, mm, 0);
2150 
2151 	mmap_assert_write_locked(mm);
2152 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2153 
2154 	for_each_vma(vmi, vma) {
2155 		if (vma->anon_vma)
2156 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2157 				vm_unlock_anon_vma(avc->anon_vma);
2158 		if (vma->vm_file && vma->vm_file->f_mapping)
2159 			vm_unlock_mapping(vma->vm_file->f_mapping);
2160 	}
2161 
2162 	mutex_unlock(&mm_all_locks_mutex);
2163 }
2164 
2165 /*
2166  * We account for memory if it's a private writeable mapping,
2167  * not hugepages and VM_NORESERVE wasn't set.
2168  */
2169 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2170 {
2171 	/*
2172 	 * hugetlb has its own accounting separate from the core VM
2173 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2174 	 */
2175 	if (file && is_file_hugepages(file))
2176 		return false;
2177 
2178 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2179 }
2180 
2181 /*
2182  * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2183  * operation.
2184  * @vms: The vma unmap structure
2185  * @mas_detach: The maple state with the detached maple tree
2186  *
2187  * Reattach any detached vmas, free up the maple tree used to track the vmas.
2188  * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2189  * have been called), then a NULL is written over the vmas and the vmas are
2190  * removed (munmap() completed).
2191  */
2192 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2193 		struct ma_state *mas_detach)
2194 {
2195 	struct ma_state *mas = &vms->vmi->mas;
2196 
2197 	if (!vms->nr_pages)
2198 		return;
2199 
2200 	if (vms->clear_ptes)
2201 		return reattach_vmas(mas_detach);
2202 
2203 	/*
2204 	 * Aborting cannot just call the vm_ops open() because they are often
2205 	 * not symmetrical and state data has been lost.  Resort to the old
2206 	 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2207 	 */
2208 	mas_set_range(mas, vms->start, vms->end - 1);
2209 	mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2210 	/* Clean up the insertion of the unfortunate gap */
2211 	vms_complete_munmap_vmas(vms, mas_detach);
2212 }
2213 
2214 /*
2215  * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be
2216  * unmapped once the map operation is completed, check limits, account mapping
2217  * and clean up any pre-existing VMAs.
2218  *
2219  * @map: Mapping state.
2220  * @uf:  Userfaultfd context list.
2221  *
2222  * Returns: 0 on success, error code otherwise.
2223  */
2224 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf)
2225 {
2226 	int error;
2227 	struct vma_iterator *vmi = map->vmi;
2228 	struct vma_munmap_struct *vms = &map->vms;
2229 
2230 	/* Find the first overlapping VMA and initialise unmap state. */
2231 	vms->vma = vma_find(vmi, map->end);
2232 	init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2233 			/* unlock = */ false);
2234 
2235 	/* OK, we have overlapping VMAs - prepare to unmap them. */
2236 	if (vms->vma) {
2237 		mt_init_flags(&map->mt_detach,
2238 			      vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2239 		mt_on_stack(map->mt_detach);
2240 		mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2241 		/* Prepare to unmap any existing mapping in the area */
2242 		error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2243 		if (error) {
2244 			/* On error VMAs will already have been reattached. */
2245 			vms->nr_pages = 0;
2246 			return error;
2247 		}
2248 
2249 		map->next = vms->next;
2250 		map->prev = vms->prev;
2251 	} else {
2252 		map->next = vma_iter_next_rewind(vmi, &map->prev);
2253 	}
2254 
2255 	/* Check against address space limit. */
2256 	if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages))
2257 		return -ENOMEM;
2258 
2259 	/* Private writable mapping: check memory availability. */
2260 	if (accountable_mapping(map->file, map->flags)) {
2261 		map->charged = map->pglen;
2262 		map->charged -= vms->nr_accounted;
2263 		if (map->charged) {
2264 			error = security_vm_enough_memory_mm(map->mm, map->charged);
2265 			if (error)
2266 				return error;
2267 		}
2268 
2269 		vms->nr_accounted = 0;
2270 		map->flags |= VM_ACCOUNT;
2271 	}
2272 
2273 	/*
2274 	 * Clear PTEs while the vma is still in the tree so that rmap
2275 	 * cannot race with the freeing later in the truncate scenario.
2276 	 * This is also needed for mmap_file(), which is why vm_ops
2277 	 * close function is called.
2278 	 */
2279 	vms_clean_up_area(vms, &map->mas_detach);
2280 
2281 	return 0;
2282 }
2283 
2284 
2285 static int __mmap_new_file_vma(struct mmap_state *map,
2286 			       struct vm_area_struct *vma)
2287 {
2288 	struct vma_iterator *vmi = map->vmi;
2289 	int error;
2290 
2291 	vma->vm_file = get_file(map->file);
2292 	error = mmap_file(vma->vm_file, vma);
2293 	if (error) {
2294 		fput(vma->vm_file);
2295 		vma->vm_file = NULL;
2296 
2297 		vma_iter_set(vmi, vma->vm_end);
2298 		/* Undo any partial mapping done by a device driver. */
2299 		unmap_region(&vmi->mas, vma, map->prev, map->next);
2300 
2301 		return error;
2302 	}
2303 
2304 	/* Drivers cannot alter the address of the VMA. */
2305 	WARN_ON_ONCE(map->addr != vma->vm_start);
2306 	/*
2307 	 * Drivers should not permit writability when previously it was
2308 	 * disallowed.
2309 	 */
2310 	VM_WARN_ON_ONCE(map->flags != vma->vm_flags &&
2311 			!(map->flags & VM_MAYWRITE) &&
2312 			(vma->vm_flags & VM_MAYWRITE));
2313 
2314 	/* If the flags change (and are mergeable), let's retry later. */
2315 	map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL);
2316 	map->flags = vma->vm_flags;
2317 
2318 	return 0;
2319 }
2320 
2321 /*
2322  * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2323  * possible.
2324  *
2325  * @map:  Mapping state.
2326  * @vmap: Output pointer for the new VMA.
2327  *
2328  * Returns: Zero on success, or an error.
2329  */
2330 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2331 {
2332 	struct vma_iterator *vmi = map->vmi;
2333 	int error = 0;
2334 	struct vm_area_struct *vma;
2335 
2336 	/*
2337 	 * Determine the object being mapped and call the appropriate
2338 	 * specific mapper. the address has already been validated, but
2339 	 * not unmapped, but the maps are removed from the list.
2340 	 */
2341 	vma = vm_area_alloc(map->mm);
2342 	if (!vma)
2343 		return -ENOMEM;
2344 
2345 	vma_iter_config(vmi, map->addr, map->end);
2346 	vma_set_range(vma, map->addr, map->end, map->pgoff);
2347 	vm_flags_init(vma, map->flags);
2348 	vma->vm_page_prot = vm_get_page_prot(map->flags);
2349 
2350 	if (vma_iter_prealloc(vmi, vma)) {
2351 		error = -ENOMEM;
2352 		goto free_vma;
2353 	}
2354 
2355 	if (map->file)
2356 		error = __mmap_new_file_vma(map, vma);
2357 	else if (map->flags & VM_SHARED)
2358 		error = shmem_zero_setup(vma);
2359 	else
2360 		vma_set_anonymous(vma);
2361 
2362 	if (error)
2363 		goto free_iter_vma;
2364 
2365 #ifdef CONFIG_SPARC64
2366 	/* TODO: Fix SPARC ADI! */
2367 	WARN_ON_ONCE(!arch_validate_flags(map->flags));
2368 #endif
2369 
2370 	/* Lock the VMA since it is modified after insertion into VMA tree */
2371 	vma_start_write(vma);
2372 	vma_iter_store(vmi, vma);
2373 	map->mm->map_count++;
2374 	vma_link_file(vma);
2375 
2376 	/*
2377 	 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2378 	 * call covers the non-merge case.
2379 	 */
2380 	khugepaged_enter_vma(vma, map->flags);
2381 	ksm_add_vma(vma);
2382 	*vmap = vma;
2383 	return 0;
2384 
2385 free_iter_vma:
2386 	vma_iter_free(vmi);
2387 free_vma:
2388 	vm_area_free(vma);
2389 	return error;
2390 }
2391 
2392 /*
2393  * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2394  *                     statistics, handle locking and finalise the VMA.
2395  *
2396  * @map: Mapping state.
2397  * @vma: Merged or newly allocated VMA for the mmap()'d region.
2398  */
2399 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2400 {
2401 	struct mm_struct *mm = map->mm;
2402 	unsigned long vm_flags = vma->vm_flags;
2403 
2404 	perf_event_mmap(vma);
2405 
2406 	/* Unmap any existing mapping in the area. */
2407 	vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2408 
2409 	vm_stat_account(mm, vma->vm_flags, map->pglen);
2410 	if (vm_flags & VM_LOCKED) {
2411 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2412 					is_vm_hugetlb_page(vma) ||
2413 					vma == get_gate_vma(mm))
2414 			vm_flags_clear(vma, VM_LOCKED_MASK);
2415 		else
2416 			mm->locked_vm += map->pglen;
2417 	}
2418 
2419 	if (vma->vm_file)
2420 		uprobe_mmap(vma);
2421 
2422 	/*
2423 	 * New (or expanded) vma always get soft dirty status.
2424 	 * Otherwise user-space soft-dirty page tracker won't
2425 	 * be able to distinguish situation when vma area unmapped,
2426 	 * then new mapped in-place (which must be aimed as
2427 	 * a completely new data area).
2428 	 */
2429 	vm_flags_set(vma, VM_SOFTDIRTY);
2430 
2431 	vma_set_page_prot(vma);
2432 }
2433 
2434 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2435 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2436 		struct list_head *uf)
2437 {
2438 	struct mm_struct *mm = current->mm;
2439 	struct vm_area_struct *vma = NULL;
2440 	int error;
2441 	VMA_ITERATOR(vmi, mm, addr);
2442 	MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2443 
2444 	error = __mmap_prepare(&map, uf);
2445 	if (error)
2446 		goto abort_munmap;
2447 
2448 	/* Attempt to merge with adjacent VMAs... */
2449 	if (map.prev || map.next) {
2450 		VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2451 
2452 		vma = vma_merge_new_range(&vmg);
2453 	}
2454 
2455 	/* ...but if we can't, allocate a new VMA. */
2456 	if (!vma) {
2457 		error = __mmap_new_vma(&map, &vma);
2458 		if (error)
2459 			goto unacct_error;
2460 	}
2461 
2462 	/* If flags changed, we might be able to merge, so try again. */
2463 	if (map.retry_merge) {
2464 		struct vm_area_struct *merged;
2465 		VMG_MMAP_STATE(vmg, &map, vma);
2466 
2467 		vma_iter_config(map.vmi, map.addr, map.end);
2468 		merged = vma_merge_existing_range(&vmg);
2469 		if (merged)
2470 			vma = merged;
2471 	}
2472 
2473 	__mmap_complete(&map, vma);
2474 
2475 	return addr;
2476 
2477 	/* Accounting was done by __mmap_prepare(). */
2478 unacct_error:
2479 	if (map.charged)
2480 		vm_unacct_memory(map.charged);
2481 abort_munmap:
2482 	vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2483 	return error;
2484 }
2485 
2486 /**
2487  * mmap_region() - Actually perform the userland mapping of a VMA into
2488  * current->mm with known, aligned and overflow-checked @addr and @len, and
2489  * correctly determined VMA flags @vm_flags and page offset @pgoff.
2490  *
2491  * This is an internal memory management function, and should not be used
2492  * directly.
2493  *
2494  * The caller must write-lock current->mm->mmap_lock.
2495  *
2496  * @file: If a file-backed mapping, a pointer to the struct file describing the
2497  * file to be mapped, otherwise NULL.
2498  * @addr: The page-aligned address at which to perform the mapping.
2499  * @len: The page-aligned, non-zero, length of the mapping.
2500  * @vm_flags: The VMA flags which should be applied to the mapping.
2501  * @pgoff: If @file is specified, the page offset into the file, if not then
2502  * the virtual page offset in memory of the anonymous mapping.
2503  * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2504  * events.
2505  *
2506  * Returns: Either an error, or the address at which the requested mapping has
2507  * been performed.
2508  */
2509 unsigned long mmap_region(struct file *file, unsigned long addr,
2510 			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2511 			  struct list_head *uf)
2512 {
2513 	unsigned long ret;
2514 	bool writable_file_mapping = false;
2515 
2516 	mmap_assert_write_locked(current->mm);
2517 
2518 	/* Check to see if MDWE is applicable. */
2519 	if (map_deny_write_exec(vm_flags, vm_flags))
2520 		return -EACCES;
2521 
2522 	/* Allow architectures to sanity-check the vm_flags. */
2523 	if (!arch_validate_flags(vm_flags))
2524 		return -EINVAL;
2525 
2526 	/* Map writable and ensure this isn't a sealed memfd. */
2527 	if (file && is_shared_maywrite(vm_flags)) {
2528 		int error = mapping_map_writable(file->f_mapping);
2529 
2530 		if (error)
2531 			return error;
2532 		writable_file_mapping = true;
2533 	}
2534 
2535 	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2536 
2537 	/* Clear our write mapping regardless of error. */
2538 	if (writable_file_mapping)
2539 		mapping_unmap_writable(file->f_mapping);
2540 
2541 	validate_mm(current->mm);
2542 	return ret;
2543 }
2544 
2545 /*
2546  * do_brk_flags() - Increase the brk vma if the flags match.
2547  * @vmi: The vma iterator
2548  * @addr: The start address
2549  * @len: The length of the increase
2550  * @vma: The vma,
2551  * @flags: The VMA Flags
2552  *
2553  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2554  * do not match then create a new anonymous VMA.  Eventually we may be able to
2555  * do some brk-specific accounting here.
2556  */
2557 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2558 		 unsigned long addr, unsigned long len, unsigned long flags)
2559 {
2560 	struct mm_struct *mm = current->mm;
2561 
2562 	/*
2563 	 * Check against address space limits by the changed size
2564 	 * Note: This happens *after* clearing old mappings in some code paths.
2565 	 */
2566 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2567 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2568 		return -ENOMEM;
2569 
2570 	if (mm->map_count > sysctl_max_map_count)
2571 		return -ENOMEM;
2572 
2573 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2574 		return -ENOMEM;
2575 
2576 	/*
2577 	 * Expand the existing vma if possible; Note that singular lists do not
2578 	 * occur after forking, so the expand will only happen on new VMAs.
2579 	 */
2580 	if (vma && vma->vm_end == addr) {
2581 		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
2582 
2583 		vmg.prev = vma;
2584 		/* vmi is positioned at prev, which this mode expects. */
2585 		vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
2586 
2587 		if (vma_merge_new_range(&vmg))
2588 			goto out;
2589 		else if (vmg_nomem(&vmg))
2590 			goto unacct_fail;
2591 	}
2592 
2593 	if (vma)
2594 		vma_iter_next_range(vmi);
2595 	/* create a vma struct for an anonymous mapping */
2596 	vma = vm_area_alloc(mm);
2597 	if (!vma)
2598 		goto unacct_fail;
2599 
2600 	vma_set_anonymous(vma);
2601 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2602 	vm_flags_init(vma, flags);
2603 	vma->vm_page_prot = vm_get_page_prot(flags);
2604 	vma_start_write(vma);
2605 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2606 		goto mas_store_fail;
2607 
2608 	mm->map_count++;
2609 	validate_mm(mm);
2610 	ksm_add_vma(vma);
2611 out:
2612 	perf_event_mmap(vma);
2613 	mm->total_vm += len >> PAGE_SHIFT;
2614 	mm->data_vm += len >> PAGE_SHIFT;
2615 	if (flags & VM_LOCKED)
2616 		mm->locked_vm += (len >> PAGE_SHIFT);
2617 	vm_flags_set(vma, VM_SOFTDIRTY);
2618 	return 0;
2619 
2620 mas_store_fail:
2621 	vm_area_free(vma);
2622 unacct_fail:
2623 	vm_unacct_memory(len >> PAGE_SHIFT);
2624 	return -ENOMEM;
2625 }
2626 
2627 /**
2628  * unmapped_area() - Find an area between the low_limit and the high_limit with
2629  * the correct alignment and offset, all from @info. Note: current->mm is used
2630  * for the search.
2631  *
2632  * @info: The unmapped area information including the range [low_limit -
2633  * high_limit), the alignment offset and mask.
2634  *
2635  * Return: A memory address or -ENOMEM.
2636  */
2637 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2638 {
2639 	unsigned long length, gap;
2640 	unsigned long low_limit, high_limit;
2641 	struct vm_area_struct *tmp;
2642 	VMA_ITERATOR(vmi, current->mm, 0);
2643 
2644 	/* Adjust search length to account for worst case alignment overhead */
2645 	length = info->length + info->align_mask + info->start_gap;
2646 	if (length < info->length)
2647 		return -ENOMEM;
2648 
2649 	low_limit = info->low_limit;
2650 	if (low_limit < mmap_min_addr)
2651 		low_limit = mmap_min_addr;
2652 	high_limit = info->high_limit;
2653 retry:
2654 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2655 		return -ENOMEM;
2656 
2657 	/*
2658 	 * Adjust for the gap first so it doesn't interfere with the
2659 	 * later alignment. The first step is the minimum needed to
2660 	 * fulill the start gap, the next steps is the minimum to align
2661 	 * that. It is the minimum needed to fulill both.
2662 	 */
2663 	gap = vma_iter_addr(&vmi) + info->start_gap;
2664 	gap += (info->align_offset - gap) & info->align_mask;
2665 	tmp = vma_next(&vmi);
2666 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2667 		if (vm_start_gap(tmp) < gap + length - 1) {
2668 			low_limit = tmp->vm_end;
2669 			vma_iter_reset(&vmi);
2670 			goto retry;
2671 		}
2672 	} else {
2673 		tmp = vma_prev(&vmi);
2674 		if (tmp && vm_end_gap(tmp) > gap) {
2675 			low_limit = vm_end_gap(tmp);
2676 			vma_iter_reset(&vmi);
2677 			goto retry;
2678 		}
2679 	}
2680 
2681 	return gap;
2682 }
2683 
2684 /**
2685  * unmapped_area_topdown() - Find an area between the low_limit and the
2686  * high_limit with the correct alignment and offset at the highest available
2687  * address, all from @info. Note: current->mm is used for the search.
2688  *
2689  * @info: The unmapped area information including the range [low_limit -
2690  * high_limit), the alignment offset and mask.
2691  *
2692  * Return: A memory address or -ENOMEM.
2693  */
2694 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2695 {
2696 	unsigned long length, gap, gap_end;
2697 	unsigned long low_limit, high_limit;
2698 	struct vm_area_struct *tmp;
2699 	VMA_ITERATOR(vmi, current->mm, 0);
2700 
2701 	/* Adjust search length to account for worst case alignment overhead */
2702 	length = info->length + info->align_mask + info->start_gap;
2703 	if (length < info->length)
2704 		return -ENOMEM;
2705 
2706 	low_limit = info->low_limit;
2707 	if (low_limit < mmap_min_addr)
2708 		low_limit = mmap_min_addr;
2709 	high_limit = info->high_limit;
2710 retry:
2711 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
2712 		return -ENOMEM;
2713 
2714 	gap = vma_iter_end(&vmi) - info->length;
2715 	gap -= (gap - info->align_offset) & info->align_mask;
2716 	gap_end = vma_iter_end(&vmi);
2717 	tmp = vma_next(&vmi);
2718 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2719 		if (vm_start_gap(tmp) < gap_end) {
2720 			high_limit = vm_start_gap(tmp);
2721 			vma_iter_reset(&vmi);
2722 			goto retry;
2723 		}
2724 	} else {
2725 		tmp = vma_prev(&vmi);
2726 		if (tmp && vm_end_gap(tmp) > gap) {
2727 			high_limit = tmp->vm_start;
2728 			vma_iter_reset(&vmi);
2729 			goto retry;
2730 		}
2731 	}
2732 
2733 	return gap;
2734 }
2735 
2736 /*
2737  * Verify that the stack growth is acceptable and
2738  * update accounting. This is shared with both the
2739  * grow-up and grow-down cases.
2740  */
2741 static int acct_stack_growth(struct vm_area_struct *vma,
2742 			     unsigned long size, unsigned long grow)
2743 {
2744 	struct mm_struct *mm = vma->vm_mm;
2745 	unsigned long new_start;
2746 
2747 	/* address space limit tests */
2748 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2749 		return -ENOMEM;
2750 
2751 	/* Stack limit test */
2752 	if (size > rlimit(RLIMIT_STACK))
2753 		return -ENOMEM;
2754 
2755 	/* mlock limit tests */
2756 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2757 		return -ENOMEM;
2758 
2759 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2760 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2761 			vma->vm_end - size;
2762 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2763 		return -EFAULT;
2764 
2765 	/*
2766 	 * Overcommit..  This must be the final test, as it will
2767 	 * update security statistics.
2768 	 */
2769 	if (security_vm_enough_memory_mm(mm, grow))
2770 		return -ENOMEM;
2771 
2772 	return 0;
2773 }
2774 
2775 #if defined(CONFIG_STACK_GROWSUP)
2776 /*
2777  * PA-RISC uses this for its stack.
2778  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2779  */
2780 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2781 {
2782 	struct mm_struct *mm = vma->vm_mm;
2783 	struct vm_area_struct *next;
2784 	unsigned long gap_addr;
2785 	int error = 0;
2786 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2787 
2788 	if (!(vma->vm_flags & VM_GROWSUP))
2789 		return -EFAULT;
2790 
2791 	mmap_assert_write_locked(mm);
2792 
2793 	/* Guard against exceeding limits of the address space. */
2794 	address &= PAGE_MASK;
2795 	if (address >= (TASK_SIZE & PAGE_MASK))
2796 		return -ENOMEM;
2797 	address += PAGE_SIZE;
2798 
2799 	/* Enforce stack_guard_gap */
2800 	gap_addr = address + stack_guard_gap;
2801 
2802 	/* Guard against overflow */
2803 	if (gap_addr < address || gap_addr > TASK_SIZE)
2804 		gap_addr = TASK_SIZE;
2805 
2806 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2807 	if (next && vma_is_accessible(next)) {
2808 		if (!(next->vm_flags & VM_GROWSUP))
2809 			return -ENOMEM;
2810 		/* Check that both stack segments have the same anon_vma? */
2811 	}
2812 
2813 	if (next)
2814 		vma_iter_prev_range_limit(&vmi, address);
2815 
2816 	vma_iter_config(&vmi, vma->vm_start, address);
2817 	if (vma_iter_prealloc(&vmi, vma))
2818 		return -ENOMEM;
2819 
2820 	/* We must make sure the anon_vma is allocated. */
2821 	if (unlikely(anon_vma_prepare(vma))) {
2822 		vma_iter_free(&vmi);
2823 		return -ENOMEM;
2824 	}
2825 
2826 	/* Lock the VMA before expanding to prevent concurrent page faults */
2827 	vma_start_write(vma);
2828 	/* We update the anon VMA tree. */
2829 	anon_vma_lock_write(vma->anon_vma);
2830 
2831 	/* Somebody else might have raced and expanded it already */
2832 	if (address > vma->vm_end) {
2833 		unsigned long size, grow;
2834 
2835 		size = address - vma->vm_start;
2836 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2837 
2838 		error = -ENOMEM;
2839 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2840 			error = acct_stack_growth(vma, size, grow);
2841 			if (!error) {
2842 				if (vma->vm_flags & VM_LOCKED)
2843 					mm->locked_vm += grow;
2844 				vm_stat_account(mm, vma->vm_flags, grow);
2845 				anon_vma_interval_tree_pre_update_vma(vma);
2846 				vma->vm_end = address;
2847 				/* Overwrite old entry in mtree. */
2848 				vma_iter_store(&vmi, vma);
2849 				anon_vma_interval_tree_post_update_vma(vma);
2850 
2851 				perf_event_mmap(vma);
2852 			}
2853 		}
2854 	}
2855 	anon_vma_unlock_write(vma->anon_vma);
2856 	vma_iter_free(&vmi);
2857 	validate_mm(mm);
2858 	return error;
2859 }
2860 #endif /* CONFIG_STACK_GROWSUP */
2861 
2862 /*
2863  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2864  * mmap_lock held for writing.
2865  */
2866 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2867 {
2868 	struct mm_struct *mm = vma->vm_mm;
2869 	struct vm_area_struct *prev;
2870 	int error = 0;
2871 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2872 
2873 	if (!(vma->vm_flags & VM_GROWSDOWN))
2874 		return -EFAULT;
2875 
2876 	mmap_assert_write_locked(mm);
2877 
2878 	address &= PAGE_MASK;
2879 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2880 		return -EPERM;
2881 
2882 	/* Enforce stack_guard_gap */
2883 	prev = vma_prev(&vmi);
2884 	/* Check that both stack segments have the same anon_vma? */
2885 	if (prev) {
2886 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2887 		    vma_is_accessible(prev) &&
2888 		    (address - prev->vm_end < stack_guard_gap))
2889 			return -ENOMEM;
2890 	}
2891 
2892 	if (prev)
2893 		vma_iter_next_range_limit(&vmi, vma->vm_start);
2894 
2895 	vma_iter_config(&vmi, address, vma->vm_end);
2896 	if (vma_iter_prealloc(&vmi, vma))
2897 		return -ENOMEM;
2898 
2899 	/* We must make sure the anon_vma is allocated. */
2900 	if (unlikely(anon_vma_prepare(vma))) {
2901 		vma_iter_free(&vmi);
2902 		return -ENOMEM;
2903 	}
2904 
2905 	/* Lock the VMA before expanding to prevent concurrent page faults */
2906 	vma_start_write(vma);
2907 	/* We update the anon VMA tree. */
2908 	anon_vma_lock_write(vma->anon_vma);
2909 
2910 	/* Somebody else might have raced and expanded it already */
2911 	if (address < vma->vm_start) {
2912 		unsigned long size, grow;
2913 
2914 		size = vma->vm_end - address;
2915 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2916 
2917 		error = -ENOMEM;
2918 		if (grow <= vma->vm_pgoff) {
2919 			error = acct_stack_growth(vma, size, grow);
2920 			if (!error) {
2921 				if (vma->vm_flags & VM_LOCKED)
2922 					mm->locked_vm += grow;
2923 				vm_stat_account(mm, vma->vm_flags, grow);
2924 				anon_vma_interval_tree_pre_update_vma(vma);
2925 				vma->vm_start = address;
2926 				vma->vm_pgoff -= grow;
2927 				/* Overwrite old entry in mtree. */
2928 				vma_iter_store(&vmi, vma);
2929 				anon_vma_interval_tree_post_update_vma(vma);
2930 
2931 				perf_event_mmap(vma);
2932 			}
2933 		}
2934 	}
2935 	anon_vma_unlock_write(vma->anon_vma);
2936 	vma_iter_free(&vmi);
2937 	validate_mm(mm);
2938 	return error;
2939 }
2940 
2941 int __vm_munmap(unsigned long start, size_t len, bool unlock)
2942 {
2943 	int ret;
2944 	struct mm_struct *mm = current->mm;
2945 	LIST_HEAD(uf);
2946 	VMA_ITERATOR(vmi, mm, start);
2947 
2948 	if (mmap_write_lock_killable(mm))
2949 		return -EINTR;
2950 
2951 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2952 	if (ret || !unlock)
2953 		mmap_write_unlock(mm);
2954 
2955 	userfaultfd_unmap_complete(mm, &uf);
2956 	return ret;
2957 }
2958