1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 21 unsigned long charged; 22 bool retry_merge; 23 24 struct vm_area_struct *prev; 25 struct vm_area_struct *next; 26 27 /* Unmapping state. */ 28 struct vma_munmap_struct vms; 29 struct ma_state mas_detach; 30 struct maple_tree mt_detach; 31 }; 32 33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 34 struct mmap_state name = { \ 35 .mm = mm_, \ 36 .vmi = vmi_, \ 37 .addr = addr_, \ 38 .end = (addr_) + (len_), \ 39 .pgoff = pgoff_, \ 40 .pglen = PHYS_PFN(len_), \ 41 .flags = flags_, \ 42 .file = file_, \ 43 } 44 45 #define VMG_MMAP_STATE(name, map_, vma_) \ 46 struct vma_merge_struct name = { \ 47 .mm = (map_)->mm, \ 48 .vmi = (map_)->vmi, \ 49 .start = (map_)->addr, \ 50 .end = (map_)->end, \ 51 .flags = (map_)->flags, \ 52 .pgoff = (map_)->pgoff, \ 53 .file = (map_)->file, \ 54 .prev = (map_)->prev, \ 55 .middle = vma_, \ 56 .next = (vma_) ? NULL : (map_)->next, \ 57 .state = VMA_MERGE_START, \ 58 } 59 60 /* 61 * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain 62 * more than one anon_vma_chain connecting it to more than one anon_vma. A merge 63 * would mean a wider range of folios sharing the root anon_vma lock, and thus 64 * potential lock contention, we do not wish to encourage merging such that this 65 * scales to a problem. 66 */ 67 static bool vma_had_uncowed_parents(struct vm_area_struct *vma) 68 { 69 /* 70 * The list_is_singular() test is to avoid merging VMA cloned from 71 * parents. This can improve scalability caused by anon_vma lock. 72 */ 73 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain); 74 } 75 76 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 77 { 78 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 79 80 if (!mpol_equal(vmg->policy, vma_policy(vma))) 81 return false; 82 /* 83 * VM_SOFTDIRTY should not prevent from VMA merging, if we 84 * match the flags but dirty bit -- the caller should mark 85 * merged VMA as dirty. If dirty bit won't be excluded from 86 * comparison, we increase pressure on the memory system forcing 87 * the kernel to generate new VMAs when old one could be 88 * extended instead. 89 */ 90 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 91 return false; 92 if (vma->vm_file != vmg->file) 93 return false; 94 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 95 return false; 96 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 97 return false; 98 return true; 99 } 100 101 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) 102 { 103 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; 104 struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */ 105 struct anon_vma *tgt_anon = tgt->anon_vma; 106 struct anon_vma *src_anon = vmg->anon_vma; 107 108 /* 109 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we 110 * will remove the existing VMA's anon_vma's so there's no scalability 111 * concerns. 112 */ 113 VM_WARN_ON(src && src_anon != src->anon_vma); 114 115 /* Case 1 - we will dup_anon_vma() from src into tgt. */ 116 if (!tgt_anon && src_anon) 117 return !vma_had_uncowed_parents(src); 118 /* Case 2 - we will simply use tgt's anon_vma. */ 119 if (tgt_anon && !src_anon) 120 return !vma_had_uncowed_parents(tgt); 121 /* Case 3 - the anon_vma's are already shared. */ 122 return src_anon == tgt_anon; 123 } 124 125 /* 126 * init_multi_vma_prep() - Initializer for struct vma_prepare 127 * @vp: The vma_prepare struct 128 * @vma: The vma that will be altered once locked 129 * @vmg: The merge state that will be used to determine adjustment and VMA 130 * removal. 131 */ 132 static void init_multi_vma_prep(struct vma_prepare *vp, 133 struct vm_area_struct *vma, 134 struct vma_merge_struct *vmg) 135 { 136 struct vm_area_struct *adjust; 137 struct vm_area_struct **remove = &vp->remove; 138 139 memset(vp, 0, sizeof(struct vma_prepare)); 140 vp->vma = vma; 141 vp->anon_vma = vma->anon_vma; 142 143 if (vmg && vmg->__remove_middle) { 144 *remove = vmg->middle; 145 remove = &vp->remove2; 146 } 147 if (vmg && vmg->__remove_next) 148 *remove = vmg->next; 149 150 if (vmg && vmg->__adjust_middle_start) 151 adjust = vmg->middle; 152 else if (vmg && vmg->__adjust_next_start) 153 adjust = vmg->next; 154 else 155 adjust = NULL; 156 157 vp->adj_next = adjust; 158 if (!vp->anon_vma && adjust) 159 vp->anon_vma = adjust->anon_vma; 160 161 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 162 vp->anon_vma != adjust->anon_vma); 163 164 vp->file = vma->vm_file; 165 if (vp->file) 166 vp->mapping = vma->vm_file->f_mapping; 167 } 168 169 /* 170 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 171 * in front of (at a lower virtual address and file offset than) the vma. 172 * 173 * We cannot merge two vmas if they have differently assigned (non-NULL) 174 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 175 * 176 * We don't check here for the merged mmap wrapping around the end of pagecache 177 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 178 * wrap, nor mmaps which cover the final page at index -1UL. 179 * 180 * We assume the vma may be removed as part of the merge. 181 */ 182 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 183 { 184 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 185 186 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 187 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { 188 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 189 return true; 190 } 191 192 return false; 193 } 194 195 /* 196 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 197 * beyond (at a higher virtual address and file offset than) the vma. 198 * 199 * We cannot merge two vmas if they have differently assigned (non-NULL) 200 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 201 * 202 * We assume that vma is not removed as part of the merge. 203 */ 204 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 205 { 206 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 207 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { 208 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 209 return true; 210 } 211 return false; 212 } 213 214 static void __vma_link_file(struct vm_area_struct *vma, 215 struct address_space *mapping) 216 { 217 if (vma_is_shared_maywrite(vma)) 218 mapping_allow_writable(mapping); 219 220 flush_dcache_mmap_lock(mapping); 221 vma_interval_tree_insert(vma, &mapping->i_mmap); 222 flush_dcache_mmap_unlock(mapping); 223 } 224 225 /* 226 * Requires inode->i_mapping->i_mmap_rwsem 227 */ 228 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 229 struct address_space *mapping) 230 { 231 if (vma_is_shared_maywrite(vma)) 232 mapping_unmap_writable(mapping); 233 234 flush_dcache_mmap_lock(mapping); 235 vma_interval_tree_remove(vma, &mapping->i_mmap); 236 flush_dcache_mmap_unlock(mapping); 237 } 238 239 /* 240 * vma has some anon_vma assigned, and is already inserted on that 241 * anon_vma's interval trees. 242 * 243 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 244 * vma must be removed from the anon_vma's interval trees using 245 * anon_vma_interval_tree_pre_update_vma(). 246 * 247 * After the update, the vma will be reinserted using 248 * anon_vma_interval_tree_post_update_vma(). 249 * 250 * The entire update must be protected by exclusive mmap_lock and by 251 * the root anon_vma's mutex. 252 */ 253 static void 254 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 255 { 256 struct anon_vma_chain *avc; 257 258 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 259 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 260 } 261 262 static void 263 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 264 { 265 struct anon_vma_chain *avc; 266 267 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 268 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 269 } 270 271 /* 272 * vma_prepare() - Helper function for handling locking VMAs prior to altering 273 * @vp: The initialized vma_prepare struct 274 */ 275 static void vma_prepare(struct vma_prepare *vp) 276 { 277 if (vp->file) { 278 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 279 280 if (vp->adj_next) 281 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 282 vp->adj_next->vm_end); 283 284 i_mmap_lock_write(vp->mapping); 285 if (vp->insert && vp->insert->vm_file) { 286 /* 287 * Put into interval tree now, so instantiated pages 288 * are visible to arm/parisc __flush_dcache_page 289 * throughout; but we cannot insert into address 290 * space until vma start or end is updated. 291 */ 292 __vma_link_file(vp->insert, 293 vp->insert->vm_file->f_mapping); 294 } 295 } 296 297 if (vp->anon_vma) { 298 anon_vma_lock_write(vp->anon_vma); 299 anon_vma_interval_tree_pre_update_vma(vp->vma); 300 if (vp->adj_next) 301 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 302 } 303 304 if (vp->file) { 305 flush_dcache_mmap_lock(vp->mapping); 306 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 307 if (vp->adj_next) 308 vma_interval_tree_remove(vp->adj_next, 309 &vp->mapping->i_mmap); 310 } 311 312 } 313 314 /* 315 * vma_complete- Helper function for handling the unlocking after altering VMAs, 316 * or for inserting a VMA. 317 * 318 * @vp: The vma_prepare struct 319 * @vmi: The vma iterator 320 * @mm: The mm_struct 321 */ 322 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 323 struct mm_struct *mm) 324 { 325 if (vp->file) { 326 if (vp->adj_next) 327 vma_interval_tree_insert(vp->adj_next, 328 &vp->mapping->i_mmap); 329 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 330 flush_dcache_mmap_unlock(vp->mapping); 331 } 332 333 if (vp->remove && vp->file) { 334 __remove_shared_vm_struct(vp->remove, vp->mapping); 335 if (vp->remove2) 336 __remove_shared_vm_struct(vp->remove2, vp->mapping); 337 } else if (vp->insert) { 338 /* 339 * split_vma has split insert from vma, and needs 340 * us to insert it before dropping the locks 341 * (it may either follow vma or precede it). 342 */ 343 vma_iter_store_new(vmi, vp->insert); 344 mm->map_count++; 345 } 346 347 if (vp->anon_vma) { 348 anon_vma_interval_tree_post_update_vma(vp->vma); 349 if (vp->adj_next) 350 anon_vma_interval_tree_post_update_vma(vp->adj_next); 351 anon_vma_unlock_write(vp->anon_vma); 352 } 353 354 if (vp->file) { 355 i_mmap_unlock_write(vp->mapping); 356 uprobe_mmap(vp->vma); 357 358 if (vp->adj_next) 359 uprobe_mmap(vp->adj_next); 360 } 361 362 if (vp->remove) { 363 again: 364 vma_mark_detached(vp->remove); 365 if (vp->file) { 366 uprobe_munmap(vp->remove, vp->remove->vm_start, 367 vp->remove->vm_end); 368 fput(vp->file); 369 } 370 if (vp->remove->anon_vma) 371 anon_vma_merge(vp->vma, vp->remove); 372 mm->map_count--; 373 mpol_put(vma_policy(vp->remove)); 374 if (!vp->remove2) 375 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 376 vm_area_free(vp->remove); 377 378 /* 379 * In mprotect's case 6 (see comments on vma_merge), 380 * we are removing both mid and next vmas 381 */ 382 if (vp->remove2) { 383 vp->remove = vp->remove2; 384 vp->remove2 = NULL; 385 goto again; 386 } 387 } 388 if (vp->insert && vp->file) 389 uprobe_mmap(vp->insert); 390 } 391 392 /* 393 * init_vma_prep() - Initializer wrapper for vma_prepare struct 394 * @vp: The vma_prepare struct 395 * @vma: The vma that will be altered once locked 396 */ 397 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 398 { 399 init_multi_vma_prep(vp, vma, NULL); 400 } 401 402 /* 403 * Can the proposed VMA be merged with the left (previous) VMA taking into 404 * account the start position of the proposed range. 405 */ 406 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 407 408 { 409 return vmg->prev && vmg->prev->vm_end == vmg->start && 410 can_vma_merge_after(vmg); 411 } 412 413 /* 414 * Can the proposed VMA be merged with the right (next) VMA taking into 415 * account the end position of the proposed range. 416 * 417 * In addition, if we can merge with the left VMA, ensure that left and right 418 * anon_vma's are also compatible. 419 */ 420 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 421 bool can_merge_left) 422 { 423 struct vm_area_struct *next = vmg->next; 424 struct vm_area_struct *prev; 425 426 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) 427 return false; 428 429 if (!can_merge_left) 430 return true; 431 432 /* 433 * If we can merge with prev (left) and next (right), indicating that 434 * each VMA's anon_vma is compatible with the proposed anon_vma, this 435 * does not mean prev and next are compatible with EACH OTHER. 436 * 437 * We therefore check this in addition to mergeability to either side. 438 */ 439 prev = vmg->prev; 440 return !prev->anon_vma || !next->anon_vma || 441 prev->anon_vma == next->anon_vma; 442 } 443 444 /* 445 * Close a vm structure and free it. 446 */ 447 void remove_vma(struct vm_area_struct *vma) 448 { 449 might_sleep(); 450 vma_close(vma); 451 if (vma->vm_file) 452 fput(vma->vm_file); 453 mpol_put(vma_policy(vma)); 454 vm_area_free(vma); 455 } 456 457 /* 458 * Get rid of page table information in the indicated region. 459 * 460 * Called with the mm semaphore held. 461 */ 462 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 463 struct vm_area_struct *prev, struct vm_area_struct *next) 464 { 465 struct mm_struct *mm = vma->vm_mm; 466 struct mmu_gather tlb; 467 468 tlb_gather_mmu(&tlb, mm); 469 update_hiwater_rss(mm); 470 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 471 /* mm_wr_locked = */ true); 472 mas_set(mas, vma->vm_end); 473 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 474 next ? next->vm_start : USER_PGTABLES_CEILING, 475 /* mm_wr_locked = */ true); 476 tlb_finish_mmu(&tlb); 477 } 478 479 /* 480 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 481 * has already been checked or doesn't make sense to fail. 482 * VMA Iterator will point to the original VMA. 483 */ 484 static __must_check int 485 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 486 unsigned long addr, int new_below) 487 { 488 struct vma_prepare vp; 489 struct vm_area_struct *new; 490 int err; 491 492 WARN_ON(vma->vm_start >= addr); 493 WARN_ON(vma->vm_end <= addr); 494 495 if (vma->vm_ops && vma->vm_ops->may_split) { 496 err = vma->vm_ops->may_split(vma, addr); 497 if (err) 498 return err; 499 } 500 501 new = vm_area_dup(vma); 502 if (!new) 503 return -ENOMEM; 504 505 if (new_below) { 506 new->vm_end = addr; 507 } else { 508 new->vm_start = addr; 509 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 510 } 511 512 err = -ENOMEM; 513 vma_iter_config(vmi, new->vm_start, new->vm_end); 514 if (vma_iter_prealloc(vmi, new)) 515 goto out_free_vma; 516 517 err = vma_dup_policy(vma, new); 518 if (err) 519 goto out_free_vmi; 520 521 err = anon_vma_clone(new, vma); 522 if (err) 523 goto out_free_mpol; 524 525 if (new->vm_file) 526 get_file(new->vm_file); 527 528 if (new->vm_ops && new->vm_ops->open) 529 new->vm_ops->open(new); 530 531 vma_start_write(vma); 532 vma_start_write(new); 533 534 init_vma_prep(&vp, vma); 535 vp.insert = new; 536 vma_prepare(&vp); 537 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 538 539 if (new_below) { 540 vma->vm_start = addr; 541 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 542 } else { 543 vma->vm_end = addr; 544 } 545 546 /* vma_complete stores the new vma */ 547 vma_complete(&vp, vmi, vma->vm_mm); 548 validate_mm(vma->vm_mm); 549 550 /* Success. */ 551 if (new_below) 552 vma_next(vmi); 553 else 554 vma_prev(vmi); 555 556 return 0; 557 558 out_free_mpol: 559 mpol_put(vma_policy(new)); 560 out_free_vmi: 561 vma_iter_free(vmi); 562 out_free_vma: 563 vm_area_free(new); 564 return err; 565 } 566 567 /* 568 * Split a vma into two pieces at address 'addr', a new vma is allocated 569 * either for the first part or the tail. 570 */ 571 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 572 unsigned long addr, int new_below) 573 { 574 if (vma->vm_mm->map_count >= sysctl_max_map_count) 575 return -ENOMEM; 576 577 return __split_vma(vmi, vma, addr, new_below); 578 } 579 580 /* 581 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the 582 * instance that the destination VMA has no anon_vma but the source does. 583 * 584 * @dst: The destination VMA 585 * @src: The source VMA 586 * @dup: Pointer to the destination VMA when successful. 587 * 588 * Returns: 0 on success. 589 */ 590 static int dup_anon_vma(struct vm_area_struct *dst, 591 struct vm_area_struct *src, struct vm_area_struct **dup) 592 { 593 /* 594 * There are three cases to consider for correctly propagating 595 * anon_vma's on merge. 596 * 597 * The first is trivial - neither VMA has anon_vma, we need not do 598 * anything. 599 * 600 * The second where both have anon_vma is also a no-op, as they must 601 * then be the same, so there is simply nothing to copy. 602 * 603 * Here we cover the third - if the destination VMA has no anon_vma, 604 * that is it is unfaulted, we need to ensure that the newly merged 605 * range is referenced by the anon_vma's of the source. 606 */ 607 if (src->anon_vma && !dst->anon_vma) { 608 int ret; 609 610 vma_assert_write_locked(dst); 611 dst->anon_vma = src->anon_vma; 612 ret = anon_vma_clone(dst, src); 613 if (ret) 614 return ret; 615 616 *dup = dst; 617 } 618 619 return 0; 620 } 621 622 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 623 void validate_mm(struct mm_struct *mm) 624 { 625 int bug = 0; 626 int i = 0; 627 struct vm_area_struct *vma; 628 VMA_ITERATOR(vmi, mm, 0); 629 630 mt_validate(&mm->mm_mt); 631 for_each_vma(vmi, vma) { 632 #ifdef CONFIG_DEBUG_VM_RB 633 struct anon_vma *anon_vma = vma->anon_vma; 634 struct anon_vma_chain *avc; 635 #endif 636 unsigned long vmi_start, vmi_end; 637 bool warn = 0; 638 639 vmi_start = vma_iter_addr(&vmi); 640 vmi_end = vma_iter_end(&vmi); 641 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 642 warn = 1; 643 644 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 645 warn = 1; 646 647 if (warn) { 648 pr_emerg("issue in %s\n", current->comm); 649 dump_stack(); 650 dump_vma(vma); 651 pr_emerg("tree range: %px start %lx end %lx\n", vma, 652 vmi_start, vmi_end - 1); 653 vma_iter_dump_tree(&vmi); 654 } 655 656 #ifdef CONFIG_DEBUG_VM_RB 657 if (anon_vma) { 658 anon_vma_lock_read(anon_vma); 659 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 660 anon_vma_interval_tree_verify(avc); 661 anon_vma_unlock_read(anon_vma); 662 } 663 #endif 664 /* Check for a infinite loop */ 665 if (++i > mm->map_count + 10) { 666 i = -1; 667 break; 668 } 669 } 670 if (i != mm->map_count) { 671 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 672 bug = 1; 673 } 674 VM_BUG_ON_MM(bug, mm); 675 } 676 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 677 678 /* 679 * Based on the vmg flag indicating whether we need to adjust the vm_start field 680 * for the middle or next VMA, we calculate what the range of the newly adjusted 681 * VMA ought to be, and set the VMA's range accordingly. 682 */ 683 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 684 { 685 struct vm_area_struct *adjust; 686 pgoff_t pgoff; 687 688 if (vmg->__adjust_middle_start) { 689 adjust = vmg->middle; 690 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 691 } else if (vmg->__adjust_next_start) { 692 adjust = vmg->next; 693 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 694 } else { 695 return; 696 } 697 698 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 699 } 700 701 /* 702 * Actually perform the VMA merge operation. 703 * 704 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not 705 * modify any VMAs or cause inconsistent state should an OOM condition arise. 706 * 707 * Returns 0 on success, or an error value on failure. 708 */ 709 static int commit_merge(struct vma_merge_struct *vmg) 710 { 711 struct vm_area_struct *vma; 712 struct vma_prepare vp; 713 714 if (vmg->__adjust_next_start) { 715 /* We manipulate middle and adjust next, which is the target. */ 716 vma = vmg->middle; 717 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 718 } else { 719 vma = vmg->target; 720 /* Note: vma iterator must be pointing to 'start'. */ 721 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 722 } 723 724 init_multi_vma_prep(&vp, vma, vmg); 725 726 /* 727 * If vmg->give_up_on_oom is set, we're safe, because we don't actually 728 * manipulate any VMAs until we succeed at preallocation. 729 * 730 * Past this point, we will not return an error. 731 */ 732 if (vma_iter_prealloc(vmg->vmi, vma)) 733 return -ENOMEM; 734 735 vma_prepare(&vp); 736 /* 737 * THP pages may need to do additional splits if we increase 738 * middle->vm_start. 739 */ 740 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 741 vmg->__adjust_middle_start ? vmg->middle : NULL); 742 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 743 vmg_adjust_set_range(vmg); 744 vma_iter_store_overwrite(vmg->vmi, vmg->target); 745 746 vma_complete(&vp, vmg->vmi, vma->vm_mm); 747 748 return 0; 749 } 750 751 /* We can only remove VMAs when merging if they do not have a close hook. */ 752 static bool can_merge_remove_vma(struct vm_area_struct *vma) 753 { 754 return !vma->vm_ops || !vma->vm_ops->close; 755 } 756 757 /* 758 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 759 * attributes modified. 760 * 761 * @vmg: Describes the modifications being made to a VMA and associated 762 * metadata. 763 * 764 * When the attributes of a range within a VMA change, then it might be possible 765 * for immediately adjacent VMAs to be merged into that VMA due to having 766 * identical properties. 767 * 768 * This function checks for the existence of any such mergeable VMAs and updates 769 * the maple tree describing the @vmg->middle->vm_mm address space to account 770 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 771 * merge. 772 * 773 * As part of this operation, if a merge occurs, the @vmg object will have its 774 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 775 * calls to this function should reset these fields. 776 * 777 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 778 * 779 * ASSUMPTIONS: 780 * - The caller must assign the VMA to be modifed to @vmg->middle. 781 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 782 * - The caller must not set @vmg->next, as we determine this. 783 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 784 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 785 */ 786 static __must_check struct vm_area_struct *vma_merge_existing_range( 787 struct vma_merge_struct *vmg) 788 { 789 struct vm_area_struct *middle = vmg->middle; 790 struct vm_area_struct *prev = vmg->prev; 791 struct vm_area_struct *next; 792 struct vm_area_struct *anon_dup = NULL; 793 unsigned long start = vmg->start; 794 unsigned long end = vmg->end; 795 bool left_side = middle && start == middle->vm_start; 796 bool right_side = middle && end == middle->vm_end; 797 int err = 0; 798 bool merge_left, merge_right, merge_both; 799 800 mmap_assert_write_locked(vmg->mm); 801 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 802 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 803 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 804 VM_WARN_ON_VMG(start >= end, vmg); 805 806 /* 807 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 808 * not, we must span a portion of the VMA. 809 */ 810 VM_WARN_ON_VMG(middle && 811 ((middle != prev && vmg->start != middle->vm_start) || 812 vmg->end > middle->vm_end), vmg); 813 /* The vmi must be positioned within vmg->middle. */ 814 VM_WARN_ON_VMG(middle && 815 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 816 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 817 818 vmg->state = VMA_MERGE_NOMERGE; 819 820 /* 821 * If a special mapping or if the range being modified is neither at the 822 * furthermost left or right side of the VMA, then we have no chance of 823 * merging and should abort. 824 */ 825 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 826 return NULL; 827 828 if (left_side) 829 merge_left = can_vma_merge_left(vmg); 830 else 831 merge_left = false; 832 833 if (right_side) { 834 next = vmg->next = vma_iter_next_range(vmg->vmi); 835 vma_iter_prev_range(vmg->vmi); 836 837 merge_right = can_vma_merge_right(vmg, merge_left); 838 } else { 839 merge_right = false; 840 next = NULL; 841 } 842 843 if (merge_left) /* If merging prev, position iterator there. */ 844 vma_prev(vmg->vmi); 845 else if (!merge_right) /* If we have nothing to merge, abort. */ 846 return NULL; 847 848 merge_both = merge_left && merge_right; 849 /* If we span the entire VMA, a merge implies it will be deleted. */ 850 vmg->__remove_middle = left_side && right_side; 851 852 /* 853 * If we need to remove middle in its entirety but are unable to do so, 854 * we have no sensible recourse but to abort the merge. 855 */ 856 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 857 return NULL; 858 859 /* 860 * If we merge both VMAs, then next is also deleted. This implies 861 * merge_will_delete_vma also. 862 */ 863 vmg->__remove_next = merge_both; 864 865 /* 866 * If we cannot delete next, then we can reduce the operation to merging 867 * prev and middle (thereby deleting middle). 868 */ 869 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 870 vmg->__remove_next = false; 871 merge_right = false; 872 merge_both = false; 873 } 874 875 /* No matter what happens, we will be adjusting middle. */ 876 vma_start_write(middle); 877 878 if (merge_right) { 879 vma_start_write(next); 880 vmg->target = next; 881 } 882 883 if (merge_left) { 884 vma_start_write(prev); 885 vmg->target = prev; 886 } 887 888 if (merge_both) { 889 /* 890 * |<-------------------->| 891 * |-------********-------| 892 * prev middle next 893 * extend delete delete 894 */ 895 896 vmg->start = prev->vm_start; 897 vmg->end = next->vm_end; 898 vmg->pgoff = prev->vm_pgoff; 899 900 /* 901 * We already ensured anon_vma compatibility above, so now it's 902 * simply a case of, if prev has no anon_vma object, which of 903 * next or middle contains the anon_vma we must duplicate. 904 */ 905 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 906 &anon_dup); 907 } else if (merge_left) { 908 /* 909 * |<------------>| OR 910 * |<----------------->| 911 * |-------************* 912 * prev middle 913 * extend shrink/delete 914 */ 915 916 vmg->start = prev->vm_start; 917 vmg->pgoff = prev->vm_pgoff; 918 919 if (!vmg->__remove_middle) 920 vmg->__adjust_middle_start = true; 921 922 err = dup_anon_vma(prev, middle, &anon_dup); 923 } else { /* merge_right */ 924 /* 925 * |<------------->| OR 926 * |<----------------->| 927 * *************-------| 928 * middle next 929 * shrink/delete extend 930 */ 931 932 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 933 934 VM_WARN_ON_VMG(!merge_right, vmg); 935 /* If we are offset into a VMA, then prev must be middle. */ 936 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 937 938 if (vmg->__remove_middle) { 939 vmg->end = next->vm_end; 940 vmg->pgoff = next->vm_pgoff - pglen; 941 } else { 942 /* We shrink middle and expand next. */ 943 vmg->__adjust_next_start = true; 944 vmg->start = middle->vm_start; 945 vmg->end = start; 946 vmg->pgoff = middle->vm_pgoff; 947 } 948 949 err = dup_anon_vma(next, middle, &anon_dup); 950 } 951 952 if (err) 953 goto abort; 954 955 err = commit_merge(vmg); 956 if (err) { 957 VM_WARN_ON(err != -ENOMEM); 958 959 if (anon_dup) 960 unlink_anon_vmas(anon_dup); 961 962 /* 963 * We've cleaned up any cloned anon_vma's, no VMAs have been 964 * modified, no harm no foul if the user requests that we not 965 * report this and just give up, leaving the VMAs unmerged. 966 */ 967 if (!vmg->give_up_on_oom) 968 vmg->state = VMA_MERGE_ERROR_NOMEM; 969 return NULL; 970 } 971 972 khugepaged_enter_vma(vmg->target, vmg->flags); 973 vmg->state = VMA_MERGE_SUCCESS; 974 return vmg->target; 975 976 abort: 977 vma_iter_set(vmg->vmi, start); 978 vma_iter_load(vmg->vmi); 979 980 /* 981 * This means we have failed to clone anon_vma's correctly, but no 982 * actual changes to VMAs have occurred, so no harm no foul - if the 983 * user doesn't want this reported and instead just wants to give up on 984 * the merge, allow it. 985 */ 986 if (!vmg->give_up_on_oom) 987 vmg->state = VMA_MERGE_ERROR_NOMEM; 988 return NULL; 989 } 990 991 /* 992 * vma_merge_new_range - Attempt to merge a new VMA into address space 993 * 994 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 995 * (exclusive), which we try to merge with any adjacent VMAs if possible. 996 * 997 * We are about to add a VMA to the address space starting at @vmg->start and 998 * ending at @vmg->end. There are three different possible scenarios: 999 * 1000 * 1. There is a VMA with identical properties immediately adjacent to the 1001 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 1002 * EXPAND that VMA: 1003 * 1004 * Proposed: |-----| or |-----| 1005 * Existing: |----| |----| 1006 * 1007 * 2. There are VMAs with identical properties immediately adjacent to the 1008 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 1009 * EXPAND the former and REMOVE the latter: 1010 * 1011 * Proposed: |-----| 1012 * Existing: |----| |----| 1013 * 1014 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 1015 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 1016 * 1017 * In instances where we can merge, this function returns the expanded VMA which 1018 * will have its range adjusted accordingly and the underlying maple tree also 1019 * adjusted. 1020 * 1021 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1022 * to the VMA we expanded. 1023 * 1024 * This function adjusts @vmg to provide @vmg->next if not already specified, 1025 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 1026 * 1027 * ASSUMPTIONS: 1028 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1029 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 1030 other than VMAs that will be unmapped should the operation succeed. 1031 * - The caller must have specified the previous vma in @vmg->prev. 1032 * - The caller must have specified the next vma in @vmg->next. 1033 * - The caller must have positioned the vmi at or before the gap. 1034 */ 1035 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 1036 { 1037 struct vm_area_struct *prev = vmg->prev; 1038 struct vm_area_struct *next = vmg->next; 1039 unsigned long end = vmg->end; 1040 bool can_merge_left, can_merge_right; 1041 1042 mmap_assert_write_locked(vmg->mm); 1043 VM_WARN_ON_VMG(vmg->middle, vmg); 1044 /* vmi must point at or before the gap. */ 1045 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 1046 1047 vmg->state = VMA_MERGE_NOMERGE; 1048 1049 /* Special VMAs are unmergeable, also if no prev/next. */ 1050 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 1051 return NULL; 1052 1053 can_merge_left = can_vma_merge_left(vmg); 1054 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1055 1056 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1057 if (can_merge_right) { 1058 vmg->end = next->vm_end; 1059 vmg->middle = next; 1060 } 1061 1062 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1063 if (can_merge_left) { 1064 vmg->start = prev->vm_start; 1065 vmg->middle = prev; 1066 vmg->pgoff = prev->vm_pgoff; 1067 1068 /* 1069 * If this merge would result in removal of the next VMA but we 1070 * are not permitted to do so, reduce the operation to merging 1071 * prev and vma. 1072 */ 1073 if (can_merge_right && !can_merge_remove_vma(next)) 1074 vmg->end = end; 1075 1076 /* In expand-only case we are already positioned at prev. */ 1077 if (!vmg->just_expand) { 1078 /* Equivalent to going to the previous range. */ 1079 vma_prev(vmg->vmi); 1080 } 1081 } 1082 1083 /* 1084 * Now try to expand adjacent VMA(s). This takes care of removing the 1085 * following VMA if we have VMAs on both sides. 1086 */ 1087 if (vmg->middle && !vma_expand(vmg)) { 1088 khugepaged_enter_vma(vmg->middle, vmg->flags); 1089 vmg->state = VMA_MERGE_SUCCESS; 1090 return vmg->middle; 1091 } 1092 1093 return NULL; 1094 } 1095 1096 /* 1097 * vma_expand - Expand an existing VMA 1098 * 1099 * @vmg: Describes a VMA expansion operation. 1100 * 1101 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1102 * Will expand over vmg->next if it's different from vmg->middle and vmg->end == 1103 * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with 1104 * vmg->next needs to be handled by the caller. 1105 * 1106 * Returns: 0 on success. 1107 * 1108 * ASSUMPTIONS: 1109 * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. 1110 * - The caller must have set @vmg->middle and @vmg->next. 1111 */ 1112 int vma_expand(struct vma_merge_struct *vmg) 1113 { 1114 struct vm_area_struct *anon_dup = NULL; 1115 bool remove_next = false; 1116 struct vm_area_struct *middle = vmg->middle; 1117 struct vm_area_struct *next = vmg->next; 1118 1119 mmap_assert_write_locked(vmg->mm); 1120 1121 vma_start_write(middle); 1122 if (next && (middle != next) && (vmg->end == next->vm_end)) { 1123 int ret; 1124 1125 remove_next = true; 1126 /* This should already have been checked by this point. */ 1127 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1128 vma_start_write(next); 1129 /* 1130 * In this case we don't report OOM, so vmg->give_up_on_mm is 1131 * safe. 1132 */ 1133 ret = dup_anon_vma(middle, next, &anon_dup); 1134 if (ret) 1135 return ret; 1136 } 1137 1138 /* Not merging but overwriting any part of next is not handled. */ 1139 VM_WARN_ON_VMG(next && !remove_next && 1140 next != middle && vmg->end > next->vm_start, vmg); 1141 /* Only handles expanding */ 1142 VM_WARN_ON_VMG(middle->vm_start < vmg->start || 1143 middle->vm_end > vmg->end, vmg); 1144 1145 vmg->target = middle; 1146 if (remove_next) 1147 vmg->__remove_next = true; 1148 1149 if (commit_merge(vmg)) 1150 goto nomem; 1151 1152 return 0; 1153 1154 nomem: 1155 if (anon_dup) 1156 unlink_anon_vmas(anon_dup); 1157 /* 1158 * If the user requests that we just give upon OOM, we are safe to do so 1159 * here, as commit merge provides this contract to us. Nothing has been 1160 * changed - no harm no foul, just don't report it. 1161 */ 1162 if (!vmg->give_up_on_oom) 1163 vmg->state = VMA_MERGE_ERROR_NOMEM; 1164 return -ENOMEM; 1165 } 1166 1167 /* 1168 * vma_shrink() - Reduce an existing VMAs memory area 1169 * @vmi: The vma iterator 1170 * @vma: The VMA to modify 1171 * @start: The new start 1172 * @end: The new end 1173 * 1174 * Returns: 0 on success, -ENOMEM otherwise 1175 */ 1176 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1177 unsigned long start, unsigned long end, pgoff_t pgoff) 1178 { 1179 struct vma_prepare vp; 1180 1181 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1182 1183 if (vma->vm_start < start) 1184 vma_iter_config(vmi, vma->vm_start, start); 1185 else 1186 vma_iter_config(vmi, end, vma->vm_end); 1187 1188 if (vma_iter_prealloc(vmi, NULL)) 1189 return -ENOMEM; 1190 1191 vma_start_write(vma); 1192 1193 init_vma_prep(&vp, vma); 1194 vma_prepare(&vp); 1195 vma_adjust_trans_huge(vma, start, end, NULL); 1196 1197 vma_iter_clear(vmi); 1198 vma_set_range(vma, start, end, pgoff); 1199 vma_complete(&vp, vmi, vma->vm_mm); 1200 validate_mm(vma->vm_mm); 1201 return 0; 1202 } 1203 1204 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1205 struct ma_state *mas_detach, bool mm_wr_locked) 1206 { 1207 struct mmu_gather tlb; 1208 1209 if (!vms->clear_ptes) /* Nothing to do */ 1210 return; 1211 1212 /* 1213 * We can free page tables without write-locking mmap_lock because VMAs 1214 * were isolated before we downgraded mmap_lock. 1215 */ 1216 mas_set(mas_detach, 1); 1217 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1218 update_hiwater_rss(vms->vma->vm_mm); 1219 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1220 vms->vma_count, mm_wr_locked); 1221 1222 mas_set(mas_detach, 1); 1223 /* start and end may be different if there is no prev or next vma. */ 1224 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1225 vms->unmap_end, mm_wr_locked); 1226 tlb_finish_mmu(&tlb); 1227 vms->clear_ptes = false; 1228 } 1229 1230 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1231 struct ma_state *mas_detach) 1232 { 1233 struct vm_area_struct *vma; 1234 1235 if (!vms->nr_pages) 1236 return; 1237 1238 vms_clear_ptes(vms, mas_detach, true); 1239 mas_set(mas_detach, 0); 1240 mas_for_each(mas_detach, vma, ULONG_MAX) 1241 vma_close(vma); 1242 } 1243 1244 /* 1245 * vms_complete_munmap_vmas() - Finish the munmap() operation 1246 * @vms: The vma munmap struct 1247 * @mas_detach: The maple state of the detached vmas 1248 * 1249 * This updates the mm_struct, unmaps the region, frees the resources 1250 * used for the munmap() and may downgrade the lock - if requested. Everything 1251 * needed to be done once the vma maple tree is updated. 1252 */ 1253 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1254 struct ma_state *mas_detach) 1255 { 1256 struct vm_area_struct *vma; 1257 struct mm_struct *mm; 1258 1259 mm = current->mm; 1260 mm->map_count -= vms->vma_count; 1261 mm->locked_vm -= vms->locked_vm; 1262 if (vms->unlock) 1263 mmap_write_downgrade(mm); 1264 1265 if (!vms->nr_pages) 1266 return; 1267 1268 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1269 /* Update high watermark before we lower total_vm */ 1270 update_hiwater_vm(mm); 1271 /* Stat accounting */ 1272 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1273 /* Paranoid bookkeeping */ 1274 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1275 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1276 VM_WARN_ON(vms->data_vm > mm->data_vm); 1277 mm->exec_vm -= vms->exec_vm; 1278 mm->stack_vm -= vms->stack_vm; 1279 mm->data_vm -= vms->data_vm; 1280 1281 /* Remove and clean up vmas */ 1282 mas_set(mas_detach, 0); 1283 mas_for_each(mas_detach, vma, ULONG_MAX) 1284 remove_vma(vma); 1285 1286 vm_unacct_memory(vms->nr_accounted); 1287 validate_mm(mm); 1288 if (vms->unlock) 1289 mmap_read_unlock(mm); 1290 1291 __mt_destroy(mas_detach->tree); 1292 } 1293 1294 /* 1295 * reattach_vmas() - Undo any munmap work and free resources 1296 * @mas_detach: The maple state with the detached maple tree 1297 * 1298 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1299 */ 1300 static void reattach_vmas(struct ma_state *mas_detach) 1301 { 1302 struct vm_area_struct *vma; 1303 1304 mas_set(mas_detach, 0); 1305 mas_for_each(mas_detach, vma, ULONG_MAX) 1306 vma_mark_attached(vma); 1307 1308 __mt_destroy(mas_detach->tree); 1309 } 1310 1311 /* 1312 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1313 * for removal at a later date. Handles splitting first and last if necessary 1314 * and marking the vmas as isolated. 1315 * 1316 * @vms: The vma munmap struct 1317 * @mas_detach: The maple state tracking the detached tree 1318 * 1319 * Return: 0 on success, error otherwise 1320 */ 1321 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1322 struct ma_state *mas_detach) 1323 { 1324 struct vm_area_struct *next = NULL; 1325 int error; 1326 1327 /* 1328 * If we need to split any vma, do it now to save pain later. 1329 * Does it split the first one? 1330 */ 1331 if (vms->start > vms->vma->vm_start) { 1332 1333 /* 1334 * Make sure that map_count on return from munmap() will 1335 * not exceed its limit; but let map_count go just above 1336 * its limit temporarily, to help free resources as expected. 1337 */ 1338 if (vms->end < vms->vma->vm_end && 1339 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1340 error = -ENOMEM; 1341 goto map_count_exceeded; 1342 } 1343 1344 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1345 if (!can_modify_vma(vms->vma)) { 1346 error = -EPERM; 1347 goto start_split_failed; 1348 } 1349 1350 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1351 if (error) 1352 goto start_split_failed; 1353 } 1354 vms->prev = vma_prev(vms->vmi); 1355 if (vms->prev) 1356 vms->unmap_start = vms->prev->vm_end; 1357 1358 /* 1359 * Detach a range of VMAs from the mm. Using next as a temp variable as 1360 * it is always overwritten. 1361 */ 1362 for_each_vma_range(*(vms->vmi), next, vms->end) { 1363 long nrpages; 1364 1365 if (!can_modify_vma(next)) { 1366 error = -EPERM; 1367 goto modify_vma_failed; 1368 } 1369 /* Does it split the end? */ 1370 if (next->vm_end > vms->end) { 1371 error = __split_vma(vms->vmi, next, vms->end, 0); 1372 if (error) 1373 goto end_split_failed; 1374 } 1375 vma_start_write(next); 1376 mas_set(mas_detach, vms->vma_count++); 1377 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1378 if (error) 1379 goto munmap_gather_failed; 1380 1381 vma_mark_detached(next); 1382 nrpages = vma_pages(next); 1383 1384 vms->nr_pages += nrpages; 1385 if (next->vm_flags & VM_LOCKED) 1386 vms->locked_vm += nrpages; 1387 1388 if (next->vm_flags & VM_ACCOUNT) 1389 vms->nr_accounted += nrpages; 1390 1391 if (is_exec_mapping(next->vm_flags)) 1392 vms->exec_vm += nrpages; 1393 else if (is_stack_mapping(next->vm_flags)) 1394 vms->stack_vm += nrpages; 1395 else if (is_data_mapping(next->vm_flags)) 1396 vms->data_vm += nrpages; 1397 1398 if (vms->uf) { 1399 /* 1400 * If userfaultfd_unmap_prep returns an error the vmas 1401 * will remain split, but userland will get a 1402 * highly unexpected error anyway. This is no 1403 * different than the case where the first of the two 1404 * __split_vma fails, but we don't undo the first 1405 * split, despite we could. This is unlikely enough 1406 * failure that it's not worth optimizing it for. 1407 */ 1408 error = userfaultfd_unmap_prep(next, vms->start, 1409 vms->end, vms->uf); 1410 if (error) 1411 goto userfaultfd_error; 1412 } 1413 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1414 BUG_ON(next->vm_start < vms->start); 1415 BUG_ON(next->vm_start > vms->end); 1416 #endif 1417 } 1418 1419 vms->next = vma_next(vms->vmi); 1420 if (vms->next) 1421 vms->unmap_end = vms->next->vm_start; 1422 1423 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1424 /* Make sure no VMAs are about to be lost. */ 1425 { 1426 MA_STATE(test, mas_detach->tree, 0, 0); 1427 struct vm_area_struct *vma_mas, *vma_test; 1428 int test_count = 0; 1429 1430 vma_iter_set(vms->vmi, vms->start); 1431 rcu_read_lock(); 1432 vma_test = mas_find(&test, vms->vma_count - 1); 1433 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1434 BUG_ON(vma_mas != vma_test); 1435 test_count++; 1436 vma_test = mas_next(&test, vms->vma_count - 1); 1437 } 1438 rcu_read_unlock(); 1439 BUG_ON(vms->vma_count != test_count); 1440 } 1441 #endif 1442 1443 while (vma_iter_addr(vms->vmi) > vms->start) 1444 vma_iter_prev_range(vms->vmi); 1445 1446 vms->clear_ptes = true; 1447 return 0; 1448 1449 userfaultfd_error: 1450 munmap_gather_failed: 1451 end_split_failed: 1452 modify_vma_failed: 1453 reattach_vmas(mas_detach); 1454 start_split_failed: 1455 map_count_exceeded: 1456 return error; 1457 } 1458 1459 /* 1460 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1461 * @vms: The vma munmap struct 1462 * @vmi: The vma iterator 1463 * @vma: The first vm_area_struct to munmap 1464 * @start: The aligned start address to munmap 1465 * @end: The aligned end address to munmap 1466 * @uf: The userfaultfd list_head 1467 * @unlock: Unlock after the operation. Only unlocked on success 1468 */ 1469 static void init_vma_munmap(struct vma_munmap_struct *vms, 1470 struct vma_iterator *vmi, struct vm_area_struct *vma, 1471 unsigned long start, unsigned long end, struct list_head *uf, 1472 bool unlock) 1473 { 1474 vms->vmi = vmi; 1475 vms->vma = vma; 1476 if (vma) { 1477 vms->start = start; 1478 vms->end = end; 1479 } else { 1480 vms->start = vms->end = 0; 1481 } 1482 vms->unlock = unlock; 1483 vms->uf = uf; 1484 vms->vma_count = 0; 1485 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1486 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1487 vms->unmap_start = FIRST_USER_ADDRESS; 1488 vms->unmap_end = USER_PGTABLES_CEILING; 1489 vms->clear_ptes = false; 1490 } 1491 1492 /* 1493 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1494 * @vmi: The vma iterator 1495 * @vma: The starting vm_area_struct 1496 * @mm: The mm_struct 1497 * @start: The aligned start address to munmap. 1498 * @end: The aligned end address to munmap. 1499 * @uf: The userfaultfd list_head 1500 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1501 * success. 1502 * 1503 * Return: 0 on success and drops the lock if so directed, error and leaves the 1504 * lock held otherwise. 1505 */ 1506 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1507 struct mm_struct *mm, unsigned long start, unsigned long end, 1508 struct list_head *uf, bool unlock) 1509 { 1510 struct maple_tree mt_detach; 1511 MA_STATE(mas_detach, &mt_detach, 0, 0); 1512 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1513 mt_on_stack(mt_detach); 1514 struct vma_munmap_struct vms; 1515 int error; 1516 1517 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1518 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1519 if (error) 1520 goto gather_failed; 1521 1522 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1523 if (error) 1524 goto clear_tree_failed; 1525 1526 /* Point of no return */ 1527 vms_complete_munmap_vmas(&vms, &mas_detach); 1528 return 0; 1529 1530 clear_tree_failed: 1531 reattach_vmas(&mas_detach); 1532 gather_failed: 1533 validate_mm(mm); 1534 return error; 1535 } 1536 1537 /* 1538 * do_vmi_munmap() - munmap a given range. 1539 * @vmi: The vma iterator 1540 * @mm: The mm_struct 1541 * @start: The start address to munmap 1542 * @len: The length of the range to munmap 1543 * @uf: The userfaultfd list_head 1544 * @unlock: set to true if the user wants to drop the mmap_lock on success 1545 * 1546 * This function takes a @mas that is either pointing to the previous VMA or set 1547 * to MA_START and sets it up to remove the mapping(s). The @len will be 1548 * aligned. 1549 * 1550 * Return: 0 on success and drops the lock if so directed, error and leaves the 1551 * lock held otherwise. 1552 */ 1553 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1554 unsigned long start, size_t len, struct list_head *uf, 1555 bool unlock) 1556 { 1557 unsigned long end; 1558 struct vm_area_struct *vma; 1559 1560 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1561 return -EINVAL; 1562 1563 end = start + PAGE_ALIGN(len); 1564 if (end == start) 1565 return -EINVAL; 1566 1567 /* Find the first overlapping VMA */ 1568 vma = vma_find(vmi, end); 1569 if (!vma) { 1570 if (unlock) 1571 mmap_write_unlock(mm); 1572 return 0; 1573 } 1574 1575 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1576 } 1577 1578 /* 1579 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1580 * context and anonymous VMA name within the range [start, end). 1581 * 1582 * As a result, we might be able to merge the newly modified VMA range with an 1583 * adjacent VMA with identical properties. 1584 * 1585 * If no merge is possible and the range does not span the entirety of the VMA, 1586 * we then need to split the VMA to accommodate the change. 1587 * 1588 * The function returns either the merged VMA, the original VMA if a split was 1589 * required instead, or an error if the split failed. 1590 */ 1591 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1592 { 1593 struct vm_area_struct *vma = vmg->middle; 1594 unsigned long start = vmg->start; 1595 unsigned long end = vmg->end; 1596 struct vm_area_struct *merged; 1597 1598 /* First, try to merge. */ 1599 merged = vma_merge_existing_range(vmg); 1600 if (merged) 1601 return merged; 1602 if (vmg_nomem(vmg)) 1603 return ERR_PTR(-ENOMEM); 1604 1605 /* 1606 * Split can fail for reasons other than OOM, so if the user requests 1607 * this it's probably a mistake. 1608 */ 1609 VM_WARN_ON(vmg->give_up_on_oom && 1610 (vma->vm_start != start || vma->vm_end != end)); 1611 1612 /* Split any preceding portion of the VMA. */ 1613 if (vma->vm_start < start) { 1614 int err = split_vma(vmg->vmi, vma, start, 1); 1615 1616 if (err) 1617 return ERR_PTR(err); 1618 } 1619 1620 /* Split any trailing portion of the VMA. */ 1621 if (vma->vm_end > end) { 1622 int err = split_vma(vmg->vmi, vma, end, 0); 1623 1624 if (err) 1625 return ERR_PTR(err); 1626 } 1627 1628 return vma; 1629 } 1630 1631 struct vm_area_struct *vma_modify_flags( 1632 struct vma_iterator *vmi, struct vm_area_struct *prev, 1633 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1634 unsigned long new_flags) 1635 { 1636 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1637 1638 vmg.flags = new_flags; 1639 1640 return vma_modify(&vmg); 1641 } 1642 1643 struct vm_area_struct 1644 *vma_modify_flags_name(struct vma_iterator *vmi, 1645 struct vm_area_struct *prev, 1646 struct vm_area_struct *vma, 1647 unsigned long start, 1648 unsigned long end, 1649 unsigned long new_flags, 1650 struct anon_vma_name *new_name) 1651 { 1652 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1653 1654 vmg.flags = new_flags; 1655 vmg.anon_name = new_name; 1656 1657 return vma_modify(&vmg); 1658 } 1659 1660 struct vm_area_struct 1661 *vma_modify_policy(struct vma_iterator *vmi, 1662 struct vm_area_struct *prev, 1663 struct vm_area_struct *vma, 1664 unsigned long start, unsigned long end, 1665 struct mempolicy *new_pol) 1666 { 1667 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1668 1669 vmg.policy = new_pol; 1670 1671 return vma_modify(&vmg); 1672 } 1673 1674 struct vm_area_struct 1675 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1676 struct vm_area_struct *prev, 1677 struct vm_area_struct *vma, 1678 unsigned long start, unsigned long end, 1679 unsigned long new_flags, 1680 struct vm_userfaultfd_ctx new_ctx, 1681 bool give_up_on_oom) 1682 { 1683 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1684 1685 vmg.flags = new_flags; 1686 vmg.uffd_ctx = new_ctx; 1687 if (give_up_on_oom) 1688 vmg.give_up_on_oom = true; 1689 1690 return vma_modify(&vmg); 1691 } 1692 1693 /* 1694 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1695 * VMA with identical properties. 1696 */ 1697 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1698 struct vm_area_struct *vma, 1699 unsigned long delta) 1700 { 1701 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1702 1703 vmg.next = vma_iter_next_rewind(vmi, NULL); 1704 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1705 1706 return vma_merge_new_range(&vmg); 1707 } 1708 1709 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1710 { 1711 vb->count = 0; 1712 } 1713 1714 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1715 { 1716 struct address_space *mapping; 1717 int i; 1718 1719 mapping = vb->vmas[0]->vm_file->f_mapping; 1720 i_mmap_lock_write(mapping); 1721 for (i = 0; i < vb->count; i++) { 1722 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1723 __remove_shared_vm_struct(vb->vmas[i], mapping); 1724 } 1725 i_mmap_unlock_write(mapping); 1726 1727 unlink_file_vma_batch_init(vb); 1728 } 1729 1730 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1731 struct vm_area_struct *vma) 1732 { 1733 if (vma->vm_file == NULL) 1734 return; 1735 1736 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1737 vb->count == ARRAY_SIZE(vb->vmas)) 1738 unlink_file_vma_batch_process(vb); 1739 1740 vb->vmas[vb->count] = vma; 1741 vb->count++; 1742 } 1743 1744 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1745 { 1746 if (vb->count > 0) 1747 unlink_file_vma_batch_process(vb); 1748 } 1749 1750 /* 1751 * Unlink a file-based vm structure from its interval tree, to hide 1752 * vma from rmap and vmtruncate before freeing its page tables. 1753 */ 1754 void unlink_file_vma(struct vm_area_struct *vma) 1755 { 1756 struct file *file = vma->vm_file; 1757 1758 if (file) { 1759 struct address_space *mapping = file->f_mapping; 1760 1761 i_mmap_lock_write(mapping); 1762 __remove_shared_vm_struct(vma, mapping); 1763 i_mmap_unlock_write(mapping); 1764 } 1765 } 1766 1767 void vma_link_file(struct vm_area_struct *vma) 1768 { 1769 struct file *file = vma->vm_file; 1770 struct address_space *mapping; 1771 1772 if (file) { 1773 mapping = file->f_mapping; 1774 i_mmap_lock_write(mapping); 1775 __vma_link_file(vma, mapping); 1776 i_mmap_unlock_write(mapping); 1777 } 1778 } 1779 1780 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1781 { 1782 VMA_ITERATOR(vmi, mm, 0); 1783 1784 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1785 if (vma_iter_prealloc(&vmi, vma)) 1786 return -ENOMEM; 1787 1788 vma_start_write(vma); 1789 vma_iter_store_new(&vmi, vma); 1790 vma_link_file(vma); 1791 mm->map_count++; 1792 validate_mm(mm); 1793 return 0; 1794 } 1795 1796 /* 1797 * Copy the vma structure to a new location in the same mm, 1798 * prior to moving page table entries, to effect an mremap move. 1799 */ 1800 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1801 unsigned long addr, unsigned long len, pgoff_t pgoff, 1802 bool *need_rmap_locks) 1803 { 1804 struct vm_area_struct *vma = *vmap; 1805 unsigned long vma_start = vma->vm_start; 1806 struct mm_struct *mm = vma->vm_mm; 1807 struct vm_area_struct *new_vma; 1808 bool faulted_in_anon_vma = true; 1809 VMA_ITERATOR(vmi, mm, addr); 1810 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1811 1812 /* 1813 * If anonymous vma has not yet been faulted, update new pgoff 1814 * to match new location, to increase its chance of merging. 1815 */ 1816 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1817 pgoff = addr >> PAGE_SHIFT; 1818 faulted_in_anon_vma = false; 1819 } 1820 1821 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1822 if (new_vma && new_vma->vm_start < addr + len) 1823 return NULL; /* should never get here */ 1824 1825 vmg.middle = NULL; /* New VMA range. */ 1826 vmg.pgoff = pgoff; 1827 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1828 new_vma = vma_merge_new_range(&vmg); 1829 1830 if (new_vma) { 1831 /* 1832 * Source vma may have been merged into new_vma 1833 */ 1834 if (unlikely(vma_start >= new_vma->vm_start && 1835 vma_start < new_vma->vm_end)) { 1836 /* 1837 * The only way we can get a vma_merge with 1838 * self during an mremap is if the vma hasn't 1839 * been faulted in yet and we were allowed to 1840 * reset the dst vma->vm_pgoff to the 1841 * destination address of the mremap to allow 1842 * the merge to happen. mremap must change the 1843 * vm_pgoff linearity between src and dst vmas 1844 * (in turn preventing a vma_merge) to be 1845 * safe. It is only safe to keep the vm_pgoff 1846 * linear if there are no pages mapped yet. 1847 */ 1848 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1849 *vmap = vma = new_vma; 1850 } 1851 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1852 } else { 1853 new_vma = vm_area_dup(vma); 1854 if (!new_vma) 1855 goto out; 1856 vma_set_range(new_vma, addr, addr + len, pgoff); 1857 if (vma_dup_policy(vma, new_vma)) 1858 goto out_free_vma; 1859 if (anon_vma_clone(new_vma, vma)) 1860 goto out_free_mempol; 1861 if (new_vma->vm_file) 1862 get_file(new_vma->vm_file); 1863 if (new_vma->vm_ops && new_vma->vm_ops->open) 1864 new_vma->vm_ops->open(new_vma); 1865 if (vma_link(mm, new_vma)) 1866 goto out_vma_link; 1867 *need_rmap_locks = false; 1868 } 1869 return new_vma; 1870 1871 out_vma_link: 1872 vma_close(new_vma); 1873 1874 if (new_vma->vm_file) 1875 fput(new_vma->vm_file); 1876 1877 unlink_anon_vmas(new_vma); 1878 out_free_mempol: 1879 mpol_put(vma_policy(new_vma)); 1880 out_free_vma: 1881 vm_area_free(new_vma); 1882 out: 1883 return NULL; 1884 } 1885 1886 /* 1887 * Rough compatibility check to quickly see if it's even worth looking 1888 * at sharing an anon_vma. 1889 * 1890 * They need to have the same vm_file, and the flags can only differ 1891 * in things that mprotect may change. 1892 * 1893 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1894 * we can merge the two vma's. For example, we refuse to merge a vma if 1895 * there is a vm_ops->close() function, because that indicates that the 1896 * driver is doing some kind of reference counting. But that doesn't 1897 * really matter for the anon_vma sharing case. 1898 */ 1899 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1900 { 1901 return a->vm_end == b->vm_start && 1902 mpol_equal(vma_policy(a), vma_policy(b)) && 1903 a->vm_file == b->vm_file && 1904 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1905 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1906 } 1907 1908 /* 1909 * Do some basic sanity checking to see if we can re-use the anon_vma 1910 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1911 * the same as 'old', the other will be the new one that is trying 1912 * to share the anon_vma. 1913 * 1914 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1915 * the anon_vma of 'old' is concurrently in the process of being set up 1916 * by another page fault trying to merge _that_. But that's ok: if it 1917 * is being set up, that automatically means that it will be a singleton 1918 * acceptable for merging, so we can do all of this optimistically. But 1919 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1920 * 1921 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1922 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1923 * is to return an anon_vma that is "complex" due to having gone through 1924 * a fork). 1925 * 1926 * We also make sure that the two vma's are compatible (adjacent, 1927 * and with the same memory policies). That's all stable, even with just 1928 * a read lock on the mmap_lock. 1929 */ 1930 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1931 struct vm_area_struct *a, 1932 struct vm_area_struct *b) 1933 { 1934 if (anon_vma_compatible(a, b)) { 1935 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1936 1937 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1938 return anon_vma; 1939 } 1940 return NULL; 1941 } 1942 1943 /* 1944 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1945 * neighbouring vmas for a suitable anon_vma, before it goes off 1946 * to allocate a new anon_vma. It checks because a repetitive 1947 * sequence of mprotects and faults may otherwise lead to distinct 1948 * anon_vmas being allocated, preventing vma merge in subsequent 1949 * mprotect. 1950 */ 1951 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1952 { 1953 struct anon_vma *anon_vma = NULL; 1954 struct vm_area_struct *prev, *next; 1955 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1956 1957 /* Try next first. */ 1958 next = vma_iter_load(&vmi); 1959 if (next) { 1960 anon_vma = reusable_anon_vma(next, vma, next); 1961 if (anon_vma) 1962 return anon_vma; 1963 } 1964 1965 prev = vma_prev(&vmi); 1966 VM_BUG_ON_VMA(prev != vma, vma); 1967 prev = vma_prev(&vmi); 1968 /* Try prev next. */ 1969 if (prev) 1970 anon_vma = reusable_anon_vma(prev, prev, vma); 1971 1972 /* 1973 * We might reach here with anon_vma == NULL if we can't find 1974 * any reusable anon_vma. 1975 * There's no absolute need to look only at touching neighbours: 1976 * we could search further afield for "compatible" anon_vmas. 1977 * But it would probably just be a waste of time searching, 1978 * or lead to too many vmas hanging off the same anon_vma. 1979 * We're trying to allow mprotect remerging later on, 1980 * not trying to minimize memory used for anon_vmas. 1981 */ 1982 return anon_vma; 1983 } 1984 1985 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1986 { 1987 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1988 } 1989 1990 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1991 { 1992 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1993 (VM_WRITE | VM_SHARED); 1994 } 1995 1996 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1997 { 1998 /* No managed pages to writeback. */ 1999 if (vma->vm_flags & VM_PFNMAP) 2000 return false; 2001 2002 return vma->vm_file && vma->vm_file->f_mapping && 2003 mapping_can_writeback(vma->vm_file->f_mapping); 2004 } 2005 2006 /* 2007 * Does this VMA require the underlying folios to have their dirty state 2008 * tracked? 2009 */ 2010 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 2011 { 2012 /* Only shared, writable VMAs require dirty tracking. */ 2013 if (!vma_is_shared_writable(vma)) 2014 return false; 2015 2016 /* Does the filesystem need to be notified? */ 2017 if (vm_ops_needs_writenotify(vma->vm_ops)) 2018 return true; 2019 2020 /* 2021 * Even if the filesystem doesn't indicate a need for writenotify, if it 2022 * can writeback, dirty tracking is still required. 2023 */ 2024 return vma_fs_can_writeback(vma); 2025 } 2026 2027 /* 2028 * Some shared mappings will want the pages marked read-only 2029 * to track write events. If so, we'll downgrade vm_page_prot 2030 * to the private version (using protection_map[] without the 2031 * VM_SHARED bit). 2032 */ 2033 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 2034 { 2035 /* If it was private or non-writable, the write bit is already clear */ 2036 if (!vma_is_shared_writable(vma)) 2037 return false; 2038 2039 /* The backer wishes to know when pages are first written to? */ 2040 if (vm_ops_needs_writenotify(vma->vm_ops)) 2041 return true; 2042 2043 /* The open routine did something to the protections that pgprot_modify 2044 * won't preserve? */ 2045 if (pgprot_val(vm_page_prot) != 2046 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 2047 return false; 2048 2049 /* 2050 * Do we need to track softdirty? hugetlb does not support softdirty 2051 * tracking yet. 2052 */ 2053 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 2054 return true; 2055 2056 /* Do we need write faults for uffd-wp tracking? */ 2057 if (userfaultfd_wp(vma)) 2058 return true; 2059 2060 /* Can the mapping track the dirty pages? */ 2061 return vma_fs_can_writeback(vma); 2062 } 2063 2064 static DEFINE_MUTEX(mm_all_locks_mutex); 2065 2066 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2067 { 2068 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2069 /* 2070 * The LSB of head.next can't change from under us 2071 * because we hold the mm_all_locks_mutex. 2072 */ 2073 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 2074 /* 2075 * We can safely modify head.next after taking the 2076 * anon_vma->root->rwsem. If some other vma in this mm shares 2077 * the same anon_vma we won't take it again. 2078 * 2079 * No need of atomic instructions here, head.next 2080 * can't change from under us thanks to the 2081 * anon_vma->root->rwsem. 2082 */ 2083 if (__test_and_set_bit(0, (unsigned long *) 2084 &anon_vma->root->rb_root.rb_root.rb_node)) 2085 BUG(); 2086 } 2087 } 2088 2089 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2090 { 2091 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2092 /* 2093 * AS_MM_ALL_LOCKS can't change from under us because 2094 * we hold the mm_all_locks_mutex. 2095 * 2096 * Operations on ->flags have to be atomic because 2097 * even if AS_MM_ALL_LOCKS is stable thanks to the 2098 * mm_all_locks_mutex, there may be other cpus 2099 * changing other bitflags in parallel to us. 2100 */ 2101 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2102 BUG(); 2103 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2104 } 2105 } 2106 2107 /* 2108 * This operation locks against the VM for all pte/vma/mm related 2109 * operations that could ever happen on a certain mm. This includes 2110 * vmtruncate, try_to_unmap, and all page faults. 2111 * 2112 * The caller must take the mmap_lock in write mode before calling 2113 * mm_take_all_locks(). The caller isn't allowed to release the 2114 * mmap_lock until mm_drop_all_locks() returns. 2115 * 2116 * mmap_lock in write mode is required in order to block all operations 2117 * that could modify pagetables and free pages without need of 2118 * altering the vma layout. It's also needed in write mode to avoid new 2119 * anon_vmas to be associated with existing vmas. 2120 * 2121 * A single task can't take more than one mm_take_all_locks() in a row 2122 * or it would deadlock. 2123 * 2124 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2125 * mapping->flags avoid to take the same lock twice, if more than one 2126 * vma in this mm is backed by the same anon_vma or address_space. 2127 * 2128 * We take locks in following order, accordingly to comment at beginning 2129 * of mm/rmap.c: 2130 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2131 * hugetlb mapping); 2132 * - all vmas marked locked 2133 * - all i_mmap_rwsem locks; 2134 * - all anon_vma->rwseml 2135 * 2136 * We can take all locks within these types randomly because the VM code 2137 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2138 * mm_all_locks_mutex. 2139 * 2140 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2141 * that may have to take thousand of locks. 2142 * 2143 * mm_take_all_locks() can fail if it's interrupted by signals. 2144 */ 2145 int mm_take_all_locks(struct mm_struct *mm) 2146 { 2147 struct vm_area_struct *vma; 2148 struct anon_vma_chain *avc; 2149 VMA_ITERATOR(vmi, mm, 0); 2150 2151 mmap_assert_write_locked(mm); 2152 2153 mutex_lock(&mm_all_locks_mutex); 2154 2155 /* 2156 * vma_start_write() does not have a complement in mm_drop_all_locks() 2157 * because vma_start_write() is always asymmetrical; it marks a VMA as 2158 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2159 * is reached. 2160 */ 2161 for_each_vma(vmi, vma) { 2162 if (signal_pending(current)) 2163 goto out_unlock; 2164 vma_start_write(vma); 2165 } 2166 2167 vma_iter_init(&vmi, mm, 0); 2168 for_each_vma(vmi, vma) { 2169 if (signal_pending(current)) 2170 goto out_unlock; 2171 if (vma->vm_file && vma->vm_file->f_mapping && 2172 is_vm_hugetlb_page(vma)) 2173 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2174 } 2175 2176 vma_iter_init(&vmi, mm, 0); 2177 for_each_vma(vmi, vma) { 2178 if (signal_pending(current)) 2179 goto out_unlock; 2180 if (vma->vm_file && vma->vm_file->f_mapping && 2181 !is_vm_hugetlb_page(vma)) 2182 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2183 } 2184 2185 vma_iter_init(&vmi, mm, 0); 2186 for_each_vma(vmi, vma) { 2187 if (signal_pending(current)) 2188 goto out_unlock; 2189 if (vma->anon_vma) 2190 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2191 vm_lock_anon_vma(mm, avc->anon_vma); 2192 } 2193 2194 return 0; 2195 2196 out_unlock: 2197 mm_drop_all_locks(mm); 2198 return -EINTR; 2199 } 2200 2201 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2202 { 2203 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2204 /* 2205 * The LSB of head.next can't change to 0 from under 2206 * us because we hold the mm_all_locks_mutex. 2207 * 2208 * We must however clear the bitflag before unlocking 2209 * the vma so the users using the anon_vma->rb_root will 2210 * never see our bitflag. 2211 * 2212 * No need of atomic instructions here, head.next 2213 * can't change from under us until we release the 2214 * anon_vma->root->rwsem. 2215 */ 2216 if (!__test_and_clear_bit(0, (unsigned long *) 2217 &anon_vma->root->rb_root.rb_root.rb_node)) 2218 BUG(); 2219 anon_vma_unlock_write(anon_vma); 2220 } 2221 } 2222 2223 static void vm_unlock_mapping(struct address_space *mapping) 2224 { 2225 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2226 /* 2227 * AS_MM_ALL_LOCKS can't change to 0 from under us 2228 * because we hold the mm_all_locks_mutex. 2229 */ 2230 i_mmap_unlock_write(mapping); 2231 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2232 &mapping->flags)) 2233 BUG(); 2234 } 2235 } 2236 2237 /* 2238 * The mmap_lock cannot be released by the caller until 2239 * mm_drop_all_locks() returns. 2240 */ 2241 void mm_drop_all_locks(struct mm_struct *mm) 2242 { 2243 struct vm_area_struct *vma; 2244 struct anon_vma_chain *avc; 2245 VMA_ITERATOR(vmi, mm, 0); 2246 2247 mmap_assert_write_locked(mm); 2248 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2249 2250 for_each_vma(vmi, vma) { 2251 if (vma->anon_vma) 2252 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2253 vm_unlock_anon_vma(avc->anon_vma); 2254 if (vma->vm_file && vma->vm_file->f_mapping) 2255 vm_unlock_mapping(vma->vm_file->f_mapping); 2256 } 2257 2258 mutex_unlock(&mm_all_locks_mutex); 2259 } 2260 2261 /* 2262 * We account for memory if it's a private writeable mapping, 2263 * not hugepages and VM_NORESERVE wasn't set. 2264 */ 2265 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2266 { 2267 /* 2268 * hugetlb has its own accounting separate from the core VM 2269 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2270 */ 2271 if (file && is_file_hugepages(file)) 2272 return false; 2273 2274 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2275 } 2276 2277 /* 2278 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2279 * operation. 2280 * @vms: The vma unmap structure 2281 * @mas_detach: The maple state with the detached maple tree 2282 * 2283 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2284 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2285 * have been called), then a NULL is written over the vmas and the vmas are 2286 * removed (munmap() completed). 2287 */ 2288 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2289 struct ma_state *mas_detach) 2290 { 2291 struct ma_state *mas = &vms->vmi->mas; 2292 2293 if (!vms->nr_pages) 2294 return; 2295 2296 if (vms->clear_ptes) 2297 return reattach_vmas(mas_detach); 2298 2299 /* 2300 * Aborting cannot just call the vm_ops open() because they are often 2301 * not symmetrical and state data has been lost. Resort to the old 2302 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2303 */ 2304 mas_set_range(mas, vms->start, vms->end - 1); 2305 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2306 /* Clean up the insertion of the unfortunate gap */ 2307 vms_complete_munmap_vmas(vms, mas_detach); 2308 } 2309 2310 /* 2311 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2312 * unmapped once the map operation is completed, check limits, account mapping 2313 * and clean up any pre-existing VMAs. 2314 * 2315 * @map: Mapping state. 2316 * @uf: Userfaultfd context list. 2317 * 2318 * Returns: 0 on success, error code otherwise. 2319 */ 2320 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2321 { 2322 int error; 2323 struct vma_iterator *vmi = map->vmi; 2324 struct vma_munmap_struct *vms = &map->vms; 2325 2326 /* Find the first overlapping VMA and initialise unmap state. */ 2327 vms->vma = vma_find(vmi, map->end); 2328 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2329 /* unlock = */ false); 2330 2331 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2332 if (vms->vma) { 2333 mt_init_flags(&map->mt_detach, 2334 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2335 mt_on_stack(map->mt_detach); 2336 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2337 /* Prepare to unmap any existing mapping in the area */ 2338 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2339 if (error) { 2340 /* On error VMAs will already have been reattached. */ 2341 vms->nr_pages = 0; 2342 return error; 2343 } 2344 2345 map->next = vms->next; 2346 map->prev = vms->prev; 2347 } else { 2348 map->next = vma_iter_next_rewind(vmi, &map->prev); 2349 } 2350 2351 /* Check against address space limit. */ 2352 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2353 return -ENOMEM; 2354 2355 /* Private writable mapping: check memory availability. */ 2356 if (accountable_mapping(map->file, map->flags)) { 2357 map->charged = map->pglen; 2358 map->charged -= vms->nr_accounted; 2359 if (map->charged) { 2360 error = security_vm_enough_memory_mm(map->mm, map->charged); 2361 if (error) 2362 return error; 2363 } 2364 2365 vms->nr_accounted = 0; 2366 map->flags |= VM_ACCOUNT; 2367 } 2368 2369 /* 2370 * Clear PTEs while the vma is still in the tree so that rmap 2371 * cannot race with the freeing later in the truncate scenario. 2372 * This is also needed for mmap_file(), which is why vm_ops 2373 * close function is called. 2374 */ 2375 vms_clean_up_area(vms, &map->mas_detach); 2376 2377 return 0; 2378 } 2379 2380 2381 static int __mmap_new_file_vma(struct mmap_state *map, 2382 struct vm_area_struct *vma) 2383 { 2384 struct vma_iterator *vmi = map->vmi; 2385 int error; 2386 2387 vma->vm_file = get_file(map->file); 2388 error = mmap_file(vma->vm_file, vma); 2389 if (error) { 2390 fput(vma->vm_file); 2391 vma->vm_file = NULL; 2392 2393 vma_iter_set(vmi, vma->vm_end); 2394 /* Undo any partial mapping done by a device driver. */ 2395 unmap_region(&vmi->mas, vma, map->prev, map->next); 2396 2397 return error; 2398 } 2399 2400 /* Drivers cannot alter the address of the VMA. */ 2401 WARN_ON_ONCE(map->addr != vma->vm_start); 2402 /* 2403 * Drivers should not permit writability when previously it was 2404 * disallowed. 2405 */ 2406 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2407 !(map->flags & VM_MAYWRITE) && 2408 (vma->vm_flags & VM_MAYWRITE)); 2409 2410 /* If the flags change (and are mergeable), let's retry later. */ 2411 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); 2412 map->flags = vma->vm_flags; 2413 2414 return 0; 2415 } 2416 2417 /* 2418 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2419 * possible. 2420 * 2421 * @map: Mapping state. 2422 * @vmap: Output pointer for the new VMA. 2423 * 2424 * Returns: Zero on success, or an error. 2425 */ 2426 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2427 { 2428 struct vma_iterator *vmi = map->vmi; 2429 int error = 0; 2430 struct vm_area_struct *vma; 2431 2432 /* 2433 * Determine the object being mapped and call the appropriate 2434 * specific mapper. the address has already been validated, but 2435 * not unmapped, but the maps are removed from the list. 2436 */ 2437 vma = vm_area_alloc(map->mm); 2438 if (!vma) 2439 return -ENOMEM; 2440 2441 vma_iter_config(vmi, map->addr, map->end); 2442 vma_set_range(vma, map->addr, map->end, map->pgoff); 2443 vm_flags_init(vma, map->flags); 2444 vma->vm_page_prot = vm_get_page_prot(map->flags); 2445 2446 if (vma_iter_prealloc(vmi, vma)) { 2447 error = -ENOMEM; 2448 goto free_vma; 2449 } 2450 2451 if (map->file) 2452 error = __mmap_new_file_vma(map, vma); 2453 else if (map->flags & VM_SHARED) 2454 error = shmem_zero_setup(vma); 2455 else 2456 vma_set_anonymous(vma); 2457 2458 if (error) 2459 goto free_iter_vma; 2460 2461 #ifdef CONFIG_SPARC64 2462 /* TODO: Fix SPARC ADI! */ 2463 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2464 #endif 2465 2466 /* Lock the VMA since it is modified after insertion into VMA tree */ 2467 vma_start_write(vma); 2468 vma_iter_store_new(vmi, vma); 2469 map->mm->map_count++; 2470 vma_link_file(vma); 2471 2472 /* 2473 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2474 * call covers the non-merge case. 2475 */ 2476 if (!vma_is_anonymous(vma)) 2477 khugepaged_enter_vma(vma, map->flags); 2478 ksm_add_vma(vma); 2479 *vmap = vma; 2480 return 0; 2481 2482 free_iter_vma: 2483 vma_iter_free(vmi); 2484 free_vma: 2485 vm_area_free(vma); 2486 return error; 2487 } 2488 2489 /* 2490 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2491 * statistics, handle locking and finalise the VMA. 2492 * 2493 * @map: Mapping state. 2494 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2495 */ 2496 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2497 { 2498 struct mm_struct *mm = map->mm; 2499 unsigned long vm_flags = vma->vm_flags; 2500 2501 perf_event_mmap(vma); 2502 2503 /* Unmap any existing mapping in the area. */ 2504 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2505 2506 vm_stat_account(mm, vma->vm_flags, map->pglen); 2507 if (vm_flags & VM_LOCKED) { 2508 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2509 is_vm_hugetlb_page(vma) || 2510 vma == get_gate_vma(mm)) 2511 vm_flags_clear(vma, VM_LOCKED_MASK); 2512 else 2513 mm->locked_vm += map->pglen; 2514 } 2515 2516 if (vma->vm_file) 2517 uprobe_mmap(vma); 2518 2519 /* 2520 * New (or expanded) vma always get soft dirty status. 2521 * Otherwise user-space soft-dirty page tracker won't 2522 * be able to distinguish situation when vma area unmapped, 2523 * then new mapped in-place (which must be aimed as 2524 * a completely new data area). 2525 */ 2526 vm_flags_set(vma, VM_SOFTDIRTY); 2527 2528 vma_set_page_prot(vma); 2529 } 2530 2531 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2532 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2533 struct list_head *uf) 2534 { 2535 struct mm_struct *mm = current->mm; 2536 struct vm_area_struct *vma = NULL; 2537 int error; 2538 VMA_ITERATOR(vmi, mm, addr); 2539 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2540 2541 error = __mmap_prepare(&map, uf); 2542 if (error) 2543 goto abort_munmap; 2544 2545 /* Attempt to merge with adjacent VMAs... */ 2546 if (map.prev || map.next) { 2547 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2548 2549 vma = vma_merge_new_range(&vmg); 2550 } 2551 2552 /* ...but if we can't, allocate a new VMA. */ 2553 if (!vma) { 2554 error = __mmap_new_vma(&map, &vma); 2555 if (error) 2556 goto unacct_error; 2557 } 2558 2559 /* If flags changed, we might be able to merge, so try again. */ 2560 if (map.retry_merge) { 2561 struct vm_area_struct *merged; 2562 VMG_MMAP_STATE(vmg, &map, vma); 2563 2564 vma_iter_config(map.vmi, map.addr, map.end); 2565 merged = vma_merge_existing_range(&vmg); 2566 if (merged) 2567 vma = merged; 2568 } 2569 2570 __mmap_complete(&map, vma); 2571 2572 return addr; 2573 2574 /* Accounting was done by __mmap_prepare(). */ 2575 unacct_error: 2576 if (map.charged) 2577 vm_unacct_memory(map.charged); 2578 abort_munmap: 2579 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2580 return error; 2581 } 2582 2583 /** 2584 * mmap_region() - Actually perform the userland mapping of a VMA into 2585 * current->mm with known, aligned and overflow-checked @addr and @len, and 2586 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2587 * 2588 * This is an internal memory management function, and should not be used 2589 * directly. 2590 * 2591 * The caller must write-lock current->mm->mmap_lock. 2592 * 2593 * @file: If a file-backed mapping, a pointer to the struct file describing the 2594 * file to be mapped, otherwise NULL. 2595 * @addr: The page-aligned address at which to perform the mapping. 2596 * @len: The page-aligned, non-zero, length of the mapping. 2597 * @vm_flags: The VMA flags which should be applied to the mapping. 2598 * @pgoff: If @file is specified, the page offset into the file, if not then 2599 * the virtual page offset in memory of the anonymous mapping. 2600 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2601 * events. 2602 * 2603 * Returns: Either an error, or the address at which the requested mapping has 2604 * been performed. 2605 */ 2606 unsigned long mmap_region(struct file *file, unsigned long addr, 2607 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2608 struct list_head *uf) 2609 { 2610 unsigned long ret; 2611 bool writable_file_mapping = false; 2612 2613 mmap_assert_write_locked(current->mm); 2614 2615 /* Check to see if MDWE is applicable. */ 2616 if (map_deny_write_exec(vm_flags, vm_flags)) 2617 return -EACCES; 2618 2619 /* Allow architectures to sanity-check the vm_flags. */ 2620 if (!arch_validate_flags(vm_flags)) 2621 return -EINVAL; 2622 2623 /* Map writable and ensure this isn't a sealed memfd. */ 2624 if (file && is_shared_maywrite(vm_flags)) { 2625 int error = mapping_map_writable(file->f_mapping); 2626 2627 if (error) 2628 return error; 2629 writable_file_mapping = true; 2630 } 2631 2632 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2633 2634 /* Clear our write mapping regardless of error. */ 2635 if (writable_file_mapping) 2636 mapping_unmap_writable(file->f_mapping); 2637 2638 validate_mm(current->mm); 2639 return ret; 2640 } 2641 2642 /* 2643 * do_brk_flags() - Increase the brk vma if the flags match. 2644 * @vmi: The vma iterator 2645 * @addr: The start address 2646 * @len: The length of the increase 2647 * @vma: The vma, 2648 * @flags: The VMA Flags 2649 * 2650 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2651 * do not match then create a new anonymous VMA. Eventually we may be able to 2652 * do some brk-specific accounting here. 2653 */ 2654 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2655 unsigned long addr, unsigned long len, unsigned long flags) 2656 { 2657 struct mm_struct *mm = current->mm; 2658 2659 /* 2660 * Check against address space limits by the changed size 2661 * Note: This happens *after* clearing old mappings in some code paths. 2662 */ 2663 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2664 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2665 return -ENOMEM; 2666 2667 if (mm->map_count > sysctl_max_map_count) 2668 return -ENOMEM; 2669 2670 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2671 return -ENOMEM; 2672 2673 /* 2674 * Expand the existing vma if possible; Note that singular lists do not 2675 * occur after forking, so the expand will only happen on new VMAs. 2676 */ 2677 if (vma && vma->vm_end == addr) { 2678 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 2679 2680 vmg.prev = vma; 2681 /* vmi is positioned at prev, which this mode expects. */ 2682 vmg.just_expand = true; 2683 2684 if (vma_merge_new_range(&vmg)) 2685 goto out; 2686 else if (vmg_nomem(&vmg)) 2687 goto unacct_fail; 2688 } 2689 2690 if (vma) 2691 vma_iter_next_range(vmi); 2692 /* create a vma struct for an anonymous mapping */ 2693 vma = vm_area_alloc(mm); 2694 if (!vma) 2695 goto unacct_fail; 2696 2697 vma_set_anonymous(vma); 2698 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2699 vm_flags_init(vma, flags); 2700 vma->vm_page_prot = vm_get_page_prot(flags); 2701 vma_start_write(vma); 2702 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2703 goto mas_store_fail; 2704 2705 mm->map_count++; 2706 validate_mm(mm); 2707 ksm_add_vma(vma); 2708 out: 2709 perf_event_mmap(vma); 2710 mm->total_vm += len >> PAGE_SHIFT; 2711 mm->data_vm += len >> PAGE_SHIFT; 2712 if (flags & VM_LOCKED) 2713 mm->locked_vm += (len >> PAGE_SHIFT); 2714 vm_flags_set(vma, VM_SOFTDIRTY); 2715 return 0; 2716 2717 mas_store_fail: 2718 vm_area_free(vma); 2719 unacct_fail: 2720 vm_unacct_memory(len >> PAGE_SHIFT); 2721 return -ENOMEM; 2722 } 2723 2724 /** 2725 * unmapped_area() - Find an area between the low_limit and the high_limit with 2726 * the correct alignment and offset, all from @info. Note: current->mm is used 2727 * for the search. 2728 * 2729 * @info: The unmapped area information including the range [low_limit - 2730 * high_limit), the alignment offset and mask. 2731 * 2732 * Return: A memory address or -ENOMEM. 2733 */ 2734 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2735 { 2736 unsigned long length, gap; 2737 unsigned long low_limit, high_limit; 2738 struct vm_area_struct *tmp; 2739 VMA_ITERATOR(vmi, current->mm, 0); 2740 2741 /* Adjust search length to account for worst case alignment overhead */ 2742 length = info->length + info->align_mask + info->start_gap; 2743 if (length < info->length) 2744 return -ENOMEM; 2745 2746 low_limit = info->low_limit; 2747 if (low_limit < mmap_min_addr) 2748 low_limit = mmap_min_addr; 2749 high_limit = info->high_limit; 2750 retry: 2751 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2752 return -ENOMEM; 2753 2754 /* 2755 * Adjust for the gap first so it doesn't interfere with the 2756 * later alignment. The first step is the minimum needed to 2757 * fulill the start gap, the next steps is the minimum to align 2758 * that. It is the minimum needed to fulill both. 2759 */ 2760 gap = vma_iter_addr(&vmi) + info->start_gap; 2761 gap += (info->align_offset - gap) & info->align_mask; 2762 tmp = vma_next(&vmi); 2763 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2764 if (vm_start_gap(tmp) < gap + length - 1) { 2765 low_limit = tmp->vm_end; 2766 vma_iter_reset(&vmi); 2767 goto retry; 2768 } 2769 } else { 2770 tmp = vma_prev(&vmi); 2771 if (tmp && vm_end_gap(tmp) > gap) { 2772 low_limit = vm_end_gap(tmp); 2773 vma_iter_reset(&vmi); 2774 goto retry; 2775 } 2776 } 2777 2778 return gap; 2779 } 2780 2781 /** 2782 * unmapped_area_topdown() - Find an area between the low_limit and the 2783 * high_limit with the correct alignment and offset at the highest available 2784 * address, all from @info. Note: current->mm is used for the search. 2785 * 2786 * @info: The unmapped area information including the range [low_limit - 2787 * high_limit), the alignment offset and mask. 2788 * 2789 * Return: A memory address or -ENOMEM. 2790 */ 2791 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2792 { 2793 unsigned long length, gap, gap_end; 2794 unsigned long low_limit, high_limit; 2795 struct vm_area_struct *tmp; 2796 VMA_ITERATOR(vmi, current->mm, 0); 2797 2798 /* Adjust search length to account for worst case alignment overhead */ 2799 length = info->length + info->align_mask + info->start_gap; 2800 if (length < info->length) 2801 return -ENOMEM; 2802 2803 low_limit = info->low_limit; 2804 if (low_limit < mmap_min_addr) 2805 low_limit = mmap_min_addr; 2806 high_limit = info->high_limit; 2807 retry: 2808 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2809 return -ENOMEM; 2810 2811 gap = vma_iter_end(&vmi) - info->length; 2812 gap -= (gap - info->align_offset) & info->align_mask; 2813 gap_end = vma_iter_end(&vmi); 2814 tmp = vma_next(&vmi); 2815 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2816 if (vm_start_gap(tmp) < gap_end) { 2817 high_limit = vm_start_gap(tmp); 2818 vma_iter_reset(&vmi); 2819 goto retry; 2820 } 2821 } else { 2822 tmp = vma_prev(&vmi); 2823 if (tmp && vm_end_gap(tmp) > gap) { 2824 high_limit = tmp->vm_start; 2825 vma_iter_reset(&vmi); 2826 goto retry; 2827 } 2828 } 2829 2830 return gap; 2831 } 2832 2833 /* 2834 * Verify that the stack growth is acceptable and 2835 * update accounting. This is shared with both the 2836 * grow-up and grow-down cases. 2837 */ 2838 static int acct_stack_growth(struct vm_area_struct *vma, 2839 unsigned long size, unsigned long grow) 2840 { 2841 struct mm_struct *mm = vma->vm_mm; 2842 unsigned long new_start; 2843 2844 /* address space limit tests */ 2845 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2846 return -ENOMEM; 2847 2848 /* Stack limit test */ 2849 if (size > rlimit(RLIMIT_STACK)) 2850 return -ENOMEM; 2851 2852 /* mlock limit tests */ 2853 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2854 return -ENOMEM; 2855 2856 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2857 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2858 vma->vm_end - size; 2859 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2860 return -EFAULT; 2861 2862 /* 2863 * Overcommit.. This must be the final test, as it will 2864 * update security statistics. 2865 */ 2866 if (security_vm_enough_memory_mm(mm, grow)) 2867 return -ENOMEM; 2868 2869 return 0; 2870 } 2871 2872 #if defined(CONFIG_STACK_GROWSUP) 2873 /* 2874 * PA-RISC uses this for its stack. 2875 * vma is the last one with address > vma->vm_end. Have to extend vma. 2876 */ 2877 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2878 { 2879 struct mm_struct *mm = vma->vm_mm; 2880 struct vm_area_struct *next; 2881 unsigned long gap_addr; 2882 int error = 0; 2883 VMA_ITERATOR(vmi, mm, vma->vm_start); 2884 2885 if (!(vma->vm_flags & VM_GROWSUP)) 2886 return -EFAULT; 2887 2888 mmap_assert_write_locked(mm); 2889 2890 /* Guard against exceeding limits of the address space. */ 2891 address &= PAGE_MASK; 2892 if (address >= (TASK_SIZE & PAGE_MASK)) 2893 return -ENOMEM; 2894 address += PAGE_SIZE; 2895 2896 /* Enforce stack_guard_gap */ 2897 gap_addr = address + stack_guard_gap; 2898 2899 /* Guard against overflow */ 2900 if (gap_addr < address || gap_addr > TASK_SIZE) 2901 gap_addr = TASK_SIZE; 2902 2903 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2904 if (next && vma_is_accessible(next)) { 2905 if (!(next->vm_flags & VM_GROWSUP)) 2906 return -ENOMEM; 2907 /* Check that both stack segments have the same anon_vma? */ 2908 } 2909 2910 if (next) 2911 vma_iter_prev_range_limit(&vmi, address); 2912 2913 vma_iter_config(&vmi, vma->vm_start, address); 2914 if (vma_iter_prealloc(&vmi, vma)) 2915 return -ENOMEM; 2916 2917 /* We must make sure the anon_vma is allocated. */ 2918 if (unlikely(anon_vma_prepare(vma))) { 2919 vma_iter_free(&vmi); 2920 return -ENOMEM; 2921 } 2922 2923 /* Lock the VMA before expanding to prevent concurrent page faults */ 2924 vma_start_write(vma); 2925 /* We update the anon VMA tree. */ 2926 anon_vma_lock_write(vma->anon_vma); 2927 2928 /* Somebody else might have raced and expanded it already */ 2929 if (address > vma->vm_end) { 2930 unsigned long size, grow; 2931 2932 size = address - vma->vm_start; 2933 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2934 2935 error = -ENOMEM; 2936 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2937 error = acct_stack_growth(vma, size, grow); 2938 if (!error) { 2939 if (vma->vm_flags & VM_LOCKED) 2940 mm->locked_vm += grow; 2941 vm_stat_account(mm, vma->vm_flags, grow); 2942 anon_vma_interval_tree_pre_update_vma(vma); 2943 vma->vm_end = address; 2944 /* Overwrite old entry in mtree. */ 2945 vma_iter_store_overwrite(&vmi, vma); 2946 anon_vma_interval_tree_post_update_vma(vma); 2947 2948 perf_event_mmap(vma); 2949 } 2950 } 2951 } 2952 anon_vma_unlock_write(vma->anon_vma); 2953 vma_iter_free(&vmi); 2954 validate_mm(mm); 2955 return error; 2956 } 2957 #endif /* CONFIG_STACK_GROWSUP */ 2958 2959 /* 2960 * vma is the first one with address < vma->vm_start. Have to extend vma. 2961 * mmap_lock held for writing. 2962 */ 2963 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2964 { 2965 struct mm_struct *mm = vma->vm_mm; 2966 struct vm_area_struct *prev; 2967 int error = 0; 2968 VMA_ITERATOR(vmi, mm, vma->vm_start); 2969 2970 if (!(vma->vm_flags & VM_GROWSDOWN)) 2971 return -EFAULT; 2972 2973 mmap_assert_write_locked(mm); 2974 2975 address &= PAGE_MASK; 2976 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2977 return -EPERM; 2978 2979 /* Enforce stack_guard_gap */ 2980 prev = vma_prev(&vmi); 2981 /* Check that both stack segments have the same anon_vma? */ 2982 if (prev) { 2983 if (!(prev->vm_flags & VM_GROWSDOWN) && 2984 vma_is_accessible(prev) && 2985 (address - prev->vm_end < stack_guard_gap)) 2986 return -ENOMEM; 2987 } 2988 2989 if (prev) 2990 vma_iter_next_range_limit(&vmi, vma->vm_start); 2991 2992 vma_iter_config(&vmi, address, vma->vm_end); 2993 if (vma_iter_prealloc(&vmi, vma)) 2994 return -ENOMEM; 2995 2996 /* We must make sure the anon_vma is allocated. */ 2997 if (unlikely(anon_vma_prepare(vma))) { 2998 vma_iter_free(&vmi); 2999 return -ENOMEM; 3000 } 3001 3002 /* Lock the VMA before expanding to prevent concurrent page faults */ 3003 vma_start_write(vma); 3004 /* We update the anon VMA tree. */ 3005 anon_vma_lock_write(vma->anon_vma); 3006 3007 /* Somebody else might have raced and expanded it already */ 3008 if (address < vma->vm_start) { 3009 unsigned long size, grow; 3010 3011 size = vma->vm_end - address; 3012 grow = (vma->vm_start - address) >> PAGE_SHIFT; 3013 3014 error = -ENOMEM; 3015 if (grow <= vma->vm_pgoff) { 3016 error = acct_stack_growth(vma, size, grow); 3017 if (!error) { 3018 if (vma->vm_flags & VM_LOCKED) 3019 mm->locked_vm += grow; 3020 vm_stat_account(mm, vma->vm_flags, grow); 3021 anon_vma_interval_tree_pre_update_vma(vma); 3022 vma->vm_start = address; 3023 vma->vm_pgoff -= grow; 3024 /* Overwrite old entry in mtree. */ 3025 vma_iter_store_overwrite(&vmi, vma); 3026 anon_vma_interval_tree_post_update_vma(vma); 3027 3028 perf_event_mmap(vma); 3029 } 3030 } 3031 } 3032 anon_vma_unlock_write(vma->anon_vma); 3033 vma_iter_free(&vmi); 3034 validate_mm(mm); 3035 return error; 3036 } 3037 3038 int __vm_munmap(unsigned long start, size_t len, bool unlock) 3039 { 3040 int ret; 3041 struct mm_struct *mm = current->mm; 3042 LIST_HEAD(uf); 3043 VMA_ITERATOR(vmi, mm, start); 3044 3045 if (mmap_write_lock_killable(mm)) 3046 return -EINTR; 3047 3048 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3049 if (ret || !unlock) 3050 mmap_write_unlock(mm); 3051 3052 userfaultfd_unmap_complete(mm, &uf); 3053 return ret; 3054 } 3055