1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 21 unsigned long charged; 22 bool retry_merge; 23 24 struct vm_area_struct *prev; 25 struct vm_area_struct *next; 26 27 /* Unmapping state. */ 28 struct vma_munmap_struct vms; 29 struct ma_state mas_detach; 30 struct maple_tree mt_detach; 31 }; 32 33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 34 struct mmap_state name = { \ 35 .mm = mm_, \ 36 .vmi = vmi_, \ 37 .addr = addr_, \ 38 .end = (addr_) + (len_), \ 39 .pgoff = pgoff_, \ 40 .pglen = PHYS_PFN(len_), \ 41 .flags = flags_, \ 42 .file = file_, \ 43 } 44 45 #define VMG_MMAP_STATE(name, map_, vma_) \ 46 struct vma_merge_struct name = { \ 47 .mm = (map_)->mm, \ 48 .vmi = (map_)->vmi, \ 49 .start = (map_)->addr, \ 50 .end = (map_)->end, \ 51 .flags = (map_)->flags, \ 52 .pgoff = (map_)->pgoff, \ 53 .file = (map_)->file, \ 54 .prev = (map_)->prev, \ 55 .middle = vma_, \ 56 .next = (vma_) ? NULL : (map_)->next, \ 57 .state = VMA_MERGE_START, \ 58 } 59 60 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 61 { 62 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 63 64 if (!mpol_equal(vmg->policy, vma_policy(vma))) 65 return false; 66 /* 67 * VM_SOFTDIRTY should not prevent from VMA merging, if we 68 * match the flags but dirty bit -- the caller should mark 69 * merged VMA as dirty. If dirty bit won't be excluded from 70 * comparison, we increase pressure on the memory system forcing 71 * the kernel to generate new VMAs when old one could be 72 * extended instead. 73 */ 74 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 75 return false; 76 if (vma->vm_file != vmg->file) 77 return false; 78 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 79 return false; 80 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 81 return false; 82 return true; 83 } 84 85 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 86 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 87 { 88 /* 89 * The list_is_singular() test is to avoid merging VMA cloned from 90 * parents. This can improve scalability caused by anon_vma lock. 91 */ 92 if ((!anon_vma1 || !anon_vma2) && (!vma || 93 list_is_singular(&vma->anon_vma_chain))) 94 return true; 95 return anon_vma1 == anon_vma2; 96 } 97 98 /* Are the anon_vma's belonging to each VMA compatible with one another? */ 99 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, 100 struct vm_area_struct *vma2) 101 { 102 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); 103 } 104 105 /* 106 * init_multi_vma_prep() - Initializer for struct vma_prepare 107 * @vp: The vma_prepare struct 108 * @vma: The vma that will be altered once locked 109 * @vmg: The merge state that will be used to determine adjustment and VMA 110 * removal. 111 */ 112 static void init_multi_vma_prep(struct vma_prepare *vp, 113 struct vm_area_struct *vma, 114 struct vma_merge_struct *vmg) 115 { 116 struct vm_area_struct *adjust; 117 struct vm_area_struct **remove = &vp->remove; 118 119 memset(vp, 0, sizeof(struct vma_prepare)); 120 vp->vma = vma; 121 vp->anon_vma = vma->anon_vma; 122 123 if (vmg && vmg->__remove_middle) { 124 *remove = vmg->middle; 125 remove = &vp->remove2; 126 } 127 if (vmg && vmg->__remove_next) 128 *remove = vmg->next; 129 130 if (vmg && vmg->__adjust_middle_start) 131 adjust = vmg->middle; 132 else if (vmg && vmg->__adjust_next_start) 133 adjust = vmg->next; 134 else 135 adjust = NULL; 136 137 vp->adj_next = adjust; 138 if (!vp->anon_vma && adjust) 139 vp->anon_vma = adjust->anon_vma; 140 141 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 142 vp->anon_vma != adjust->anon_vma); 143 144 vp->file = vma->vm_file; 145 if (vp->file) 146 vp->mapping = vma->vm_file->f_mapping; 147 } 148 149 /* 150 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 151 * in front of (at a lower virtual address and file offset than) the vma. 152 * 153 * We cannot merge two vmas if they have differently assigned (non-NULL) 154 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 155 * 156 * We don't check here for the merged mmap wrapping around the end of pagecache 157 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 158 * wrap, nor mmaps which cover the final page at index -1UL. 159 * 160 * We assume the vma may be removed as part of the merge. 161 */ 162 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 163 { 164 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 165 166 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 167 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 168 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 169 return true; 170 } 171 172 return false; 173 } 174 175 /* 176 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 177 * beyond (at a higher virtual address and file offset than) the vma. 178 * 179 * We cannot merge two vmas if they have differently assigned (non-NULL) 180 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 181 * 182 * We assume that vma is not removed as part of the merge. 183 */ 184 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 185 { 186 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 187 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 188 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 189 return true; 190 } 191 return false; 192 } 193 194 static void __vma_link_file(struct vm_area_struct *vma, 195 struct address_space *mapping) 196 { 197 if (vma_is_shared_maywrite(vma)) 198 mapping_allow_writable(mapping); 199 200 flush_dcache_mmap_lock(mapping); 201 vma_interval_tree_insert(vma, &mapping->i_mmap); 202 flush_dcache_mmap_unlock(mapping); 203 } 204 205 /* 206 * Requires inode->i_mapping->i_mmap_rwsem 207 */ 208 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 209 struct address_space *mapping) 210 { 211 if (vma_is_shared_maywrite(vma)) 212 mapping_unmap_writable(mapping); 213 214 flush_dcache_mmap_lock(mapping); 215 vma_interval_tree_remove(vma, &mapping->i_mmap); 216 flush_dcache_mmap_unlock(mapping); 217 } 218 219 /* 220 * vma has some anon_vma assigned, and is already inserted on that 221 * anon_vma's interval trees. 222 * 223 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 224 * vma must be removed from the anon_vma's interval trees using 225 * anon_vma_interval_tree_pre_update_vma(). 226 * 227 * After the update, the vma will be reinserted using 228 * anon_vma_interval_tree_post_update_vma(). 229 * 230 * The entire update must be protected by exclusive mmap_lock and by 231 * the root anon_vma's mutex. 232 */ 233 static void 234 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 235 { 236 struct anon_vma_chain *avc; 237 238 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 239 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 240 } 241 242 static void 243 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 244 { 245 struct anon_vma_chain *avc; 246 247 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 248 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 249 } 250 251 /* 252 * vma_prepare() - Helper function for handling locking VMAs prior to altering 253 * @vp: The initialized vma_prepare struct 254 */ 255 static void vma_prepare(struct vma_prepare *vp) 256 { 257 if (vp->file) { 258 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 259 260 if (vp->adj_next) 261 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 262 vp->adj_next->vm_end); 263 264 i_mmap_lock_write(vp->mapping); 265 if (vp->insert && vp->insert->vm_file) { 266 /* 267 * Put into interval tree now, so instantiated pages 268 * are visible to arm/parisc __flush_dcache_page 269 * throughout; but we cannot insert into address 270 * space until vma start or end is updated. 271 */ 272 __vma_link_file(vp->insert, 273 vp->insert->vm_file->f_mapping); 274 } 275 } 276 277 if (vp->anon_vma) { 278 anon_vma_lock_write(vp->anon_vma); 279 anon_vma_interval_tree_pre_update_vma(vp->vma); 280 if (vp->adj_next) 281 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 282 } 283 284 if (vp->file) { 285 flush_dcache_mmap_lock(vp->mapping); 286 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 287 if (vp->adj_next) 288 vma_interval_tree_remove(vp->adj_next, 289 &vp->mapping->i_mmap); 290 } 291 292 } 293 294 /* 295 * vma_complete- Helper function for handling the unlocking after altering VMAs, 296 * or for inserting a VMA. 297 * 298 * @vp: The vma_prepare struct 299 * @vmi: The vma iterator 300 * @mm: The mm_struct 301 */ 302 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 303 struct mm_struct *mm) 304 { 305 if (vp->file) { 306 if (vp->adj_next) 307 vma_interval_tree_insert(vp->adj_next, 308 &vp->mapping->i_mmap); 309 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 310 flush_dcache_mmap_unlock(vp->mapping); 311 } 312 313 if (vp->remove && vp->file) { 314 __remove_shared_vm_struct(vp->remove, vp->mapping); 315 if (vp->remove2) 316 __remove_shared_vm_struct(vp->remove2, vp->mapping); 317 } else if (vp->insert) { 318 /* 319 * split_vma has split insert from vma, and needs 320 * us to insert it before dropping the locks 321 * (it may either follow vma or precede it). 322 */ 323 vma_iter_store_new(vmi, vp->insert); 324 mm->map_count++; 325 } 326 327 if (vp->anon_vma) { 328 anon_vma_interval_tree_post_update_vma(vp->vma); 329 if (vp->adj_next) 330 anon_vma_interval_tree_post_update_vma(vp->adj_next); 331 anon_vma_unlock_write(vp->anon_vma); 332 } 333 334 if (vp->file) { 335 i_mmap_unlock_write(vp->mapping); 336 uprobe_mmap(vp->vma); 337 338 if (vp->adj_next) 339 uprobe_mmap(vp->adj_next); 340 } 341 342 if (vp->remove) { 343 again: 344 vma_mark_detached(vp->remove); 345 if (vp->file) { 346 uprobe_munmap(vp->remove, vp->remove->vm_start, 347 vp->remove->vm_end); 348 fput(vp->file); 349 } 350 if (vp->remove->anon_vma) 351 anon_vma_merge(vp->vma, vp->remove); 352 mm->map_count--; 353 mpol_put(vma_policy(vp->remove)); 354 if (!vp->remove2) 355 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 356 vm_area_free(vp->remove); 357 358 /* 359 * In mprotect's case 6 (see comments on vma_merge), 360 * we are removing both mid and next vmas 361 */ 362 if (vp->remove2) { 363 vp->remove = vp->remove2; 364 vp->remove2 = NULL; 365 goto again; 366 } 367 } 368 if (vp->insert && vp->file) 369 uprobe_mmap(vp->insert); 370 } 371 372 /* 373 * init_vma_prep() - Initializer wrapper for vma_prepare struct 374 * @vp: The vma_prepare struct 375 * @vma: The vma that will be altered once locked 376 */ 377 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 378 { 379 init_multi_vma_prep(vp, vma, NULL); 380 } 381 382 /* 383 * Can the proposed VMA be merged with the left (previous) VMA taking into 384 * account the start position of the proposed range. 385 */ 386 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 387 388 { 389 return vmg->prev && vmg->prev->vm_end == vmg->start && 390 can_vma_merge_after(vmg); 391 } 392 393 /* 394 * Can the proposed VMA be merged with the right (next) VMA taking into 395 * account the end position of the proposed range. 396 * 397 * In addition, if we can merge with the left VMA, ensure that left and right 398 * anon_vma's are also compatible. 399 */ 400 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 401 bool can_merge_left) 402 { 403 if (!vmg->next || vmg->end != vmg->next->vm_start || 404 !can_vma_merge_before(vmg)) 405 return false; 406 407 if (!can_merge_left) 408 return true; 409 410 /* 411 * If we can merge with prev (left) and next (right), indicating that 412 * each VMA's anon_vma is compatible with the proposed anon_vma, this 413 * does not mean prev and next are compatible with EACH OTHER. 414 * 415 * We therefore check this in addition to mergeability to either side. 416 */ 417 return are_anon_vmas_compatible(vmg->prev, vmg->next); 418 } 419 420 /* 421 * Close a vm structure and free it. 422 */ 423 void remove_vma(struct vm_area_struct *vma) 424 { 425 might_sleep(); 426 vma_close(vma); 427 if (vma->vm_file) 428 fput(vma->vm_file); 429 mpol_put(vma_policy(vma)); 430 vm_area_free(vma); 431 } 432 433 /* 434 * Get rid of page table information in the indicated region. 435 * 436 * Called with the mm semaphore held. 437 */ 438 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 439 struct vm_area_struct *prev, struct vm_area_struct *next) 440 { 441 struct mm_struct *mm = vma->vm_mm; 442 struct mmu_gather tlb; 443 444 tlb_gather_mmu(&tlb, mm); 445 update_hiwater_rss(mm); 446 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 447 /* mm_wr_locked = */ true); 448 mas_set(mas, vma->vm_end); 449 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 450 next ? next->vm_start : USER_PGTABLES_CEILING, 451 /* mm_wr_locked = */ true); 452 tlb_finish_mmu(&tlb); 453 } 454 455 /* 456 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 457 * has already been checked or doesn't make sense to fail. 458 * VMA Iterator will point to the original VMA. 459 */ 460 static __must_check int 461 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 462 unsigned long addr, int new_below) 463 { 464 struct vma_prepare vp; 465 struct vm_area_struct *new; 466 int err; 467 468 WARN_ON(vma->vm_start >= addr); 469 WARN_ON(vma->vm_end <= addr); 470 471 if (vma->vm_ops && vma->vm_ops->may_split) { 472 err = vma->vm_ops->may_split(vma, addr); 473 if (err) 474 return err; 475 } 476 477 new = vm_area_dup(vma); 478 if (!new) 479 return -ENOMEM; 480 481 if (new_below) { 482 new->vm_end = addr; 483 } else { 484 new->vm_start = addr; 485 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 486 } 487 488 err = -ENOMEM; 489 vma_iter_config(vmi, new->vm_start, new->vm_end); 490 if (vma_iter_prealloc(vmi, new)) 491 goto out_free_vma; 492 493 err = vma_dup_policy(vma, new); 494 if (err) 495 goto out_free_vmi; 496 497 err = anon_vma_clone(new, vma); 498 if (err) 499 goto out_free_mpol; 500 501 if (new->vm_file) 502 get_file(new->vm_file); 503 504 if (new->vm_ops && new->vm_ops->open) 505 new->vm_ops->open(new); 506 507 vma_start_write(vma); 508 vma_start_write(new); 509 510 init_vma_prep(&vp, vma); 511 vp.insert = new; 512 vma_prepare(&vp); 513 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 514 515 if (new_below) { 516 vma->vm_start = addr; 517 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 518 } else { 519 vma->vm_end = addr; 520 } 521 522 /* vma_complete stores the new vma */ 523 vma_complete(&vp, vmi, vma->vm_mm); 524 validate_mm(vma->vm_mm); 525 526 /* Success. */ 527 if (new_below) 528 vma_next(vmi); 529 else 530 vma_prev(vmi); 531 532 return 0; 533 534 out_free_mpol: 535 mpol_put(vma_policy(new)); 536 out_free_vmi: 537 vma_iter_free(vmi); 538 out_free_vma: 539 vm_area_free(new); 540 return err; 541 } 542 543 /* 544 * Split a vma into two pieces at address 'addr', a new vma is allocated 545 * either for the first part or the tail. 546 */ 547 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 548 unsigned long addr, int new_below) 549 { 550 if (vma->vm_mm->map_count >= sysctl_max_map_count) 551 return -ENOMEM; 552 553 return __split_vma(vmi, vma, addr, new_below); 554 } 555 556 /* 557 * dup_anon_vma() - Helper function to duplicate anon_vma 558 * @dst: The destination VMA 559 * @src: The source VMA 560 * @dup: Pointer to the destination VMA when successful. 561 * 562 * Returns: 0 on success. 563 */ 564 static int dup_anon_vma(struct vm_area_struct *dst, 565 struct vm_area_struct *src, struct vm_area_struct **dup) 566 { 567 /* 568 * Easily overlooked: when mprotect shifts the boundary, make sure the 569 * expanding vma has anon_vma set if the shrinking vma had, to cover any 570 * anon pages imported. 571 */ 572 if (src->anon_vma && !dst->anon_vma) { 573 int ret; 574 575 vma_assert_write_locked(dst); 576 dst->anon_vma = src->anon_vma; 577 ret = anon_vma_clone(dst, src); 578 if (ret) 579 return ret; 580 581 *dup = dst; 582 } 583 584 return 0; 585 } 586 587 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 588 void validate_mm(struct mm_struct *mm) 589 { 590 int bug = 0; 591 int i = 0; 592 struct vm_area_struct *vma; 593 VMA_ITERATOR(vmi, mm, 0); 594 595 mt_validate(&mm->mm_mt); 596 for_each_vma(vmi, vma) { 597 #ifdef CONFIG_DEBUG_VM_RB 598 struct anon_vma *anon_vma = vma->anon_vma; 599 struct anon_vma_chain *avc; 600 #endif 601 unsigned long vmi_start, vmi_end; 602 bool warn = 0; 603 604 vmi_start = vma_iter_addr(&vmi); 605 vmi_end = vma_iter_end(&vmi); 606 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 607 warn = 1; 608 609 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 610 warn = 1; 611 612 if (warn) { 613 pr_emerg("issue in %s\n", current->comm); 614 dump_stack(); 615 dump_vma(vma); 616 pr_emerg("tree range: %px start %lx end %lx\n", vma, 617 vmi_start, vmi_end - 1); 618 vma_iter_dump_tree(&vmi); 619 } 620 621 #ifdef CONFIG_DEBUG_VM_RB 622 if (anon_vma) { 623 anon_vma_lock_read(anon_vma); 624 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 625 anon_vma_interval_tree_verify(avc); 626 anon_vma_unlock_read(anon_vma); 627 } 628 #endif 629 /* Check for a infinite loop */ 630 if (++i > mm->map_count + 10) { 631 i = -1; 632 break; 633 } 634 } 635 if (i != mm->map_count) { 636 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 637 bug = 1; 638 } 639 VM_BUG_ON_MM(bug, mm); 640 } 641 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 642 643 /* 644 * Based on the vmg flag indicating whether we need to adjust the vm_start field 645 * for the middle or next VMA, we calculate what the range of the newly adjusted 646 * VMA ought to be, and set the VMA's range accordingly. 647 */ 648 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 649 { 650 struct vm_area_struct *adjust; 651 pgoff_t pgoff; 652 653 if (vmg->__adjust_middle_start) { 654 adjust = vmg->middle; 655 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 656 } else if (vmg->__adjust_next_start) { 657 adjust = vmg->next; 658 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 659 } else { 660 return; 661 } 662 663 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 664 } 665 666 /* 667 * Actually perform the VMA merge operation. 668 * 669 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not 670 * modify any VMAs or cause inconsistent state should an OOM condition arise. 671 * 672 * Returns 0 on success, or an error value on failure. 673 */ 674 static int commit_merge(struct vma_merge_struct *vmg) 675 { 676 struct vm_area_struct *vma; 677 struct vma_prepare vp; 678 679 if (vmg->__adjust_next_start) { 680 /* We manipulate middle and adjust next, which is the target. */ 681 vma = vmg->middle; 682 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 683 } else { 684 vma = vmg->target; 685 /* Note: vma iterator must be pointing to 'start'. */ 686 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 687 } 688 689 init_multi_vma_prep(&vp, vma, vmg); 690 691 /* 692 * If vmg->give_up_on_oom is set, we're safe, because we don't actually 693 * manipulate any VMAs until we succeed at preallocation. 694 * 695 * Past this point, we will not return an error. 696 */ 697 if (vma_iter_prealloc(vmg->vmi, vma)) 698 return -ENOMEM; 699 700 vma_prepare(&vp); 701 /* 702 * THP pages may need to do additional splits if we increase 703 * middle->vm_start. 704 */ 705 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 706 vmg->__adjust_middle_start ? vmg->middle : NULL); 707 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 708 vmg_adjust_set_range(vmg); 709 vma_iter_store_overwrite(vmg->vmi, vmg->target); 710 711 vma_complete(&vp, vmg->vmi, vma->vm_mm); 712 713 return 0; 714 } 715 716 /* We can only remove VMAs when merging if they do not have a close hook. */ 717 static bool can_merge_remove_vma(struct vm_area_struct *vma) 718 { 719 return !vma->vm_ops || !vma->vm_ops->close; 720 } 721 722 /* 723 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 724 * attributes modified. 725 * 726 * @vmg: Describes the modifications being made to a VMA and associated 727 * metadata. 728 * 729 * When the attributes of a range within a VMA change, then it might be possible 730 * for immediately adjacent VMAs to be merged into that VMA due to having 731 * identical properties. 732 * 733 * This function checks for the existence of any such mergeable VMAs and updates 734 * the maple tree describing the @vmg->middle->vm_mm address space to account 735 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 736 * merge. 737 * 738 * As part of this operation, if a merge occurs, the @vmg object will have its 739 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 740 * calls to this function should reset these fields. 741 * 742 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 743 * 744 * ASSUMPTIONS: 745 * - The caller must assign the VMA to be modifed to @vmg->middle. 746 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 747 * - The caller must not set @vmg->next, as we determine this. 748 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 749 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 750 */ 751 static __must_check struct vm_area_struct *vma_merge_existing_range( 752 struct vma_merge_struct *vmg) 753 { 754 struct vm_area_struct *middle = vmg->middle; 755 struct vm_area_struct *prev = vmg->prev; 756 struct vm_area_struct *next; 757 struct vm_area_struct *anon_dup = NULL; 758 unsigned long start = vmg->start; 759 unsigned long end = vmg->end; 760 bool left_side = middle && start == middle->vm_start; 761 bool right_side = middle && end == middle->vm_end; 762 int err = 0; 763 bool merge_left, merge_right, merge_both; 764 765 mmap_assert_write_locked(vmg->mm); 766 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 767 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 768 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 769 VM_WARN_ON_VMG(start >= end, vmg); 770 771 /* 772 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 773 * not, we must span a portion of the VMA. 774 */ 775 VM_WARN_ON_VMG(middle && 776 ((middle != prev && vmg->start != middle->vm_start) || 777 vmg->end > middle->vm_end), vmg); 778 /* The vmi must be positioned within vmg->middle. */ 779 VM_WARN_ON_VMG(middle && 780 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 781 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 782 783 vmg->state = VMA_MERGE_NOMERGE; 784 785 /* 786 * If a special mapping or if the range being modified is neither at the 787 * furthermost left or right side of the VMA, then we have no chance of 788 * merging and should abort. 789 */ 790 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 791 return NULL; 792 793 if (left_side) 794 merge_left = can_vma_merge_left(vmg); 795 else 796 merge_left = false; 797 798 if (right_side) { 799 next = vmg->next = vma_iter_next_range(vmg->vmi); 800 vma_iter_prev_range(vmg->vmi); 801 802 merge_right = can_vma_merge_right(vmg, merge_left); 803 } else { 804 merge_right = false; 805 next = NULL; 806 } 807 808 if (merge_left) /* If merging prev, position iterator there. */ 809 vma_prev(vmg->vmi); 810 else if (!merge_right) /* If we have nothing to merge, abort. */ 811 return NULL; 812 813 merge_both = merge_left && merge_right; 814 /* If we span the entire VMA, a merge implies it will be deleted. */ 815 vmg->__remove_middle = left_side && right_side; 816 817 /* 818 * If we need to remove middle in its entirety but are unable to do so, 819 * we have no sensible recourse but to abort the merge. 820 */ 821 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 822 return NULL; 823 824 /* 825 * If we merge both VMAs, then next is also deleted. This implies 826 * merge_will_delete_vma also. 827 */ 828 vmg->__remove_next = merge_both; 829 830 /* 831 * If we cannot delete next, then we can reduce the operation to merging 832 * prev and middle (thereby deleting middle). 833 */ 834 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 835 vmg->__remove_next = false; 836 merge_right = false; 837 merge_both = false; 838 } 839 840 /* No matter what happens, we will be adjusting middle. */ 841 vma_start_write(middle); 842 843 if (merge_right) { 844 vma_start_write(next); 845 vmg->target = next; 846 } 847 848 if (merge_left) { 849 vma_start_write(prev); 850 vmg->target = prev; 851 } 852 853 if (merge_both) { 854 /* 855 * |<-------------------->| 856 * |-------********-------| 857 * prev middle next 858 * extend delete delete 859 */ 860 861 vmg->start = prev->vm_start; 862 vmg->end = next->vm_end; 863 vmg->pgoff = prev->vm_pgoff; 864 865 /* 866 * We already ensured anon_vma compatibility above, so now it's 867 * simply a case of, if prev has no anon_vma object, which of 868 * next or middle contains the anon_vma we must duplicate. 869 */ 870 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 871 &anon_dup); 872 } else if (merge_left) { 873 /* 874 * |<------------>| OR 875 * |<----------------->| 876 * |-------************* 877 * prev middle 878 * extend shrink/delete 879 */ 880 881 vmg->start = prev->vm_start; 882 vmg->pgoff = prev->vm_pgoff; 883 884 if (!vmg->__remove_middle) 885 vmg->__adjust_middle_start = true; 886 887 err = dup_anon_vma(prev, middle, &anon_dup); 888 } else { /* merge_right */ 889 /* 890 * |<------------->| OR 891 * |<----------------->| 892 * *************-------| 893 * middle next 894 * shrink/delete extend 895 */ 896 897 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 898 899 VM_WARN_ON_VMG(!merge_right, vmg); 900 /* If we are offset into a VMA, then prev must be middle. */ 901 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 902 903 if (vmg->__remove_middle) { 904 vmg->end = next->vm_end; 905 vmg->pgoff = next->vm_pgoff - pglen; 906 } else { 907 /* We shrink middle and expand next. */ 908 vmg->__adjust_next_start = true; 909 vmg->start = middle->vm_start; 910 vmg->end = start; 911 vmg->pgoff = middle->vm_pgoff; 912 } 913 914 err = dup_anon_vma(next, middle, &anon_dup); 915 } 916 917 if (err) 918 goto abort; 919 920 err = commit_merge(vmg); 921 if (err) { 922 VM_WARN_ON(err != -ENOMEM); 923 924 if (anon_dup) 925 unlink_anon_vmas(anon_dup); 926 927 /* 928 * We've cleaned up any cloned anon_vma's, no VMAs have been 929 * modified, no harm no foul if the user requests that we not 930 * report this and just give up, leaving the VMAs unmerged. 931 */ 932 if (!vmg->give_up_on_oom) 933 vmg->state = VMA_MERGE_ERROR_NOMEM; 934 return NULL; 935 } 936 937 khugepaged_enter_vma(vmg->target, vmg->flags); 938 vmg->state = VMA_MERGE_SUCCESS; 939 return vmg->target; 940 941 abort: 942 vma_iter_set(vmg->vmi, start); 943 vma_iter_load(vmg->vmi); 944 945 /* 946 * This means we have failed to clone anon_vma's correctly, but no 947 * actual changes to VMAs have occurred, so no harm no foul - if the 948 * user doesn't want this reported and instead just wants to give up on 949 * the merge, allow it. 950 */ 951 if (!vmg->give_up_on_oom) 952 vmg->state = VMA_MERGE_ERROR_NOMEM; 953 return NULL; 954 } 955 956 /* 957 * vma_merge_new_range - Attempt to merge a new VMA into address space 958 * 959 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 960 * (exclusive), which we try to merge with any adjacent VMAs if possible. 961 * 962 * We are about to add a VMA to the address space starting at @vmg->start and 963 * ending at @vmg->end. There are three different possible scenarios: 964 * 965 * 1. There is a VMA with identical properties immediately adjacent to the 966 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 967 * EXPAND that VMA: 968 * 969 * Proposed: |-----| or |-----| 970 * Existing: |----| |----| 971 * 972 * 2. There are VMAs with identical properties immediately adjacent to the 973 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 974 * EXPAND the former and REMOVE the latter: 975 * 976 * Proposed: |-----| 977 * Existing: |----| |----| 978 * 979 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 980 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 981 * 982 * In instances where we can merge, this function returns the expanded VMA which 983 * will have its range adjusted accordingly and the underlying maple tree also 984 * adjusted. 985 * 986 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 987 * to the VMA we expanded. 988 * 989 * This function adjusts @vmg to provide @vmg->next if not already specified, 990 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 991 * 992 * ASSUMPTIONS: 993 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 994 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 995 other than VMAs that will be unmapped should the operation succeed. 996 * - The caller must have specified the previous vma in @vmg->prev. 997 * - The caller must have specified the next vma in @vmg->next. 998 * - The caller must have positioned the vmi at or before the gap. 999 */ 1000 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 1001 { 1002 struct vm_area_struct *prev = vmg->prev; 1003 struct vm_area_struct *next = vmg->next; 1004 unsigned long end = vmg->end; 1005 bool can_merge_left, can_merge_right; 1006 1007 mmap_assert_write_locked(vmg->mm); 1008 VM_WARN_ON_VMG(vmg->middle, vmg); 1009 /* vmi must point at or before the gap. */ 1010 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 1011 1012 vmg->state = VMA_MERGE_NOMERGE; 1013 1014 /* Special VMAs are unmergeable, also if no prev/next. */ 1015 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 1016 return NULL; 1017 1018 can_merge_left = can_vma_merge_left(vmg); 1019 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1020 1021 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1022 if (can_merge_right) { 1023 vmg->end = next->vm_end; 1024 vmg->middle = next; 1025 } 1026 1027 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1028 if (can_merge_left) { 1029 vmg->start = prev->vm_start; 1030 vmg->middle = prev; 1031 vmg->pgoff = prev->vm_pgoff; 1032 1033 /* 1034 * If this merge would result in removal of the next VMA but we 1035 * are not permitted to do so, reduce the operation to merging 1036 * prev and vma. 1037 */ 1038 if (can_merge_right && !can_merge_remove_vma(next)) 1039 vmg->end = end; 1040 1041 /* In expand-only case we are already positioned at prev. */ 1042 if (!vmg->just_expand) { 1043 /* Equivalent to going to the previous range. */ 1044 vma_prev(vmg->vmi); 1045 } 1046 } 1047 1048 /* 1049 * Now try to expand adjacent VMA(s). This takes care of removing the 1050 * following VMA if we have VMAs on both sides. 1051 */ 1052 if (vmg->middle && !vma_expand(vmg)) { 1053 khugepaged_enter_vma(vmg->middle, vmg->flags); 1054 vmg->state = VMA_MERGE_SUCCESS; 1055 return vmg->middle; 1056 } 1057 1058 return NULL; 1059 } 1060 1061 /* 1062 * vma_expand - Expand an existing VMA 1063 * 1064 * @vmg: Describes a VMA expansion operation. 1065 * 1066 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1067 * Will expand over vmg->next if it's different from vmg->middle and vmg->end == 1068 * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with 1069 * vmg->next needs to be handled by the caller. 1070 * 1071 * Returns: 0 on success. 1072 * 1073 * ASSUMPTIONS: 1074 * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. 1075 * - The caller must have set @vmg->middle and @vmg->next. 1076 */ 1077 int vma_expand(struct vma_merge_struct *vmg) 1078 { 1079 struct vm_area_struct *anon_dup = NULL; 1080 bool remove_next = false; 1081 struct vm_area_struct *middle = vmg->middle; 1082 struct vm_area_struct *next = vmg->next; 1083 1084 mmap_assert_write_locked(vmg->mm); 1085 1086 vma_start_write(middle); 1087 if (next && (middle != next) && (vmg->end == next->vm_end)) { 1088 int ret; 1089 1090 remove_next = true; 1091 /* This should already have been checked by this point. */ 1092 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1093 vma_start_write(next); 1094 /* 1095 * In this case we don't report OOM, so vmg->give_up_on_mm is 1096 * safe. 1097 */ 1098 ret = dup_anon_vma(middle, next, &anon_dup); 1099 if (ret) 1100 return ret; 1101 } 1102 1103 /* Not merging but overwriting any part of next is not handled. */ 1104 VM_WARN_ON_VMG(next && !remove_next && 1105 next != middle && vmg->end > next->vm_start, vmg); 1106 /* Only handles expanding */ 1107 VM_WARN_ON_VMG(middle->vm_start < vmg->start || 1108 middle->vm_end > vmg->end, vmg); 1109 1110 vmg->target = middle; 1111 if (remove_next) 1112 vmg->__remove_next = true; 1113 1114 if (commit_merge(vmg)) 1115 goto nomem; 1116 1117 return 0; 1118 1119 nomem: 1120 if (anon_dup) 1121 unlink_anon_vmas(anon_dup); 1122 /* 1123 * If the user requests that we just give upon OOM, we are safe to do so 1124 * here, as commit merge provides this contract to us. Nothing has been 1125 * changed - no harm no foul, just don't report it. 1126 */ 1127 if (!vmg->give_up_on_oom) 1128 vmg->state = VMA_MERGE_ERROR_NOMEM; 1129 return -ENOMEM; 1130 } 1131 1132 /* 1133 * vma_shrink() - Reduce an existing VMAs memory area 1134 * @vmi: The vma iterator 1135 * @vma: The VMA to modify 1136 * @start: The new start 1137 * @end: The new end 1138 * 1139 * Returns: 0 on success, -ENOMEM otherwise 1140 */ 1141 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1142 unsigned long start, unsigned long end, pgoff_t pgoff) 1143 { 1144 struct vma_prepare vp; 1145 1146 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1147 1148 if (vma->vm_start < start) 1149 vma_iter_config(vmi, vma->vm_start, start); 1150 else 1151 vma_iter_config(vmi, end, vma->vm_end); 1152 1153 if (vma_iter_prealloc(vmi, NULL)) 1154 return -ENOMEM; 1155 1156 vma_start_write(vma); 1157 1158 init_vma_prep(&vp, vma); 1159 vma_prepare(&vp); 1160 vma_adjust_trans_huge(vma, start, end, NULL); 1161 1162 vma_iter_clear(vmi); 1163 vma_set_range(vma, start, end, pgoff); 1164 vma_complete(&vp, vmi, vma->vm_mm); 1165 validate_mm(vma->vm_mm); 1166 return 0; 1167 } 1168 1169 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1170 struct ma_state *mas_detach, bool mm_wr_locked) 1171 { 1172 struct mmu_gather tlb; 1173 1174 if (!vms->clear_ptes) /* Nothing to do */ 1175 return; 1176 1177 /* 1178 * We can free page tables without write-locking mmap_lock because VMAs 1179 * were isolated before we downgraded mmap_lock. 1180 */ 1181 mas_set(mas_detach, 1); 1182 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1183 update_hiwater_rss(vms->vma->vm_mm); 1184 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1185 vms->vma_count, mm_wr_locked); 1186 1187 mas_set(mas_detach, 1); 1188 /* start and end may be different if there is no prev or next vma. */ 1189 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1190 vms->unmap_end, mm_wr_locked); 1191 tlb_finish_mmu(&tlb); 1192 vms->clear_ptes = false; 1193 } 1194 1195 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1196 struct ma_state *mas_detach) 1197 { 1198 struct vm_area_struct *vma; 1199 1200 if (!vms->nr_pages) 1201 return; 1202 1203 vms_clear_ptes(vms, mas_detach, true); 1204 mas_set(mas_detach, 0); 1205 mas_for_each(mas_detach, vma, ULONG_MAX) 1206 vma_close(vma); 1207 } 1208 1209 /* 1210 * vms_complete_munmap_vmas() - Finish the munmap() operation 1211 * @vms: The vma munmap struct 1212 * @mas_detach: The maple state of the detached vmas 1213 * 1214 * This updates the mm_struct, unmaps the region, frees the resources 1215 * used for the munmap() and may downgrade the lock - if requested. Everything 1216 * needed to be done once the vma maple tree is updated. 1217 */ 1218 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1219 struct ma_state *mas_detach) 1220 { 1221 struct vm_area_struct *vma; 1222 struct mm_struct *mm; 1223 1224 mm = current->mm; 1225 mm->map_count -= vms->vma_count; 1226 mm->locked_vm -= vms->locked_vm; 1227 if (vms->unlock) 1228 mmap_write_downgrade(mm); 1229 1230 if (!vms->nr_pages) 1231 return; 1232 1233 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1234 /* Update high watermark before we lower total_vm */ 1235 update_hiwater_vm(mm); 1236 /* Stat accounting */ 1237 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1238 /* Paranoid bookkeeping */ 1239 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1240 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1241 VM_WARN_ON(vms->data_vm > mm->data_vm); 1242 mm->exec_vm -= vms->exec_vm; 1243 mm->stack_vm -= vms->stack_vm; 1244 mm->data_vm -= vms->data_vm; 1245 1246 /* Remove and clean up vmas */ 1247 mas_set(mas_detach, 0); 1248 mas_for_each(mas_detach, vma, ULONG_MAX) 1249 remove_vma(vma); 1250 1251 vm_unacct_memory(vms->nr_accounted); 1252 validate_mm(mm); 1253 if (vms->unlock) 1254 mmap_read_unlock(mm); 1255 1256 __mt_destroy(mas_detach->tree); 1257 } 1258 1259 /* 1260 * reattach_vmas() - Undo any munmap work and free resources 1261 * @mas_detach: The maple state with the detached maple tree 1262 * 1263 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1264 */ 1265 static void reattach_vmas(struct ma_state *mas_detach) 1266 { 1267 struct vm_area_struct *vma; 1268 1269 mas_set(mas_detach, 0); 1270 mas_for_each(mas_detach, vma, ULONG_MAX) 1271 vma_mark_attached(vma); 1272 1273 __mt_destroy(mas_detach->tree); 1274 } 1275 1276 /* 1277 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1278 * for removal at a later date. Handles splitting first and last if necessary 1279 * and marking the vmas as isolated. 1280 * 1281 * @vms: The vma munmap struct 1282 * @mas_detach: The maple state tracking the detached tree 1283 * 1284 * Return: 0 on success, error otherwise 1285 */ 1286 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1287 struct ma_state *mas_detach) 1288 { 1289 struct vm_area_struct *next = NULL; 1290 int error; 1291 1292 /* 1293 * If we need to split any vma, do it now to save pain later. 1294 * Does it split the first one? 1295 */ 1296 if (vms->start > vms->vma->vm_start) { 1297 1298 /* 1299 * Make sure that map_count on return from munmap() will 1300 * not exceed its limit; but let map_count go just above 1301 * its limit temporarily, to help free resources as expected. 1302 */ 1303 if (vms->end < vms->vma->vm_end && 1304 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1305 error = -ENOMEM; 1306 goto map_count_exceeded; 1307 } 1308 1309 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1310 if (!can_modify_vma(vms->vma)) { 1311 error = -EPERM; 1312 goto start_split_failed; 1313 } 1314 1315 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1316 if (error) 1317 goto start_split_failed; 1318 } 1319 vms->prev = vma_prev(vms->vmi); 1320 if (vms->prev) 1321 vms->unmap_start = vms->prev->vm_end; 1322 1323 /* 1324 * Detach a range of VMAs from the mm. Using next as a temp variable as 1325 * it is always overwritten. 1326 */ 1327 for_each_vma_range(*(vms->vmi), next, vms->end) { 1328 long nrpages; 1329 1330 if (!can_modify_vma(next)) { 1331 error = -EPERM; 1332 goto modify_vma_failed; 1333 } 1334 /* Does it split the end? */ 1335 if (next->vm_end > vms->end) { 1336 error = __split_vma(vms->vmi, next, vms->end, 0); 1337 if (error) 1338 goto end_split_failed; 1339 } 1340 vma_start_write(next); 1341 mas_set(mas_detach, vms->vma_count++); 1342 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1343 if (error) 1344 goto munmap_gather_failed; 1345 1346 vma_mark_detached(next); 1347 nrpages = vma_pages(next); 1348 1349 vms->nr_pages += nrpages; 1350 if (next->vm_flags & VM_LOCKED) 1351 vms->locked_vm += nrpages; 1352 1353 if (next->vm_flags & VM_ACCOUNT) 1354 vms->nr_accounted += nrpages; 1355 1356 if (is_exec_mapping(next->vm_flags)) 1357 vms->exec_vm += nrpages; 1358 else if (is_stack_mapping(next->vm_flags)) 1359 vms->stack_vm += nrpages; 1360 else if (is_data_mapping(next->vm_flags)) 1361 vms->data_vm += nrpages; 1362 1363 if (vms->uf) { 1364 /* 1365 * If userfaultfd_unmap_prep returns an error the vmas 1366 * will remain split, but userland will get a 1367 * highly unexpected error anyway. This is no 1368 * different than the case where the first of the two 1369 * __split_vma fails, but we don't undo the first 1370 * split, despite we could. This is unlikely enough 1371 * failure that it's not worth optimizing it for. 1372 */ 1373 error = userfaultfd_unmap_prep(next, vms->start, 1374 vms->end, vms->uf); 1375 if (error) 1376 goto userfaultfd_error; 1377 } 1378 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1379 BUG_ON(next->vm_start < vms->start); 1380 BUG_ON(next->vm_start > vms->end); 1381 #endif 1382 } 1383 1384 vms->next = vma_next(vms->vmi); 1385 if (vms->next) 1386 vms->unmap_end = vms->next->vm_start; 1387 1388 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1389 /* Make sure no VMAs are about to be lost. */ 1390 { 1391 MA_STATE(test, mas_detach->tree, 0, 0); 1392 struct vm_area_struct *vma_mas, *vma_test; 1393 int test_count = 0; 1394 1395 vma_iter_set(vms->vmi, vms->start); 1396 rcu_read_lock(); 1397 vma_test = mas_find(&test, vms->vma_count - 1); 1398 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1399 BUG_ON(vma_mas != vma_test); 1400 test_count++; 1401 vma_test = mas_next(&test, vms->vma_count - 1); 1402 } 1403 rcu_read_unlock(); 1404 BUG_ON(vms->vma_count != test_count); 1405 } 1406 #endif 1407 1408 while (vma_iter_addr(vms->vmi) > vms->start) 1409 vma_iter_prev_range(vms->vmi); 1410 1411 vms->clear_ptes = true; 1412 return 0; 1413 1414 userfaultfd_error: 1415 munmap_gather_failed: 1416 end_split_failed: 1417 modify_vma_failed: 1418 reattach_vmas(mas_detach); 1419 start_split_failed: 1420 map_count_exceeded: 1421 return error; 1422 } 1423 1424 /* 1425 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1426 * @vms: The vma munmap struct 1427 * @vmi: The vma iterator 1428 * @vma: The first vm_area_struct to munmap 1429 * @start: The aligned start address to munmap 1430 * @end: The aligned end address to munmap 1431 * @uf: The userfaultfd list_head 1432 * @unlock: Unlock after the operation. Only unlocked on success 1433 */ 1434 static void init_vma_munmap(struct vma_munmap_struct *vms, 1435 struct vma_iterator *vmi, struct vm_area_struct *vma, 1436 unsigned long start, unsigned long end, struct list_head *uf, 1437 bool unlock) 1438 { 1439 vms->vmi = vmi; 1440 vms->vma = vma; 1441 if (vma) { 1442 vms->start = start; 1443 vms->end = end; 1444 } else { 1445 vms->start = vms->end = 0; 1446 } 1447 vms->unlock = unlock; 1448 vms->uf = uf; 1449 vms->vma_count = 0; 1450 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1451 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1452 vms->unmap_start = FIRST_USER_ADDRESS; 1453 vms->unmap_end = USER_PGTABLES_CEILING; 1454 vms->clear_ptes = false; 1455 } 1456 1457 /* 1458 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1459 * @vmi: The vma iterator 1460 * @vma: The starting vm_area_struct 1461 * @mm: The mm_struct 1462 * @start: The aligned start address to munmap. 1463 * @end: The aligned end address to munmap. 1464 * @uf: The userfaultfd list_head 1465 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1466 * success. 1467 * 1468 * Return: 0 on success and drops the lock if so directed, error and leaves the 1469 * lock held otherwise. 1470 */ 1471 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1472 struct mm_struct *mm, unsigned long start, unsigned long end, 1473 struct list_head *uf, bool unlock) 1474 { 1475 struct maple_tree mt_detach; 1476 MA_STATE(mas_detach, &mt_detach, 0, 0); 1477 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1478 mt_on_stack(mt_detach); 1479 struct vma_munmap_struct vms; 1480 int error; 1481 1482 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1483 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1484 if (error) 1485 goto gather_failed; 1486 1487 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1488 if (error) 1489 goto clear_tree_failed; 1490 1491 /* Point of no return */ 1492 vms_complete_munmap_vmas(&vms, &mas_detach); 1493 return 0; 1494 1495 clear_tree_failed: 1496 reattach_vmas(&mas_detach); 1497 gather_failed: 1498 validate_mm(mm); 1499 return error; 1500 } 1501 1502 /* 1503 * do_vmi_munmap() - munmap a given range. 1504 * @vmi: The vma iterator 1505 * @mm: The mm_struct 1506 * @start: The start address to munmap 1507 * @len: The length of the range to munmap 1508 * @uf: The userfaultfd list_head 1509 * @unlock: set to true if the user wants to drop the mmap_lock on success 1510 * 1511 * This function takes a @mas that is either pointing to the previous VMA or set 1512 * to MA_START and sets it up to remove the mapping(s). The @len will be 1513 * aligned. 1514 * 1515 * Return: 0 on success and drops the lock if so directed, error and leaves the 1516 * lock held otherwise. 1517 */ 1518 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1519 unsigned long start, size_t len, struct list_head *uf, 1520 bool unlock) 1521 { 1522 unsigned long end; 1523 struct vm_area_struct *vma; 1524 1525 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1526 return -EINVAL; 1527 1528 end = start + PAGE_ALIGN(len); 1529 if (end == start) 1530 return -EINVAL; 1531 1532 /* Find the first overlapping VMA */ 1533 vma = vma_find(vmi, end); 1534 if (!vma) { 1535 if (unlock) 1536 mmap_write_unlock(mm); 1537 return 0; 1538 } 1539 1540 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1541 } 1542 1543 /* 1544 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1545 * context and anonymous VMA name within the range [start, end). 1546 * 1547 * As a result, we might be able to merge the newly modified VMA range with an 1548 * adjacent VMA with identical properties. 1549 * 1550 * If no merge is possible and the range does not span the entirety of the VMA, 1551 * we then need to split the VMA to accommodate the change. 1552 * 1553 * The function returns either the merged VMA, the original VMA if a split was 1554 * required instead, or an error if the split failed. 1555 */ 1556 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1557 { 1558 struct vm_area_struct *vma = vmg->middle; 1559 unsigned long start = vmg->start; 1560 unsigned long end = vmg->end; 1561 struct vm_area_struct *merged; 1562 1563 /* First, try to merge. */ 1564 merged = vma_merge_existing_range(vmg); 1565 if (merged) 1566 return merged; 1567 if (vmg_nomem(vmg)) 1568 return ERR_PTR(-ENOMEM); 1569 1570 /* 1571 * Split can fail for reasons other than OOM, so if the user requests 1572 * this it's probably a mistake. 1573 */ 1574 VM_WARN_ON(vmg->give_up_on_oom && 1575 (vma->vm_start != start || vma->vm_end != end)); 1576 1577 /* Split any preceding portion of the VMA. */ 1578 if (vma->vm_start < start) { 1579 int err = split_vma(vmg->vmi, vma, start, 1); 1580 1581 if (err) 1582 return ERR_PTR(err); 1583 } 1584 1585 /* Split any trailing portion of the VMA. */ 1586 if (vma->vm_end > end) { 1587 int err = split_vma(vmg->vmi, vma, end, 0); 1588 1589 if (err) 1590 return ERR_PTR(err); 1591 } 1592 1593 return vma; 1594 } 1595 1596 struct vm_area_struct *vma_modify_flags( 1597 struct vma_iterator *vmi, struct vm_area_struct *prev, 1598 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1599 unsigned long new_flags) 1600 { 1601 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1602 1603 vmg.flags = new_flags; 1604 1605 return vma_modify(&vmg); 1606 } 1607 1608 struct vm_area_struct 1609 *vma_modify_flags_name(struct vma_iterator *vmi, 1610 struct vm_area_struct *prev, 1611 struct vm_area_struct *vma, 1612 unsigned long start, 1613 unsigned long end, 1614 unsigned long new_flags, 1615 struct anon_vma_name *new_name) 1616 { 1617 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1618 1619 vmg.flags = new_flags; 1620 vmg.anon_name = new_name; 1621 1622 return vma_modify(&vmg); 1623 } 1624 1625 struct vm_area_struct 1626 *vma_modify_policy(struct vma_iterator *vmi, 1627 struct vm_area_struct *prev, 1628 struct vm_area_struct *vma, 1629 unsigned long start, unsigned long end, 1630 struct mempolicy *new_pol) 1631 { 1632 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1633 1634 vmg.policy = new_pol; 1635 1636 return vma_modify(&vmg); 1637 } 1638 1639 struct vm_area_struct 1640 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1641 struct vm_area_struct *prev, 1642 struct vm_area_struct *vma, 1643 unsigned long start, unsigned long end, 1644 unsigned long new_flags, 1645 struct vm_userfaultfd_ctx new_ctx, 1646 bool give_up_on_oom) 1647 { 1648 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1649 1650 vmg.flags = new_flags; 1651 vmg.uffd_ctx = new_ctx; 1652 if (give_up_on_oom) 1653 vmg.give_up_on_oom = true; 1654 1655 return vma_modify(&vmg); 1656 } 1657 1658 /* 1659 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1660 * VMA with identical properties. 1661 */ 1662 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1663 struct vm_area_struct *vma, 1664 unsigned long delta) 1665 { 1666 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1667 1668 vmg.next = vma_iter_next_rewind(vmi, NULL); 1669 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1670 1671 return vma_merge_new_range(&vmg); 1672 } 1673 1674 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1675 { 1676 vb->count = 0; 1677 } 1678 1679 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1680 { 1681 struct address_space *mapping; 1682 int i; 1683 1684 mapping = vb->vmas[0]->vm_file->f_mapping; 1685 i_mmap_lock_write(mapping); 1686 for (i = 0; i < vb->count; i++) { 1687 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1688 __remove_shared_vm_struct(vb->vmas[i], mapping); 1689 } 1690 i_mmap_unlock_write(mapping); 1691 1692 unlink_file_vma_batch_init(vb); 1693 } 1694 1695 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1696 struct vm_area_struct *vma) 1697 { 1698 if (vma->vm_file == NULL) 1699 return; 1700 1701 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1702 vb->count == ARRAY_SIZE(vb->vmas)) 1703 unlink_file_vma_batch_process(vb); 1704 1705 vb->vmas[vb->count] = vma; 1706 vb->count++; 1707 } 1708 1709 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1710 { 1711 if (vb->count > 0) 1712 unlink_file_vma_batch_process(vb); 1713 } 1714 1715 /* 1716 * Unlink a file-based vm structure from its interval tree, to hide 1717 * vma from rmap and vmtruncate before freeing its page tables. 1718 */ 1719 void unlink_file_vma(struct vm_area_struct *vma) 1720 { 1721 struct file *file = vma->vm_file; 1722 1723 if (file) { 1724 struct address_space *mapping = file->f_mapping; 1725 1726 i_mmap_lock_write(mapping); 1727 __remove_shared_vm_struct(vma, mapping); 1728 i_mmap_unlock_write(mapping); 1729 } 1730 } 1731 1732 void vma_link_file(struct vm_area_struct *vma) 1733 { 1734 struct file *file = vma->vm_file; 1735 struct address_space *mapping; 1736 1737 if (file) { 1738 mapping = file->f_mapping; 1739 i_mmap_lock_write(mapping); 1740 __vma_link_file(vma, mapping); 1741 i_mmap_unlock_write(mapping); 1742 } 1743 } 1744 1745 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1746 { 1747 VMA_ITERATOR(vmi, mm, 0); 1748 1749 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1750 if (vma_iter_prealloc(&vmi, vma)) 1751 return -ENOMEM; 1752 1753 vma_start_write(vma); 1754 vma_iter_store_new(&vmi, vma); 1755 vma_link_file(vma); 1756 mm->map_count++; 1757 validate_mm(mm); 1758 return 0; 1759 } 1760 1761 /* 1762 * Copy the vma structure to a new location in the same mm, 1763 * prior to moving page table entries, to effect an mremap move. 1764 */ 1765 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1766 unsigned long addr, unsigned long len, pgoff_t pgoff, 1767 bool *need_rmap_locks) 1768 { 1769 struct vm_area_struct *vma = *vmap; 1770 unsigned long vma_start = vma->vm_start; 1771 struct mm_struct *mm = vma->vm_mm; 1772 struct vm_area_struct *new_vma; 1773 bool faulted_in_anon_vma = true; 1774 VMA_ITERATOR(vmi, mm, addr); 1775 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1776 1777 /* 1778 * If anonymous vma has not yet been faulted, update new pgoff 1779 * to match new location, to increase its chance of merging. 1780 */ 1781 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1782 pgoff = addr >> PAGE_SHIFT; 1783 faulted_in_anon_vma = false; 1784 } 1785 1786 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1787 if (new_vma && new_vma->vm_start < addr + len) 1788 return NULL; /* should never get here */ 1789 1790 vmg.middle = NULL; /* New VMA range. */ 1791 vmg.pgoff = pgoff; 1792 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1793 new_vma = vma_merge_new_range(&vmg); 1794 1795 if (new_vma) { 1796 /* 1797 * Source vma may have been merged into new_vma 1798 */ 1799 if (unlikely(vma_start >= new_vma->vm_start && 1800 vma_start < new_vma->vm_end)) { 1801 /* 1802 * The only way we can get a vma_merge with 1803 * self during an mremap is if the vma hasn't 1804 * been faulted in yet and we were allowed to 1805 * reset the dst vma->vm_pgoff to the 1806 * destination address of the mremap to allow 1807 * the merge to happen. mremap must change the 1808 * vm_pgoff linearity between src and dst vmas 1809 * (in turn preventing a vma_merge) to be 1810 * safe. It is only safe to keep the vm_pgoff 1811 * linear if there are no pages mapped yet. 1812 */ 1813 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1814 *vmap = vma = new_vma; 1815 } 1816 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1817 } else { 1818 new_vma = vm_area_dup(vma); 1819 if (!new_vma) 1820 goto out; 1821 vma_set_range(new_vma, addr, addr + len, pgoff); 1822 if (vma_dup_policy(vma, new_vma)) 1823 goto out_free_vma; 1824 if (anon_vma_clone(new_vma, vma)) 1825 goto out_free_mempol; 1826 if (new_vma->vm_file) 1827 get_file(new_vma->vm_file); 1828 if (new_vma->vm_ops && new_vma->vm_ops->open) 1829 new_vma->vm_ops->open(new_vma); 1830 if (vma_link(mm, new_vma)) 1831 goto out_vma_link; 1832 *need_rmap_locks = false; 1833 } 1834 return new_vma; 1835 1836 out_vma_link: 1837 vma_close(new_vma); 1838 1839 if (new_vma->vm_file) 1840 fput(new_vma->vm_file); 1841 1842 unlink_anon_vmas(new_vma); 1843 out_free_mempol: 1844 mpol_put(vma_policy(new_vma)); 1845 out_free_vma: 1846 vm_area_free(new_vma); 1847 out: 1848 return NULL; 1849 } 1850 1851 /* 1852 * Rough compatibility check to quickly see if it's even worth looking 1853 * at sharing an anon_vma. 1854 * 1855 * They need to have the same vm_file, and the flags can only differ 1856 * in things that mprotect may change. 1857 * 1858 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1859 * we can merge the two vma's. For example, we refuse to merge a vma if 1860 * there is a vm_ops->close() function, because that indicates that the 1861 * driver is doing some kind of reference counting. But that doesn't 1862 * really matter for the anon_vma sharing case. 1863 */ 1864 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1865 { 1866 return a->vm_end == b->vm_start && 1867 mpol_equal(vma_policy(a), vma_policy(b)) && 1868 a->vm_file == b->vm_file && 1869 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1870 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1871 } 1872 1873 /* 1874 * Do some basic sanity checking to see if we can re-use the anon_vma 1875 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1876 * the same as 'old', the other will be the new one that is trying 1877 * to share the anon_vma. 1878 * 1879 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1880 * the anon_vma of 'old' is concurrently in the process of being set up 1881 * by another page fault trying to merge _that_. But that's ok: if it 1882 * is being set up, that automatically means that it will be a singleton 1883 * acceptable for merging, so we can do all of this optimistically. But 1884 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1885 * 1886 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1887 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1888 * is to return an anon_vma that is "complex" due to having gone through 1889 * a fork). 1890 * 1891 * We also make sure that the two vma's are compatible (adjacent, 1892 * and with the same memory policies). That's all stable, even with just 1893 * a read lock on the mmap_lock. 1894 */ 1895 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1896 struct vm_area_struct *a, 1897 struct vm_area_struct *b) 1898 { 1899 if (anon_vma_compatible(a, b)) { 1900 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1901 1902 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1903 return anon_vma; 1904 } 1905 return NULL; 1906 } 1907 1908 /* 1909 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1910 * neighbouring vmas for a suitable anon_vma, before it goes off 1911 * to allocate a new anon_vma. It checks because a repetitive 1912 * sequence of mprotects and faults may otherwise lead to distinct 1913 * anon_vmas being allocated, preventing vma merge in subsequent 1914 * mprotect. 1915 */ 1916 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1917 { 1918 struct anon_vma *anon_vma = NULL; 1919 struct vm_area_struct *prev, *next; 1920 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1921 1922 /* Try next first. */ 1923 next = vma_iter_load(&vmi); 1924 if (next) { 1925 anon_vma = reusable_anon_vma(next, vma, next); 1926 if (anon_vma) 1927 return anon_vma; 1928 } 1929 1930 prev = vma_prev(&vmi); 1931 VM_BUG_ON_VMA(prev != vma, vma); 1932 prev = vma_prev(&vmi); 1933 /* Try prev next. */ 1934 if (prev) 1935 anon_vma = reusable_anon_vma(prev, prev, vma); 1936 1937 /* 1938 * We might reach here with anon_vma == NULL if we can't find 1939 * any reusable anon_vma. 1940 * There's no absolute need to look only at touching neighbours: 1941 * we could search further afield for "compatible" anon_vmas. 1942 * But it would probably just be a waste of time searching, 1943 * or lead to too many vmas hanging off the same anon_vma. 1944 * We're trying to allow mprotect remerging later on, 1945 * not trying to minimize memory used for anon_vmas. 1946 */ 1947 return anon_vma; 1948 } 1949 1950 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1951 { 1952 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1953 } 1954 1955 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1956 { 1957 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1958 (VM_WRITE | VM_SHARED); 1959 } 1960 1961 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1962 { 1963 /* No managed pages to writeback. */ 1964 if (vma->vm_flags & VM_PFNMAP) 1965 return false; 1966 1967 return vma->vm_file && vma->vm_file->f_mapping && 1968 mapping_can_writeback(vma->vm_file->f_mapping); 1969 } 1970 1971 /* 1972 * Does this VMA require the underlying folios to have their dirty state 1973 * tracked? 1974 */ 1975 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1976 { 1977 /* Only shared, writable VMAs require dirty tracking. */ 1978 if (!vma_is_shared_writable(vma)) 1979 return false; 1980 1981 /* Does the filesystem need to be notified? */ 1982 if (vm_ops_needs_writenotify(vma->vm_ops)) 1983 return true; 1984 1985 /* 1986 * Even if the filesystem doesn't indicate a need for writenotify, if it 1987 * can writeback, dirty tracking is still required. 1988 */ 1989 return vma_fs_can_writeback(vma); 1990 } 1991 1992 /* 1993 * Some shared mappings will want the pages marked read-only 1994 * to track write events. If so, we'll downgrade vm_page_prot 1995 * to the private version (using protection_map[] without the 1996 * VM_SHARED bit). 1997 */ 1998 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1999 { 2000 /* If it was private or non-writable, the write bit is already clear */ 2001 if (!vma_is_shared_writable(vma)) 2002 return false; 2003 2004 /* The backer wishes to know when pages are first written to? */ 2005 if (vm_ops_needs_writenotify(vma->vm_ops)) 2006 return true; 2007 2008 /* The open routine did something to the protections that pgprot_modify 2009 * won't preserve? */ 2010 if (pgprot_val(vm_page_prot) != 2011 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 2012 return false; 2013 2014 /* 2015 * Do we need to track softdirty? hugetlb does not support softdirty 2016 * tracking yet. 2017 */ 2018 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 2019 return true; 2020 2021 /* Do we need write faults for uffd-wp tracking? */ 2022 if (userfaultfd_wp(vma)) 2023 return true; 2024 2025 /* Can the mapping track the dirty pages? */ 2026 return vma_fs_can_writeback(vma); 2027 } 2028 2029 static DEFINE_MUTEX(mm_all_locks_mutex); 2030 2031 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2032 { 2033 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2034 /* 2035 * The LSB of head.next can't change from under us 2036 * because we hold the mm_all_locks_mutex. 2037 */ 2038 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 2039 /* 2040 * We can safely modify head.next after taking the 2041 * anon_vma->root->rwsem. If some other vma in this mm shares 2042 * the same anon_vma we won't take it again. 2043 * 2044 * No need of atomic instructions here, head.next 2045 * can't change from under us thanks to the 2046 * anon_vma->root->rwsem. 2047 */ 2048 if (__test_and_set_bit(0, (unsigned long *) 2049 &anon_vma->root->rb_root.rb_root.rb_node)) 2050 BUG(); 2051 } 2052 } 2053 2054 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2055 { 2056 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2057 /* 2058 * AS_MM_ALL_LOCKS can't change from under us because 2059 * we hold the mm_all_locks_mutex. 2060 * 2061 * Operations on ->flags have to be atomic because 2062 * even if AS_MM_ALL_LOCKS is stable thanks to the 2063 * mm_all_locks_mutex, there may be other cpus 2064 * changing other bitflags in parallel to us. 2065 */ 2066 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2067 BUG(); 2068 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2069 } 2070 } 2071 2072 /* 2073 * This operation locks against the VM for all pte/vma/mm related 2074 * operations that could ever happen on a certain mm. This includes 2075 * vmtruncate, try_to_unmap, and all page faults. 2076 * 2077 * The caller must take the mmap_lock in write mode before calling 2078 * mm_take_all_locks(). The caller isn't allowed to release the 2079 * mmap_lock until mm_drop_all_locks() returns. 2080 * 2081 * mmap_lock in write mode is required in order to block all operations 2082 * that could modify pagetables and free pages without need of 2083 * altering the vma layout. It's also needed in write mode to avoid new 2084 * anon_vmas to be associated with existing vmas. 2085 * 2086 * A single task can't take more than one mm_take_all_locks() in a row 2087 * or it would deadlock. 2088 * 2089 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2090 * mapping->flags avoid to take the same lock twice, if more than one 2091 * vma in this mm is backed by the same anon_vma or address_space. 2092 * 2093 * We take locks in following order, accordingly to comment at beginning 2094 * of mm/rmap.c: 2095 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2096 * hugetlb mapping); 2097 * - all vmas marked locked 2098 * - all i_mmap_rwsem locks; 2099 * - all anon_vma->rwseml 2100 * 2101 * We can take all locks within these types randomly because the VM code 2102 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2103 * mm_all_locks_mutex. 2104 * 2105 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2106 * that may have to take thousand of locks. 2107 * 2108 * mm_take_all_locks() can fail if it's interrupted by signals. 2109 */ 2110 int mm_take_all_locks(struct mm_struct *mm) 2111 { 2112 struct vm_area_struct *vma; 2113 struct anon_vma_chain *avc; 2114 VMA_ITERATOR(vmi, mm, 0); 2115 2116 mmap_assert_write_locked(mm); 2117 2118 mutex_lock(&mm_all_locks_mutex); 2119 2120 /* 2121 * vma_start_write() does not have a complement in mm_drop_all_locks() 2122 * because vma_start_write() is always asymmetrical; it marks a VMA as 2123 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2124 * is reached. 2125 */ 2126 for_each_vma(vmi, vma) { 2127 if (signal_pending(current)) 2128 goto out_unlock; 2129 vma_start_write(vma); 2130 } 2131 2132 vma_iter_init(&vmi, mm, 0); 2133 for_each_vma(vmi, vma) { 2134 if (signal_pending(current)) 2135 goto out_unlock; 2136 if (vma->vm_file && vma->vm_file->f_mapping && 2137 is_vm_hugetlb_page(vma)) 2138 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2139 } 2140 2141 vma_iter_init(&vmi, mm, 0); 2142 for_each_vma(vmi, vma) { 2143 if (signal_pending(current)) 2144 goto out_unlock; 2145 if (vma->vm_file && vma->vm_file->f_mapping && 2146 !is_vm_hugetlb_page(vma)) 2147 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2148 } 2149 2150 vma_iter_init(&vmi, mm, 0); 2151 for_each_vma(vmi, vma) { 2152 if (signal_pending(current)) 2153 goto out_unlock; 2154 if (vma->anon_vma) 2155 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2156 vm_lock_anon_vma(mm, avc->anon_vma); 2157 } 2158 2159 return 0; 2160 2161 out_unlock: 2162 mm_drop_all_locks(mm); 2163 return -EINTR; 2164 } 2165 2166 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2167 { 2168 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2169 /* 2170 * The LSB of head.next can't change to 0 from under 2171 * us because we hold the mm_all_locks_mutex. 2172 * 2173 * We must however clear the bitflag before unlocking 2174 * the vma so the users using the anon_vma->rb_root will 2175 * never see our bitflag. 2176 * 2177 * No need of atomic instructions here, head.next 2178 * can't change from under us until we release the 2179 * anon_vma->root->rwsem. 2180 */ 2181 if (!__test_and_clear_bit(0, (unsigned long *) 2182 &anon_vma->root->rb_root.rb_root.rb_node)) 2183 BUG(); 2184 anon_vma_unlock_write(anon_vma); 2185 } 2186 } 2187 2188 static void vm_unlock_mapping(struct address_space *mapping) 2189 { 2190 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2191 /* 2192 * AS_MM_ALL_LOCKS can't change to 0 from under us 2193 * because we hold the mm_all_locks_mutex. 2194 */ 2195 i_mmap_unlock_write(mapping); 2196 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2197 &mapping->flags)) 2198 BUG(); 2199 } 2200 } 2201 2202 /* 2203 * The mmap_lock cannot be released by the caller until 2204 * mm_drop_all_locks() returns. 2205 */ 2206 void mm_drop_all_locks(struct mm_struct *mm) 2207 { 2208 struct vm_area_struct *vma; 2209 struct anon_vma_chain *avc; 2210 VMA_ITERATOR(vmi, mm, 0); 2211 2212 mmap_assert_write_locked(mm); 2213 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2214 2215 for_each_vma(vmi, vma) { 2216 if (vma->anon_vma) 2217 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2218 vm_unlock_anon_vma(avc->anon_vma); 2219 if (vma->vm_file && vma->vm_file->f_mapping) 2220 vm_unlock_mapping(vma->vm_file->f_mapping); 2221 } 2222 2223 mutex_unlock(&mm_all_locks_mutex); 2224 } 2225 2226 /* 2227 * We account for memory if it's a private writeable mapping, 2228 * not hugepages and VM_NORESERVE wasn't set. 2229 */ 2230 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2231 { 2232 /* 2233 * hugetlb has its own accounting separate from the core VM 2234 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2235 */ 2236 if (file && is_file_hugepages(file)) 2237 return false; 2238 2239 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2240 } 2241 2242 /* 2243 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2244 * operation. 2245 * @vms: The vma unmap structure 2246 * @mas_detach: The maple state with the detached maple tree 2247 * 2248 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2249 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2250 * have been called), then a NULL is written over the vmas and the vmas are 2251 * removed (munmap() completed). 2252 */ 2253 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2254 struct ma_state *mas_detach) 2255 { 2256 struct ma_state *mas = &vms->vmi->mas; 2257 2258 if (!vms->nr_pages) 2259 return; 2260 2261 if (vms->clear_ptes) 2262 return reattach_vmas(mas_detach); 2263 2264 /* 2265 * Aborting cannot just call the vm_ops open() because they are often 2266 * not symmetrical and state data has been lost. Resort to the old 2267 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2268 */ 2269 mas_set_range(mas, vms->start, vms->end - 1); 2270 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2271 /* Clean up the insertion of the unfortunate gap */ 2272 vms_complete_munmap_vmas(vms, mas_detach); 2273 } 2274 2275 /* 2276 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2277 * unmapped once the map operation is completed, check limits, account mapping 2278 * and clean up any pre-existing VMAs. 2279 * 2280 * @map: Mapping state. 2281 * @uf: Userfaultfd context list. 2282 * 2283 * Returns: 0 on success, error code otherwise. 2284 */ 2285 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2286 { 2287 int error; 2288 struct vma_iterator *vmi = map->vmi; 2289 struct vma_munmap_struct *vms = &map->vms; 2290 2291 /* Find the first overlapping VMA and initialise unmap state. */ 2292 vms->vma = vma_find(vmi, map->end); 2293 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2294 /* unlock = */ false); 2295 2296 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2297 if (vms->vma) { 2298 mt_init_flags(&map->mt_detach, 2299 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2300 mt_on_stack(map->mt_detach); 2301 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2302 /* Prepare to unmap any existing mapping in the area */ 2303 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2304 if (error) { 2305 /* On error VMAs will already have been reattached. */ 2306 vms->nr_pages = 0; 2307 return error; 2308 } 2309 2310 map->next = vms->next; 2311 map->prev = vms->prev; 2312 } else { 2313 map->next = vma_iter_next_rewind(vmi, &map->prev); 2314 } 2315 2316 /* Check against address space limit. */ 2317 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2318 return -ENOMEM; 2319 2320 /* Private writable mapping: check memory availability. */ 2321 if (accountable_mapping(map->file, map->flags)) { 2322 map->charged = map->pglen; 2323 map->charged -= vms->nr_accounted; 2324 if (map->charged) { 2325 error = security_vm_enough_memory_mm(map->mm, map->charged); 2326 if (error) 2327 return error; 2328 } 2329 2330 vms->nr_accounted = 0; 2331 map->flags |= VM_ACCOUNT; 2332 } 2333 2334 /* 2335 * Clear PTEs while the vma is still in the tree so that rmap 2336 * cannot race with the freeing later in the truncate scenario. 2337 * This is also needed for mmap_file(), which is why vm_ops 2338 * close function is called. 2339 */ 2340 vms_clean_up_area(vms, &map->mas_detach); 2341 2342 return 0; 2343 } 2344 2345 2346 static int __mmap_new_file_vma(struct mmap_state *map, 2347 struct vm_area_struct *vma) 2348 { 2349 struct vma_iterator *vmi = map->vmi; 2350 int error; 2351 2352 vma->vm_file = get_file(map->file); 2353 error = mmap_file(vma->vm_file, vma); 2354 if (error) { 2355 fput(vma->vm_file); 2356 vma->vm_file = NULL; 2357 2358 vma_iter_set(vmi, vma->vm_end); 2359 /* Undo any partial mapping done by a device driver. */ 2360 unmap_region(&vmi->mas, vma, map->prev, map->next); 2361 2362 return error; 2363 } 2364 2365 /* Drivers cannot alter the address of the VMA. */ 2366 WARN_ON_ONCE(map->addr != vma->vm_start); 2367 /* 2368 * Drivers should not permit writability when previously it was 2369 * disallowed. 2370 */ 2371 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2372 !(map->flags & VM_MAYWRITE) && 2373 (vma->vm_flags & VM_MAYWRITE)); 2374 2375 /* If the flags change (and are mergeable), let's retry later. */ 2376 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); 2377 map->flags = vma->vm_flags; 2378 2379 return 0; 2380 } 2381 2382 /* 2383 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2384 * possible. 2385 * 2386 * @map: Mapping state. 2387 * @vmap: Output pointer for the new VMA. 2388 * 2389 * Returns: Zero on success, or an error. 2390 */ 2391 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2392 { 2393 struct vma_iterator *vmi = map->vmi; 2394 int error = 0; 2395 struct vm_area_struct *vma; 2396 2397 /* 2398 * Determine the object being mapped and call the appropriate 2399 * specific mapper. the address has already been validated, but 2400 * not unmapped, but the maps are removed from the list. 2401 */ 2402 vma = vm_area_alloc(map->mm); 2403 if (!vma) 2404 return -ENOMEM; 2405 2406 vma_iter_config(vmi, map->addr, map->end); 2407 vma_set_range(vma, map->addr, map->end, map->pgoff); 2408 vm_flags_init(vma, map->flags); 2409 vma->vm_page_prot = vm_get_page_prot(map->flags); 2410 2411 if (vma_iter_prealloc(vmi, vma)) { 2412 error = -ENOMEM; 2413 goto free_vma; 2414 } 2415 2416 if (map->file) 2417 error = __mmap_new_file_vma(map, vma); 2418 else if (map->flags & VM_SHARED) 2419 error = shmem_zero_setup(vma); 2420 else 2421 vma_set_anonymous(vma); 2422 2423 if (error) 2424 goto free_iter_vma; 2425 2426 #ifdef CONFIG_SPARC64 2427 /* TODO: Fix SPARC ADI! */ 2428 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2429 #endif 2430 2431 /* Lock the VMA since it is modified after insertion into VMA tree */ 2432 vma_start_write(vma); 2433 vma_iter_store_new(vmi, vma); 2434 map->mm->map_count++; 2435 vma_link_file(vma); 2436 2437 /* 2438 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2439 * call covers the non-merge case. 2440 */ 2441 if (!vma_is_anonymous(vma)) 2442 khugepaged_enter_vma(vma, map->flags); 2443 ksm_add_vma(vma); 2444 *vmap = vma; 2445 return 0; 2446 2447 free_iter_vma: 2448 vma_iter_free(vmi); 2449 free_vma: 2450 vm_area_free(vma); 2451 return error; 2452 } 2453 2454 /* 2455 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2456 * statistics, handle locking and finalise the VMA. 2457 * 2458 * @map: Mapping state. 2459 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2460 */ 2461 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2462 { 2463 struct mm_struct *mm = map->mm; 2464 unsigned long vm_flags = vma->vm_flags; 2465 2466 perf_event_mmap(vma); 2467 2468 /* Unmap any existing mapping in the area. */ 2469 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2470 2471 vm_stat_account(mm, vma->vm_flags, map->pglen); 2472 if (vm_flags & VM_LOCKED) { 2473 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2474 is_vm_hugetlb_page(vma) || 2475 vma == get_gate_vma(mm)) 2476 vm_flags_clear(vma, VM_LOCKED_MASK); 2477 else 2478 mm->locked_vm += map->pglen; 2479 } 2480 2481 if (vma->vm_file) 2482 uprobe_mmap(vma); 2483 2484 /* 2485 * New (or expanded) vma always get soft dirty status. 2486 * Otherwise user-space soft-dirty page tracker won't 2487 * be able to distinguish situation when vma area unmapped, 2488 * then new mapped in-place (which must be aimed as 2489 * a completely new data area). 2490 */ 2491 vm_flags_set(vma, VM_SOFTDIRTY); 2492 2493 vma_set_page_prot(vma); 2494 } 2495 2496 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2497 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2498 struct list_head *uf) 2499 { 2500 struct mm_struct *mm = current->mm; 2501 struct vm_area_struct *vma = NULL; 2502 int error; 2503 VMA_ITERATOR(vmi, mm, addr); 2504 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2505 2506 error = __mmap_prepare(&map, uf); 2507 if (error) 2508 goto abort_munmap; 2509 2510 /* Attempt to merge with adjacent VMAs... */ 2511 if (map.prev || map.next) { 2512 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2513 2514 vma = vma_merge_new_range(&vmg); 2515 } 2516 2517 /* ...but if we can't, allocate a new VMA. */ 2518 if (!vma) { 2519 error = __mmap_new_vma(&map, &vma); 2520 if (error) 2521 goto unacct_error; 2522 } 2523 2524 /* If flags changed, we might be able to merge, so try again. */ 2525 if (map.retry_merge) { 2526 struct vm_area_struct *merged; 2527 VMG_MMAP_STATE(vmg, &map, vma); 2528 2529 vma_iter_config(map.vmi, map.addr, map.end); 2530 merged = vma_merge_existing_range(&vmg); 2531 if (merged) 2532 vma = merged; 2533 } 2534 2535 __mmap_complete(&map, vma); 2536 2537 return addr; 2538 2539 /* Accounting was done by __mmap_prepare(). */ 2540 unacct_error: 2541 if (map.charged) 2542 vm_unacct_memory(map.charged); 2543 abort_munmap: 2544 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2545 return error; 2546 } 2547 2548 /** 2549 * mmap_region() - Actually perform the userland mapping of a VMA into 2550 * current->mm with known, aligned and overflow-checked @addr and @len, and 2551 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2552 * 2553 * This is an internal memory management function, and should not be used 2554 * directly. 2555 * 2556 * The caller must write-lock current->mm->mmap_lock. 2557 * 2558 * @file: If a file-backed mapping, a pointer to the struct file describing the 2559 * file to be mapped, otherwise NULL. 2560 * @addr: The page-aligned address at which to perform the mapping. 2561 * @len: The page-aligned, non-zero, length of the mapping. 2562 * @vm_flags: The VMA flags which should be applied to the mapping. 2563 * @pgoff: If @file is specified, the page offset into the file, if not then 2564 * the virtual page offset in memory of the anonymous mapping. 2565 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2566 * events. 2567 * 2568 * Returns: Either an error, or the address at which the requested mapping has 2569 * been performed. 2570 */ 2571 unsigned long mmap_region(struct file *file, unsigned long addr, 2572 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2573 struct list_head *uf) 2574 { 2575 unsigned long ret; 2576 bool writable_file_mapping = false; 2577 2578 mmap_assert_write_locked(current->mm); 2579 2580 /* Check to see if MDWE is applicable. */ 2581 if (map_deny_write_exec(vm_flags, vm_flags)) 2582 return -EACCES; 2583 2584 /* Allow architectures to sanity-check the vm_flags. */ 2585 if (!arch_validate_flags(vm_flags)) 2586 return -EINVAL; 2587 2588 /* Map writable and ensure this isn't a sealed memfd. */ 2589 if (file && is_shared_maywrite(vm_flags)) { 2590 int error = mapping_map_writable(file->f_mapping); 2591 2592 if (error) 2593 return error; 2594 writable_file_mapping = true; 2595 } 2596 2597 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2598 2599 /* Clear our write mapping regardless of error. */ 2600 if (writable_file_mapping) 2601 mapping_unmap_writable(file->f_mapping); 2602 2603 validate_mm(current->mm); 2604 return ret; 2605 } 2606 2607 /* 2608 * do_brk_flags() - Increase the brk vma if the flags match. 2609 * @vmi: The vma iterator 2610 * @addr: The start address 2611 * @len: The length of the increase 2612 * @vma: The vma, 2613 * @flags: The VMA Flags 2614 * 2615 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2616 * do not match then create a new anonymous VMA. Eventually we may be able to 2617 * do some brk-specific accounting here. 2618 */ 2619 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2620 unsigned long addr, unsigned long len, unsigned long flags) 2621 { 2622 struct mm_struct *mm = current->mm; 2623 2624 /* 2625 * Check against address space limits by the changed size 2626 * Note: This happens *after* clearing old mappings in some code paths. 2627 */ 2628 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2629 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2630 return -ENOMEM; 2631 2632 if (mm->map_count > sysctl_max_map_count) 2633 return -ENOMEM; 2634 2635 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2636 return -ENOMEM; 2637 2638 /* 2639 * Expand the existing vma if possible; Note that singular lists do not 2640 * occur after forking, so the expand will only happen on new VMAs. 2641 */ 2642 if (vma && vma->vm_end == addr) { 2643 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 2644 2645 vmg.prev = vma; 2646 /* vmi is positioned at prev, which this mode expects. */ 2647 vmg.just_expand = true; 2648 2649 if (vma_merge_new_range(&vmg)) 2650 goto out; 2651 else if (vmg_nomem(&vmg)) 2652 goto unacct_fail; 2653 } 2654 2655 if (vma) 2656 vma_iter_next_range(vmi); 2657 /* create a vma struct for an anonymous mapping */ 2658 vma = vm_area_alloc(mm); 2659 if (!vma) 2660 goto unacct_fail; 2661 2662 vma_set_anonymous(vma); 2663 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2664 vm_flags_init(vma, flags); 2665 vma->vm_page_prot = vm_get_page_prot(flags); 2666 vma_start_write(vma); 2667 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2668 goto mas_store_fail; 2669 2670 mm->map_count++; 2671 validate_mm(mm); 2672 ksm_add_vma(vma); 2673 out: 2674 perf_event_mmap(vma); 2675 mm->total_vm += len >> PAGE_SHIFT; 2676 mm->data_vm += len >> PAGE_SHIFT; 2677 if (flags & VM_LOCKED) 2678 mm->locked_vm += (len >> PAGE_SHIFT); 2679 vm_flags_set(vma, VM_SOFTDIRTY); 2680 return 0; 2681 2682 mas_store_fail: 2683 vm_area_free(vma); 2684 unacct_fail: 2685 vm_unacct_memory(len >> PAGE_SHIFT); 2686 return -ENOMEM; 2687 } 2688 2689 /** 2690 * unmapped_area() - Find an area between the low_limit and the high_limit with 2691 * the correct alignment and offset, all from @info. Note: current->mm is used 2692 * for the search. 2693 * 2694 * @info: The unmapped area information including the range [low_limit - 2695 * high_limit), the alignment offset and mask. 2696 * 2697 * Return: A memory address or -ENOMEM. 2698 */ 2699 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2700 { 2701 unsigned long length, gap; 2702 unsigned long low_limit, high_limit; 2703 struct vm_area_struct *tmp; 2704 VMA_ITERATOR(vmi, current->mm, 0); 2705 2706 /* Adjust search length to account for worst case alignment overhead */ 2707 length = info->length + info->align_mask + info->start_gap; 2708 if (length < info->length) 2709 return -ENOMEM; 2710 2711 low_limit = info->low_limit; 2712 if (low_limit < mmap_min_addr) 2713 low_limit = mmap_min_addr; 2714 high_limit = info->high_limit; 2715 retry: 2716 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2717 return -ENOMEM; 2718 2719 /* 2720 * Adjust for the gap first so it doesn't interfere with the 2721 * later alignment. The first step is the minimum needed to 2722 * fulill the start gap, the next steps is the minimum to align 2723 * that. It is the minimum needed to fulill both. 2724 */ 2725 gap = vma_iter_addr(&vmi) + info->start_gap; 2726 gap += (info->align_offset - gap) & info->align_mask; 2727 tmp = vma_next(&vmi); 2728 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2729 if (vm_start_gap(tmp) < gap + length - 1) { 2730 low_limit = tmp->vm_end; 2731 vma_iter_reset(&vmi); 2732 goto retry; 2733 } 2734 } else { 2735 tmp = vma_prev(&vmi); 2736 if (tmp && vm_end_gap(tmp) > gap) { 2737 low_limit = vm_end_gap(tmp); 2738 vma_iter_reset(&vmi); 2739 goto retry; 2740 } 2741 } 2742 2743 return gap; 2744 } 2745 2746 /** 2747 * unmapped_area_topdown() - Find an area between the low_limit and the 2748 * high_limit with the correct alignment and offset at the highest available 2749 * address, all from @info. Note: current->mm is used for the search. 2750 * 2751 * @info: The unmapped area information including the range [low_limit - 2752 * high_limit), the alignment offset and mask. 2753 * 2754 * Return: A memory address or -ENOMEM. 2755 */ 2756 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2757 { 2758 unsigned long length, gap, gap_end; 2759 unsigned long low_limit, high_limit; 2760 struct vm_area_struct *tmp; 2761 VMA_ITERATOR(vmi, current->mm, 0); 2762 2763 /* Adjust search length to account for worst case alignment overhead */ 2764 length = info->length + info->align_mask + info->start_gap; 2765 if (length < info->length) 2766 return -ENOMEM; 2767 2768 low_limit = info->low_limit; 2769 if (low_limit < mmap_min_addr) 2770 low_limit = mmap_min_addr; 2771 high_limit = info->high_limit; 2772 retry: 2773 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2774 return -ENOMEM; 2775 2776 gap = vma_iter_end(&vmi) - info->length; 2777 gap -= (gap - info->align_offset) & info->align_mask; 2778 gap_end = vma_iter_end(&vmi); 2779 tmp = vma_next(&vmi); 2780 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2781 if (vm_start_gap(tmp) < gap_end) { 2782 high_limit = vm_start_gap(tmp); 2783 vma_iter_reset(&vmi); 2784 goto retry; 2785 } 2786 } else { 2787 tmp = vma_prev(&vmi); 2788 if (tmp && vm_end_gap(tmp) > gap) { 2789 high_limit = tmp->vm_start; 2790 vma_iter_reset(&vmi); 2791 goto retry; 2792 } 2793 } 2794 2795 return gap; 2796 } 2797 2798 /* 2799 * Verify that the stack growth is acceptable and 2800 * update accounting. This is shared with both the 2801 * grow-up and grow-down cases. 2802 */ 2803 static int acct_stack_growth(struct vm_area_struct *vma, 2804 unsigned long size, unsigned long grow) 2805 { 2806 struct mm_struct *mm = vma->vm_mm; 2807 unsigned long new_start; 2808 2809 /* address space limit tests */ 2810 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2811 return -ENOMEM; 2812 2813 /* Stack limit test */ 2814 if (size > rlimit(RLIMIT_STACK)) 2815 return -ENOMEM; 2816 2817 /* mlock limit tests */ 2818 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2819 return -ENOMEM; 2820 2821 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2822 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2823 vma->vm_end - size; 2824 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2825 return -EFAULT; 2826 2827 /* 2828 * Overcommit.. This must be the final test, as it will 2829 * update security statistics. 2830 */ 2831 if (security_vm_enough_memory_mm(mm, grow)) 2832 return -ENOMEM; 2833 2834 return 0; 2835 } 2836 2837 #if defined(CONFIG_STACK_GROWSUP) 2838 /* 2839 * PA-RISC uses this for its stack. 2840 * vma is the last one with address > vma->vm_end. Have to extend vma. 2841 */ 2842 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2843 { 2844 struct mm_struct *mm = vma->vm_mm; 2845 struct vm_area_struct *next; 2846 unsigned long gap_addr; 2847 int error = 0; 2848 VMA_ITERATOR(vmi, mm, vma->vm_start); 2849 2850 if (!(vma->vm_flags & VM_GROWSUP)) 2851 return -EFAULT; 2852 2853 mmap_assert_write_locked(mm); 2854 2855 /* Guard against exceeding limits of the address space. */ 2856 address &= PAGE_MASK; 2857 if (address >= (TASK_SIZE & PAGE_MASK)) 2858 return -ENOMEM; 2859 address += PAGE_SIZE; 2860 2861 /* Enforce stack_guard_gap */ 2862 gap_addr = address + stack_guard_gap; 2863 2864 /* Guard against overflow */ 2865 if (gap_addr < address || gap_addr > TASK_SIZE) 2866 gap_addr = TASK_SIZE; 2867 2868 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2869 if (next && vma_is_accessible(next)) { 2870 if (!(next->vm_flags & VM_GROWSUP)) 2871 return -ENOMEM; 2872 /* Check that both stack segments have the same anon_vma? */ 2873 } 2874 2875 if (next) 2876 vma_iter_prev_range_limit(&vmi, address); 2877 2878 vma_iter_config(&vmi, vma->vm_start, address); 2879 if (vma_iter_prealloc(&vmi, vma)) 2880 return -ENOMEM; 2881 2882 /* We must make sure the anon_vma is allocated. */ 2883 if (unlikely(anon_vma_prepare(vma))) { 2884 vma_iter_free(&vmi); 2885 return -ENOMEM; 2886 } 2887 2888 /* Lock the VMA before expanding to prevent concurrent page faults */ 2889 vma_start_write(vma); 2890 /* We update the anon VMA tree. */ 2891 anon_vma_lock_write(vma->anon_vma); 2892 2893 /* Somebody else might have raced and expanded it already */ 2894 if (address > vma->vm_end) { 2895 unsigned long size, grow; 2896 2897 size = address - vma->vm_start; 2898 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2899 2900 error = -ENOMEM; 2901 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2902 error = acct_stack_growth(vma, size, grow); 2903 if (!error) { 2904 if (vma->vm_flags & VM_LOCKED) 2905 mm->locked_vm += grow; 2906 vm_stat_account(mm, vma->vm_flags, grow); 2907 anon_vma_interval_tree_pre_update_vma(vma); 2908 vma->vm_end = address; 2909 /* Overwrite old entry in mtree. */ 2910 vma_iter_store_overwrite(&vmi, vma); 2911 anon_vma_interval_tree_post_update_vma(vma); 2912 2913 perf_event_mmap(vma); 2914 } 2915 } 2916 } 2917 anon_vma_unlock_write(vma->anon_vma); 2918 vma_iter_free(&vmi); 2919 validate_mm(mm); 2920 return error; 2921 } 2922 #endif /* CONFIG_STACK_GROWSUP */ 2923 2924 /* 2925 * vma is the first one with address < vma->vm_start. Have to extend vma. 2926 * mmap_lock held for writing. 2927 */ 2928 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2929 { 2930 struct mm_struct *mm = vma->vm_mm; 2931 struct vm_area_struct *prev; 2932 int error = 0; 2933 VMA_ITERATOR(vmi, mm, vma->vm_start); 2934 2935 if (!(vma->vm_flags & VM_GROWSDOWN)) 2936 return -EFAULT; 2937 2938 mmap_assert_write_locked(mm); 2939 2940 address &= PAGE_MASK; 2941 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2942 return -EPERM; 2943 2944 /* Enforce stack_guard_gap */ 2945 prev = vma_prev(&vmi); 2946 /* Check that both stack segments have the same anon_vma? */ 2947 if (prev) { 2948 if (!(prev->vm_flags & VM_GROWSDOWN) && 2949 vma_is_accessible(prev) && 2950 (address - prev->vm_end < stack_guard_gap)) 2951 return -ENOMEM; 2952 } 2953 2954 if (prev) 2955 vma_iter_next_range_limit(&vmi, vma->vm_start); 2956 2957 vma_iter_config(&vmi, address, vma->vm_end); 2958 if (vma_iter_prealloc(&vmi, vma)) 2959 return -ENOMEM; 2960 2961 /* We must make sure the anon_vma is allocated. */ 2962 if (unlikely(anon_vma_prepare(vma))) { 2963 vma_iter_free(&vmi); 2964 return -ENOMEM; 2965 } 2966 2967 /* Lock the VMA before expanding to prevent concurrent page faults */ 2968 vma_start_write(vma); 2969 /* We update the anon VMA tree. */ 2970 anon_vma_lock_write(vma->anon_vma); 2971 2972 /* Somebody else might have raced and expanded it already */ 2973 if (address < vma->vm_start) { 2974 unsigned long size, grow; 2975 2976 size = vma->vm_end - address; 2977 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2978 2979 error = -ENOMEM; 2980 if (grow <= vma->vm_pgoff) { 2981 error = acct_stack_growth(vma, size, grow); 2982 if (!error) { 2983 if (vma->vm_flags & VM_LOCKED) 2984 mm->locked_vm += grow; 2985 vm_stat_account(mm, vma->vm_flags, grow); 2986 anon_vma_interval_tree_pre_update_vma(vma); 2987 vma->vm_start = address; 2988 vma->vm_pgoff -= grow; 2989 /* Overwrite old entry in mtree. */ 2990 vma_iter_store_overwrite(&vmi, vma); 2991 anon_vma_interval_tree_post_update_vma(vma); 2992 2993 perf_event_mmap(vma); 2994 } 2995 } 2996 } 2997 anon_vma_unlock_write(vma->anon_vma); 2998 vma_iter_free(&vmi); 2999 validate_mm(mm); 3000 return error; 3001 } 3002 3003 int __vm_munmap(unsigned long start, size_t len, bool unlock) 3004 { 3005 int ret; 3006 struct mm_struct *mm = current->mm; 3007 LIST_HEAD(uf); 3008 VMA_ITERATOR(vmi, mm, start); 3009 3010 if (mmap_write_lock_killable(mm)) 3011 return -EINTR; 3012 3013 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3014 if (ret || !unlock) 3015 mmap_write_unlock(mm); 3016 3017 userfaultfd_unmap_complete(mm, &uf); 3018 return ret; 3019 } 3020