1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 21 unsigned long charged; 22 bool retry_merge; 23 24 struct vm_area_struct *prev; 25 struct vm_area_struct *next; 26 27 /* Unmapping state. */ 28 struct vma_munmap_struct vms; 29 struct ma_state mas_detach; 30 struct maple_tree mt_detach; 31 }; 32 33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 34 struct mmap_state name = { \ 35 .mm = mm_, \ 36 .vmi = vmi_, \ 37 .addr = addr_, \ 38 .end = (addr_) + (len_), \ 39 .pgoff = pgoff_, \ 40 .pglen = PHYS_PFN(len_), \ 41 .flags = flags_, \ 42 .file = file_, \ 43 } 44 45 #define VMG_MMAP_STATE(name, map_, vma_) \ 46 struct vma_merge_struct name = { \ 47 .mm = (map_)->mm, \ 48 .vmi = (map_)->vmi, \ 49 .start = (map_)->addr, \ 50 .end = (map_)->end, \ 51 .flags = (map_)->flags, \ 52 .pgoff = (map_)->pgoff, \ 53 .file = (map_)->file, \ 54 .prev = (map_)->prev, \ 55 .vma = vma_, \ 56 .next = (vma_) ? NULL : (map_)->next, \ 57 .state = VMA_MERGE_START, \ 58 .merge_flags = VMG_FLAG_DEFAULT, \ 59 } 60 61 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 62 { 63 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 64 65 if (!mpol_equal(vmg->policy, vma_policy(vma))) 66 return false; 67 /* 68 * VM_SOFTDIRTY should not prevent from VMA merging, if we 69 * match the flags but dirty bit -- the caller should mark 70 * merged VMA as dirty. If dirty bit won't be excluded from 71 * comparison, we increase pressure on the memory system forcing 72 * the kernel to generate new VMAs when old one could be 73 * extended instead. 74 */ 75 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 76 return false; 77 if (vma->vm_file != vmg->file) 78 return false; 79 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 80 return false; 81 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 82 return false; 83 return true; 84 } 85 86 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 87 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 88 { 89 /* 90 * The list_is_singular() test is to avoid merging VMA cloned from 91 * parents. This can improve scalability caused by anon_vma lock. 92 */ 93 if ((!anon_vma1 || !anon_vma2) && (!vma || 94 list_is_singular(&vma->anon_vma_chain))) 95 return true; 96 return anon_vma1 == anon_vma2; 97 } 98 99 /* Are the anon_vma's belonging to each VMA compatible with one another? */ 100 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, 101 struct vm_area_struct *vma2) 102 { 103 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); 104 } 105 106 /* 107 * init_multi_vma_prep() - Initializer for struct vma_prepare 108 * @vp: The vma_prepare struct 109 * @vma: The vma that will be altered once locked 110 * @next: The next vma if it is to be adjusted 111 * @remove: The first vma to be removed 112 * @remove2: The second vma to be removed 113 */ 114 static void init_multi_vma_prep(struct vma_prepare *vp, 115 struct vm_area_struct *vma, 116 struct vm_area_struct *next, 117 struct vm_area_struct *remove, 118 struct vm_area_struct *remove2) 119 { 120 memset(vp, 0, sizeof(struct vma_prepare)); 121 vp->vma = vma; 122 vp->anon_vma = vma->anon_vma; 123 vp->remove = remove; 124 vp->remove2 = remove2; 125 vp->adj_next = next; 126 if (!vp->anon_vma && next) 127 vp->anon_vma = next->anon_vma; 128 129 vp->file = vma->vm_file; 130 if (vp->file) 131 vp->mapping = vma->vm_file->f_mapping; 132 133 } 134 135 /* 136 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 137 * in front of (at a lower virtual address and file offset than) the vma. 138 * 139 * We cannot merge two vmas if they have differently assigned (non-NULL) 140 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 141 * 142 * We don't check here for the merged mmap wrapping around the end of pagecache 143 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 144 * wrap, nor mmaps which cover the final page at index -1UL. 145 * 146 * We assume the vma may be removed as part of the merge. 147 */ 148 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 149 { 150 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 151 152 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 153 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 154 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 155 return true; 156 } 157 158 return false; 159 } 160 161 /* 162 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 163 * beyond (at a higher virtual address and file offset than) the vma. 164 * 165 * We cannot merge two vmas if they have differently assigned (non-NULL) 166 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 167 * 168 * We assume that vma is not removed as part of the merge. 169 */ 170 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 171 { 172 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 173 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 174 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 175 return true; 176 } 177 return false; 178 } 179 180 static void __vma_link_file(struct vm_area_struct *vma, 181 struct address_space *mapping) 182 { 183 if (vma_is_shared_maywrite(vma)) 184 mapping_allow_writable(mapping); 185 186 flush_dcache_mmap_lock(mapping); 187 vma_interval_tree_insert(vma, &mapping->i_mmap); 188 flush_dcache_mmap_unlock(mapping); 189 } 190 191 /* 192 * Requires inode->i_mapping->i_mmap_rwsem 193 */ 194 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 195 struct address_space *mapping) 196 { 197 if (vma_is_shared_maywrite(vma)) 198 mapping_unmap_writable(mapping); 199 200 flush_dcache_mmap_lock(mapping); 201 vma_interval_tree_remove(vma, &mapping->i_mmap); 202 flush_dcache_mmap_unlock(mapping); 203 } 204 205 /* 206 * vma_prepare() - Helper function for handling locking VMAs prior to altering 207 * @vp: The initialized vma_prepare struct 208 */ 209 static void vma_prepare(struct vma_prepare *vp) 210 { 211 if (vp->file) { 212 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 213 214 if (vp->adj_next) 215 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 216 vp->adj_next->vm_end); 217 218 i_mmap_lock_write(vp->mapping); 219 if (vp->insert && vp->insert->vm_file) { 220 /* 221 * Put into interval tree now, so instantiated pages 222 * are visible to arm/parisc __flush_dcache_page 223 * throughout; but we cannot insert into address 224 * space until vma start or end is updated. 225 */ 226 __vma_link_file(vp->insert, 227 vp->insert->vm_file->f_mapping); 228 } 229 } 230 231 if (vp->anon_vma) { 232 anon_vma_lock_write(vp->anon_vma); 233 anon_vma_interval_tree_pre_update_vma(vp->vma); 234 if (vp->adj_next) 235 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 236 } 237 238 if (vp->file) { 239 flush_dcache_mmap_lock(vp->mapping); 240 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 241 if (vp->adj_next) 242 vma_interval_tree_remove(vp->adj_next, 243 &vp->mapping->i_mmap); 244 } 245 246 } 247 248 /* 249 * vma_complete- Helper function for handling the unlocking after altering VMAs, 250 * or for inserting a VMA. 251 * 252 * @vp: The vma_prepare struct 253 * @vmi: The vma iterator 254 * @mm: The mm_struct 255 */ 256 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 257 struct mm_struct *mm) 258 { 259 if (vp->file) { 260 if (vp->adj_next) 261 vma_interval_tree_insert(vp->adj_next, 262 &vp->mapping->i_mmap); 263 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 264 flush_dcache_mmap_unlock(vp->mapping); 265 } 266 267 if (vp->remove && vp->file) { 268 __remove_shared_vm_struct(vp->remove, vp->mapping); 269 if (vp->remove2) 270 __remove_shared_vm_struct(vp->remove2, vp->mapping); 271 } else if (vp->insert) { 272 /* 273 * split_vma has split insert from vma, and needs 274 * us to insert it before dropping the locks 275 * (it may either follow vma or precede it). 276 */ 277 vma_iter_store(vmi, vp->insert); 278 mm->map_count++; 279 } 280 281 if (vp->anon_vma) { 282 anon_vma_interval_tree_post_update_vma(vp->vma); 283 if (vp->adj_next) 284 anon_vma_interval_tree_post_update_vma(vp->adj_next); 285 anon_vma_unlock_write(vp->anon_vma); 286 } 287 288 if (vp->file) { 289 i_mmap_unlock_write(vp->mapping); 290 uprobe_mmap(vp->vma); 291 292 if (vp->adj_next) 293 uprobe_mmap(vp->adj_next); 294 } 295 296 if (vp->remove) { 297 again: 298 vma_mark_detached(vp->remove, true); 299 if (vp->file) { 300 uprobe_munmap(vp->remove, vp->remove->vm_start, 301 vp->remove->vm_end); 302 fput(vp->file); 303 } 304 if (vp->remove->anon_vma) 305 anon_vma_merge(vp->vma, vp->remove); 306 mm->map_count--; 307 mpol_put(vma_policy(vp->remove)); 308 if (!vp->remove2) 309 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 310 vm_area_free(vp->remove); 311 312 /* 313 * In mprotect's case 6 (see comments on vma_merge), 314 * we are removing both mid and next vmas 315 */ 316 if (vp->remove2) { 317 vp->remove = vp->remove2; 318 vp->remove2 = NULL; 319 goto again; 320 } 321 } 322 if (vp->insert && vp->file) 323 uprobe_mmap(vp->insert); 324 } 325 326 /* 327 * init_vma_prep() - Initializer wrapper for vma_prepare struct 328 * @vp: The vma_prepare struct 329 * @vma: The vma that will be altered once locked 330 */ 331 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 332 { 333 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 334 } 335 336 /* 337 * Can the proposed VMA be merged with the left (previous) VMA taking into 338 * account the start position of the proposed range. 339 */ 340 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 341 342 { 343 return vmg->prev && vmg->prev->vm_end == vmg->start && 344 can_vma_merge_after(vmg); 345 } 346 347 /* 348 * Can the proposed VMA be merged with the right (next) VMA taking into 349 * account the end position of the proposed range. 350 * 351 * In addition, if we can merge with the left VMA, ensure that left and right 352 * anon_vma's are also compatible. 353 */ 354 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 355 bool can_merge_left) 356 { 357 if (!vmg->next || vmg->end != vmg->next->vm_start || 358 !can_vma_merge_before(vmg)) 359 return false; 360 361 if (!can_merge_left) 362 return true; 363 364 /* 365 * If we can merge with prev (left) and next (right), indicating that 366 * each VMA's anon_vma is compatible with the proposed anon_vma, this 367 * does not mean prev and next are compatible with EACH OTHER. 368 * 369 * We therefore check this in addition to mergeability to either side. 370 */ 371 return are_anon_vmas_compatible(vmg->prev, vmg->next); 372 } 373 374 /* 375 * Close a vm structure and free it. 376 */ 377 void remove_vma(struct vm_area_struct *vma, bool unreachable) 378 { 379 might_sleep(); 380 vma_close(vma); 381 if (vma->vm_file) 382 fput(vma->vm_file); 383 mpol_put(vma_policy(vma)); 384 if (unreachable) 385 __vm_area_free(vma); 386 else 387 vm_area_free(vma); 388 } 389 390 /* 391 * Get rid of page table information in the indicated region. 392 * 393 * Called with the mm semaphore held. 394 */ 395 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 396 struct vm_area_struct *prev, struct vm_area_struct *next) 397 { 398 struct mm_struct *mm = vma->vm_mm; 399 struct mmu_gather tlb; 400 401 lru_add_drain(); 402 tlb_gather_mmu(&tlb, mm); 403 update_hiwater_rss(mm); 404 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 405 /* mm_wr_locked = */ true); 406 mas_set(mas, vma->vm_end); 407 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 408 next ? next->vm_start : USER_PGTABLES_CEILING, 409 /* mm_wr_locked = */ true); 410 tlb_finish_mmu(&tlb); 411 } 412 413 /* 414 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 415 * has already been checked or doesn't make sense to fail. 416 * VMA Iterator will point to the original VMA. 417 */ 418 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 419 unsigned long addr, int new_below) 420 { 421 struct vma_prepare vp; 422 struct vm_area_struct *new; 423 int err; 424 425 WARN_ON(vma->vm_start >= addr); 426 WARN_ON(vma->vm_end <= addr); 427 428 if (vma->vm_ops && vma->vm_ops->may_split) { 429 err = vma->vm_ops->may_split(vma, addr); 430 if (err) 431 return err; 432 } 433 434 new = vm_area_dup(vma); 435 if (!new) 436 return -ENOMEM; 437 438 if (new_below) { 439 new->vm_end = addr; 440 } else { 441 new->vm_start = addr; 442 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 443 } 444 445 err = -ENOMEM; 446 vma_iter_config(vmi, new->vm_start, new->vm_end); 447 if (vma_iter_prealloc(vmi, new)) 448 goto out_free_vma; 449 450 err = vma_dup_policy(vma, new); 451 if (err) 452 goto out_free_vmi; 453 454 err = anon_vma_clone(new, vma); 455 if (err) 456 goto out_free_mpol; 457 458 if (new->vm_file) 459 get_file(new->vm_file); 460 461 if (new->vm_ops && new->vm_ops->open) 462 new->vm_ops->open(new); 463 464 vma_start_write(vma); 465 vma_start_write(new); 466 467 init_vma_prep(&vp, vma); 468 vp.insert = new; 469 vma_prepare(&vp); 470 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 471 472 if (new_below) { 473 vma->vm_start = addr; 474 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 475 } else { 476 vma->vm_end = addr; 477 } 478 479 /* vma_complete stores the new vma */ 480 vma_complete(&vp, vmi, vma->vm_mm); 481 validate_mm(vma->vm_mm); 482 483 /* Success. */ 484 if (new_below) 485 vma_next(vmi); 486 else 487 vma_prev(vmi); 488 489 return 0; 490 491 out_free_mpol: 492 mpol_put(vma_policy(new)); 493 out_free_vmi: 494 vma_iter_free(vmi); 495 out_free_vma: 496 vm_area_free(new); 497 return err; 498 } 499 500 /* 501 * Split a vma into two pieces at address 'addr', a new vma is allocated 502 * either for the first part or the tail. 503 */ 504 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 505 unsigned long addr, int new_below) 506 { 507 if (vma->vm_mm->map_count >= sysctl_max_map_count) 508 return -ENOMEM; 509 510 return __split_vma(vmi, vma, addr, new_below); 511 } 512 513 /* 514 * vma has some anon_vma assigned, and is already inserted on that 515 * anon_vma's interval trees. 516 * 517 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 518 * vma must be removed from the anon_vma's interval trees using 519 * anon_vma_interval_tree_pre_update_vma(). 520 * 521 * After the update, the vma will be reinserted using 522 * anon_vma_interval_tree_post_update_vma(). 523 * 524 * The entire update must be protected by exclusive mmap_lock and by 525 * the root anon_vma's mutex. 526 */ 527 void 528 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 529 { 530 struct anon_vma_chain *avc; 531 532 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 533 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 534 } 535 536 void 537 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 538 { 539 struct anon_vma_chain *avc; 540 541 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 542 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 543 } 544 545 /* 546 * dup_anon_vma() - Helper function to duplicate anon_vma 547 * @dst: The destination VMA 548 * @src: The source VMA 549 * @dup: Pointer to the destination VMA when successful. 550 * 551 * Returns: 0 on success. 552 */ 553 static int dup_anon_vma(struct vm_area_struct *dst, 554 struct vm_area_struct *src, struct vm_area_struct **dup) 555 { 556 /* 557 * Easily overlooked: when mprotect shifts the boundary, make sure the 558 * expanding vma has anon_vma set if the shrinking vma had, to cover any 559 * anon pages imported. 560 */ 561 if (src->anon_vma && !dst->anon_vma) { 562 int ret; 563 564 vma_assert_write_locked(dst); 565 dst->anon_vma = src->anon_vma; 566 ret = anon_vma_clone(dst, src); 567 if (ret) 568 return ret; 569 570 *dup = dst; 571 } 572 573 return 0; 574 } 575 576 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 577 void validate_mm(struct mm_struct *mm) 578 { 579 int bug = 0; 580 int i = 0; 581 struct vm_area_struct *vma; 582 VMA_ITERATOR(vmi, mm, 0); 583 584 mt_validate(&mm->mm_mt); 585 for_each_vma(vmi, vma) { 586 #ifdef CONFIG_DEBUG_VM_RB 587 struct anon_vma *anon_vma = vma->anon_vma; 588 struct anon_vma_chain *avc; 589 #endif 590 unsigned long vmi_start, vmi_end; 591 bool warn = 0; 592 593 vmi_start = vma_iter_addr(&vmi); 594 vmi_end = vma_iter_end(&vmi); 595 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 596 warn = 1; 597 598 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 599 warn = 1; 600 601 if (warn) { 602 pr_emerg("issue in %s\n", current->comm); 603 dump_stack(); 604 dump_vma(vma); 605 pr_emerg("tree range: %px start %lx end %lx\n", vma, 606 vmi_start, vmi_end - 1); 607 vma_iter_dump_tree(&vmi); 608 } 609 610 #ifdef CONFIG_DEBUG_VM_RB 611 if (anon_vma) { 612 anon_vma_lock_read(anon_vma); 613 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 614 anon_vma_interval_tree_verify(avc); 615 anon_vma_unlock_read(anon_vma); 616 } 617 #endif 618 /* Check for a infinite loop */ 619 if (++i > mm->map_count + 10) { 620 i = -1; 621 break; 622 } 623 } 624 if (i != mm->map_count) { 625 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 626 bug = 1; 627 } 628 VM_BUG_ON_MM(bug, mm); 629 } 630 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 631 632 /* Actually perform the VMA merge operation. */ 633 static int commit_merge(struct vma_merge_struct *vmg, 634 struct vm_area_struct *adjust, 635 struct vm_area_struct *remove, 636 struct vm_area_struct *remove2, 637 long adj_start, 638 bool expanded) 639 { 640 struct vma_prepare vp; 641 642 init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2); 643 644 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 645 vp.anon_vma != adjust->anon_vma); 646 647 if (expanded) { 648 /* Note: vma iterator must be pointing to 'start'. */ 649 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 650 } else { 651 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start, 652 adjust->vm_end); 653 } 654 655 if (vma_iter_prealloc(vmg->vmi, vmg->vma)) 656 return -ENOMEM; 657 658 vma_prepare(&vp); 659 vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start); 660 vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff); 661 662 if (expanded) 663 vma_iter_store(vmg->vmi, vmg->vma); 664 665 if (adj_start) { 666 adjust->vm_start += adj_start; 667 adjust->vm_pgoff += PHYS_PFN(adj_start); 668 if (adj_start < 0) { 669 WARN_ON(expanded); 670 vma_iter_store(vmg->vmi, adjust); 671 } 672 } 673 674 vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm); 675 676 return 0; 677 } 678 679 /* We can only remove VMAs when merging if they do not have a close hook. */ 680 static bool can_merge_remove_vma(struct vm_area_struct *vma) 681 { 682 return !vma->vm_ops || !vma->vm_ops->close; 683 } 684 685 /* 686 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 687 * attributes modified. 688 * 689 * @vmg: Describes the modifications being made to a VMA and associated 690 * metadata. 691 * 692 * When the attributes of a range within a VMA change, then it might be possible 693 * for immediately adjacent VMAs to be merged into that VMA due to having 694 * identical properties. 695 * 696 * This function checks for the existence of any such mergeable VMAs and updates 697 * the maple tree describing the @vmg->vma->vm_mm address space to account for 698 * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge. 699 * 700 * As part of this operation, if a merge occurs, the @vmg object will have its 701 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 702 * calls to this function should reset these fields. 703 * 704 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 705 * 706 * ASSUMPTIONS: 707 * - The caller must assign the VMA to be modifed to @vmg->vma. 708 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 709 * - The caller must not set @vmg->next, as we determine this. 710 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 711 * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end). 712 */ 713 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg) 714 { 715 struct vm_area_struct *vma = vmg->vma; 716 struct vm_area_struct *prev = vmg->prev; 717 struct vm_area_struct *next, *res; 718 struct vm_area_struct *anon_dup = NULL; 719 struct vm_area_struct *adjust = NULL; 720 unsigned long start = vmg->start; 721 unsigned long end = vmg->end; 722 bool left_side = vma && start == vma->vm_start; 723 bool right_side = vma && end == vma->vm_end; 724 int err = 0; 725 long adj_start = 0; 726 bool merge_will_delete_vma, merge_will_delete_next; 727 bool merge_left, merge_right, merge_both; 728 bool expanded; 729 730 mmap_assert_write_locked(vmg->mm); 731 VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */ 732 VM_WARN_ON(vmg->next); /* We set this. */ 733 VM_WARN_ON(prev && start <= prev->vm_start); 734 VM_WARN_ON(start >= end); 735 /* 736 * If vma == prev, then we are offset into a VMA. Otherwise, if we are 737 * not, we must span a portion of the VMA. 738 */ 739 VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) || 740 vmg->end > vma->vm_end)); 741 /* The vmi must be positioned within vmg->vma. */ 742 VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start && 743 vma_iter_addr(vmg->vmi) < vma->vm_end)); 744 745 vmg->state = VMA_MERGE_NOMERGE; 746 747 /* 748 * If a special mapping or if the range being modified is neither at the 749 * furthermost left or right side of the VMA, then we have no chance of 750 * merging and should abort. 751 */ 752 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 753 return NULL; 754 755 if (left_side) 756 merge_left = can_vma_merge_left(vmg); 757 else 758 merge_left = false; 759 760 if (right_side) { 761 next = vmg->next = vma_iter_next_range(vmg->vmi); 762 vma_iter_prev_range(vmg->vmi); 763 764 merge_right = can_vma_merge_right(vmg, merge_left); 765 } else { 766 merge_right = false; 767 next = NULL; 768 } 769 770 if (merge_left) /* If merging prev, position iterator there. */ 771 vma_prev(vmg->vmi); 772 else if (!merge_right) /* If we have nothing to merge, abort. */ 773 return NULL; 774 775 merge_both = merge_left && merge_right; 776 /* If we span the entire VMA, a merge implies it will be deleted. */ 777 merge_will_delete_vma = left_side && right_side; 778 779 /* 780 * If we need to remove vma in its entirety but are unable to do so, 781 * we have no sensible recourse but to abort the merge. 782 */ 783 if (merge_will_delete_vma && !can_merge_remove_vma(vma)) 784 return NULL; 785 786 /* 787 * If we merge both VMAs, then next is also deleted. This implies 788 * merge_will_delete_vma also. 789 */ 790 merge_will_delete_next = merge_both; 791 792 /* 793 * If we cannot delete next, then we can reduce the operation to merging 794 * prev and vma (thereby deleting vma). 795 */ 796 if (merge_will_delete_next && !can_merge_remove_vma(next)) { 797 merge_will_delete_next = false; 798 merge_right = false; 799 merge_both = false; 800 } 801 802 /* No matter what happens, we will be adjusting vma. */ 803 vma_start_write(vma); 804 805 if (merge_left) 806 vma_start_write(prev); 807 808 if (merge_right) 809 vma_start_write(next); 810 811 if (merge_both) { 812 /* 813 * |<----->| 814 * |-------*********-------| 815 * prev vma next 816 * extend delete delete 817 */ 818 819 vmg->vma = prev; 820 vmg->start = prev->vm_start; 821 vmg->end = next->vm_end; 822 vmg->pgoff = prev->vm_pgoff; 823 824 /* 825 * We already ensured anon_vma compatibility above, so now it's 826 * simply a case of, if prev has no anon_vma object, which of 827 * next or vma contains the anon_vma we must duplicate. 828 */ 829 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup); 830 } else if (merge_left) { 831 /* 832 * |<----->| OR 833 * |<--------->| 834 * |-------************* 835 * prev vma 836 * extend shrink/delete 837 */ 838 839 vmg->vma = prev; 840 vmg->start = prev->vm_start; 841 vmg->pgoff = prev->vm_pgoff; 842 843 if (!merge_will_delete_vma) { 844 adjust = vma; 845 adj_start = vmg->end - vma->vm_start; 846 } 847 848 err = dup_anon_vma(prev, vma, &anon_dup); 849 } else { /* merge_right */ 850 /* 851 * |<----->| OR 852 * |<--------->| 853 * *************-------| 854 * vma next 855 * shrink/delete extend 856 */ 857 858 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 859 860 VM_WARN_ON(!merge_right); 861 /* If we are offset into a VMA, then prev must be vma. */ 862 VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev); 863 864 if (merge_will_delete_vma) { 865 vmg->vma = next; 866 vmg->end = next->vm_end; 867 vmg->pgoff = next->vm_pgoff - pglen; 868 } else { 869 /* 870 * We shrink vma and expand next. 871 * 872 * IMPORTANT: This is the ONLY case where the final 873 * merged VMA is NOT vmg->vma, but rather vmg->next. 874 */ 875 876 vmg->start = vma->vm_start; 877 vmg->end = start; 878 vmg->pgoff = vma->vm_pgoff; 879 880 adjust = next; 881 adj_start = -(vma->vm_end - start); 882 } 883 884 err = dup_anon_vma(next, vma, &anon_dup); 885 } 886 887 if (err) 888 goto abort; 889 890 /* 891 * In nearly all cases, we expand vmg->vma. There is one exception - 892 * merge_right where we partially span the VMA. In this case we shrink 893 * the end of vmg->vma and adjust the start of vmg->next accordingly. 894 */ 895 expanded = !merge_right || merge_will_delete_vma; 896 897 if (commit_merge(vmg, adjust, 898 merge_will_delete_vma ? vma : NULL, 899 merge_will_delete_next ? next : NULL, 900 adj_start, expanded)) { 901 if (anon_dup) 902 unlink_anon_vmas(anon_dup); 903 904 vmg->state = VMA_MERGE_ERROR_NOMEM; 905 return NULL; 906 } 907 908 res = merge_left ? prev : next; 909 khugepaged_enter_vma(res, vmg->flags); 910 911 vmg->state = VMA_MERGE_SUCCESS; 912 return res; 913 914 abort: 915 vma_iter_set(vmg->vmi, start); 916 vma_iter_load(vmg->vmi); 917 vmg->state = VMA_MERGE_ERROR_NOMEM; 918 return NULL; 919 } 920 921 /* 922 * vma_merge_new_range - Attempt to merge a new VMA into address space 923 * 924 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 925 * (exclusive), which we try to merge with any adjacent VMAs if possible. 926 * 927 * We are about to add a VMA to the address space starting at @vmg->start and 928 * ending at @vmg->end. There are three different possible scenarios: 929 * 930 * 1. There is a VMA with identical properties immediately adjacent to the 931 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 932 * EXPAND that VMA: 933 * 934 * Proposed: |-----| or |-----| 935 * Existing: |----| |----| 936 * 937 * 2. There are VMAs with identical properties immediately adjacent to the 938 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 939 * EXPAND the former and REMOVE the latter: 940 * 941 * Proposed: |-----| 942 * Existing: |----| |----| 943 * 944 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 945 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 946 * 947 * In instances where we can merge, this function returns the expanded VMA which 948 * will have its range adjusted accordingly and the underlying maple tree also 949 * adjusted. 950 * 951 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 952 * to the VMA we expanded. 953 * 954 * This function adjusts @vmg to provide @vmg->next if not already specified, 955 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 956 * 957 * ASSUMPTIONS: 958 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 959 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 960 other than VMAs that will be unmapped should the operation succeed. 961 * - The caller must have specified the previous vma in @vmg->prev. 962 * - The caller must have specified the next vma in @vmg->next. 963 * - The caller must have positioned the vmi at or before the gap. 964 */ 965 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 966 { 967 struct vm_area_struct *prev = vmg->prev; 968 struct vm_area_struct *next = vmg->next; 969 unsigned long end = vmg->end; 970 bool can_merge_left, can_merge_right; 971 bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND; 972 973 mmap_assert_write_locked(vmg->mm); 974 VM_WARN_ON(vmg->vma); 975 /* vmi must point at or before the gap. */ 976 VM_WARN_ON(vma_iter_addr(vmg->vmi) > end); 977 978 vmg->state = VMA_MERGE_NOMERGE; 979 980 /* Special VMAs are unmergeable, also if no prev/next. */ 981 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 982 return NULL; 983 984 can_merge_left = can_vma_merge_left(vmg); 985 can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left); 986 987 /* If we can merge with the next VMA, adjust vmg accordingly. */ 988 if (can_merge_right) { 989 vmg->end = next->vm_end; 990 vmg->vma = next; 991 } 992 993 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 994 if (can_merge_left) { 995 vmg->start = prev->vm_start; 996 vmg->vma = prev; 997 vmg->pgoff = prev->vm_pgoff; 998 999 /* 1000 * If this merge would result in removal of the next VMA but we 1001 * are not permitted to do so, reduce the operation to merging 1002 * prev and vma. 1003 */ 1004 if (can_merge_right && !can_merge_remove_vma(next)) 1005 vmg->end = end; 1006 1007 /* In expand-only case we are already positioned at prev. */ 1008 if (!just_expand) { 1009 /* Equivalent to going to the previous range. */ 1010 vma_prev(vmg->vmi); 1011 } 1012 } 1013 1014 /* 1015 * Now try to expand adjacent VMA(s). This takes care of removing the 1016 * following VMA if we have VMAs on both sides. 1017 */ 1018 if (vmg->vma && !vma_expand(vmg)) { 1019 khugepaged_enter_vma(vmg->vma, vmg->flags); 1020 vmg->state = VMA_MERGE_SUCCESS; 1021 return vmg->vma; 1022 } 1023 1024 return NULL; 1025 } 1026 1027 /* 1028 * vma_expand - Expand an existing VMA 1029 * 1030 * @vmg: Describes a VMA expansion operation. 1031 * 1032 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1033 * Will expand over vmg->next if it's different from vmg->vma and vmg->end == 1034 * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with 1035 * vmg->next needs to be handled by the caller. 1036 * 1037 * Returns: 0 on success. 1038 * 1039 * ASSUMPTIONS: 1040 * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock. 1041 * - The caller must have set @vmg->vma and @vmg->next. 1042 */ 1043 int vma_expand(struct vma_merge_struct *vmg) 1044 { 1045 struct vm_area_struct *anon_dup = NULL; 1046 bool remove_next = false; 1047 struct vm_area_struct *vma = vmg->vma; 1048 struct vm_area_struct *next = vmg->next; 1049 1050 mmap_assert_write_locked(vmg->mm); 1051 1052 vma_start_write(vma); 1053 if (next && (vma != next) && (vmg->end == next->vm_end)) { 1054 int ret; 1055 1056 remove_next = true; 1057 /* This should already have been checked by this point. */ 1058 VM_WARN_ON(!can_merge_remove_vma(next)); 1059 vma_start_write(next); 1060 ret = dup_anon_vma(vma, next, &anon_dup); 1061 if (ret) 1062 return ret; 1063 } 1064 1065 /* Not merging but overwriting any part of next is not handled. */ 1066 VM_WARN_ON(next && !remove_next && 1067 next != vma && vmg->end > next->vm_start); 1068 /* Only handles expanding */ 1069 VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end); 1070 1071 if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true)) 1072 goto nomem; 1073 1074 return 0; 1075 1076 nomem: 1077 vmg->state = VMA_MERGE_ERROR_NOMEM; 1078 if (anon_dup) 1079 unlink_anon_vmas(anon_dup); 1080 return -ENOMEM; 1081 } 1082 1083 /* 1084 * vma_shrink() - Reduce an existing VMAs memory area 1085 * @vmi: The vma iterator 1086 * @vma: The VMA to modify 1087 * @start: The new start 1088 * @end: The new end 1089 * 1090 * Returns: 0 on success, -ENOMEM otherwise 1091 */ 1092 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1093 unsigned long start, unsigned long end, pgoff_t pgoff) 1094 { 1095 struct vma_prepare vp; 1096 1097 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1098 1099 if (vma->vm_start < start) 1100 vma_iter_config(vmi, vma->vm_start, start); 1101 else 1102 vma_iter_config(vmi, end, vma->vm_end); 1103 1104 if (vma_iter_prealloc(vmi, NULL)) 1105 return -ENOMEM; 1106 1107 vma_start_write(vma); 1108 1109 init_vma_prep(&vp, vma); 1110 vma_prepare(&vp); 1111 vma_adjust_trans_huge(vma, start, end, 0); 1112 1113 vma_iter_clear(vmi); 1114 vma_set_range(vma, start, end, pgoff); 1115 vma_complete(&vp, vmi, vma->vm_mm); 1116 validate_mm(vma->vm_mm); 1117 return 0; 1118 } 1119 1120 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1121 struct ma_state *mas_detach, bool mm_wr_locked) 1122 { 1123 struct mmu_gather tlb; 1124 1125 if (!vms->clear_ptes) /* Nothing to do */ 1126 return; 1127 1128 /* 1129 * We can free page tables without write-locking mmap_lock because VMAs 1130 * were isolated before we downgraded mmap_lock. 1131 */ 1132 mas_set(mas_detach, 1); 1133 lru_add_drain(); 1134 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1135 update_hiwater_rss(vms->vma->vm_mm); 1136 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1137 vms->vma_count, mm_wr_locked); 1138 1139 mas_set(mas_detach, 1); 1140 /* start and end may be different if there is no prev or next vma. */ 1141 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1142 vms->unmap_end, mm_wr_locked); 1143 tlb_finish_mmu(&tlb); 1144 vms->clear_ptes = false; 1145 } 1146 1147 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1148 struct ma_state *mas_detach) 1149 { 1150 struct vm_area_struct *vma; 1151 1152 if (!vms->nr_pages) 1153 return; 1154 1155 vms_clear_ptes(vms, mas_detach, true); 1156 mas_set(mas_detach, 0); 1157 mas_for_each(mas_detach, vma, ULONG_MAX) 1158 vma_close(vma); 1159 } 1160 1161 /* 1162 * vms_complete_munmap_vmas() - Finish the munmap() operation 1163 * @vms: The vma munmap struct 1164 * @mas_detach: The maple state of the detached vmas 1165 * 1166 * This updates the mm_struct, unmaps the region, frees the resources 1167 * used for the munmap() and may downgrade the lock - if requested. Everything 1168 * needed to be done once the vma maple tree is updated. 1169 */ 1170 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1171 struct ma_state *mas_detach) 1172 { 1173 struct vm_area_struct *vma; 1174 struct mm_struct *mm; 1175 1176 mm = current->mm; 1177 mm->map_count -= vms->vma_count; 1178 mm->locked_vm -= vms->locked_vm; 1179 if (vms->unlock) 1180 mmap_write_downgrade(mm); 1181 1182 if (!vms->nr_pages) 1183 return; 1184 1185 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1186 /* Update high watermark before we lower total_vm */ 1187 update_hiwater_vm(mm); 1188 /* Stat accounting */ 1189 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1190 /* Paranoid bookkeeping */ 1191 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1192 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1193 VM_WARN_ON(vms->data_vm > mm->data_vm); 1194 mm->exec_vm -= vms->exec_vm; 1195 mm->stack_vm -= vms->stack_vm; 1196 mm->data_vm -= vms->data_vm; 1197 1198 /* Remove and clean up vmas */ 1199 mas_set(mas_detach, 0); 1200 mas_for_each(mas_detach, vma, ULONG_MAX) 1201 remove_vma(vma, /* unreachable = */ false); 1202 1203 vm_unacct_memory(vms->nr_accounted); 1204 validate_mm(mm); 1205 if (vms->unlock) 1206 mmap_read_unlock(mm); 1207 1208 __mt_destroy(mas_detach->tree); 1209 } 1210 1211 /* 1212 * reattach_vmas() - Undo any munmap work and free resources 1213 * @mas_detach: The maple state with the detached maple tree 1214 * 1215 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1216 */ 1217 static void reattach_vmas(struct ma_state *mas_detach) 1218 { 1219 struct vm_area_struct *vma; 1220 1221 mas_set(mas_detach, 0); 1222 mas_for_each(mas_detach, vma, ULONG_MAX) 1223 vma_mark_detached(vma, false); 1224 1225 __mt_destroy(mas_detach->tree); 1226 } 1227 1228 /* 1229 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1230 * for removal at a later date. Handles splitting first and last if necessary 1231 * and marking the vmas as isolated. 1232 * 1233 * @vms: The vma munmap struct 1234 * @mas_detach: The maple state tracking the detached tree 1235 * 1236 * Return: 0 on success, error otherwise 1237 */ 1238 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1239 struct ma_state *mas_detach) 1240 { 1241 struct vm_area_struct *next = NULL; 1242 int error; 1243 1244 /* 1245 * If we need to split any vma, do it now to save pain later. 1246 * Does it split the first one? 1247 */ 1248 if (vms->start > vms->vma->vm_start) { 1249 1250 /* 1251 * Make sure that map_count on return from munmap() will 1252 * not exceed its limit; but let map_count go just above 1253 * its limit temporarily, to help free resources as expected. 1254 */ 1255 if (vms->end < vms->vma->vm_end && 1256 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1257 error = -ENOMEM; 1258 goto map_count_exceeded; 1259 } 1260 1261 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1262 if (!can_modify_vma(vms->vma)) { 1263 error = -EPERM; 1264 goto start_split_failed; 1265 } 1266 1267 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1268 if (error) 1269 goto start_split_failed; 1270 } 1271 vms->prev = vma_prev(vms->vmi); 1272 if (vms->prev) 1273 vms->unmap_start = vms->prev->vm_end; 1274 1275 /* 1276 * Detach a range of VMAs from the mm. Using next as a temp variable as 1277 * it is always overwritten. 1278 */ 1279 for_each_vma_range(*(vms->vmi), next, vms->end) { 1280 long nrpages; 1281 1282 if (!can_modify_vma(next)) { 1283 error = -EPERM; 1284 goto modify_vma_failed; 1285 } 1286 /* Does it split the end? */ 1287 if (next->vm_end > vms->end) { 1288 error = __split_vma(vms->vmi, next, vms->end, 0); 1289 if (error) 1290 goto end_split_failed; 1291 } 1292 vma_start_write(next); 1293 mas_set(mas_detach, vms->vma_count++); 1294 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1295 if (error) 1296 goto munmap_gather_failed; 1297 1298 vma_mark_detached(next, true); 1299 nrpages = vma_pages(next); 1300 1301 vms->nr_pages += nrpages; 1302 if (next->vm_flags & VM_LOCKED) 1303 vms->locked_vm += nrpages; 1304 1305 if (next->vm_flags & VM_ACCOUNT) 1306 vms->nr_accounted += nrpages; 1307 1308 if (is_exec_mapping(next->vm_flags)) 1309 vms->exec_vm += nrpages; 1310 else if (is_stack_mapping(next->vm_flags)) 1311 vms->stack_vm += nrpages; 1312 else if (is_data_mapping(next->vm_flags)) 1313 vms->data_vm += nrpages; 1314 1315 if (vms->uf) { 1316 /* 1317 * If userfaultfd_unmap_prep returns an error the vmas 1318 * will remain split, but userland will get a 1319 * highly unexpected error anyway. This is no 1320 * different than the case where the first of the two 1321 * __split_vma fails, but we don't undo the first 1322 * split, despite we could. This is unlikely enough 1323 * failure that it's not worth optimizing it for. 1324 */ 1325 error = userfaultfd_unmap_prep(next, vms->start, 1326 vms->end, vms->uf); 1327 if (error) 1328 goto userfaultfd_error; 1329 } 1330 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1331 BUG_ON(next->vm_start < vms->start); 1332 BUG_ON(next->vm_start > vms->end); 1333 #endif 1334 } 1335 1336 vms->next = vma_next(vms->vmi); 1337 if (vms->next) 1338 vms->unmap_end = vms->next->vm_start; 1339 1340 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1341 /* Make sure no VMAs are about to be lost. */ 1342 { 1343 MA_STATE(test, mas_detach->tree, 0, 0); 1344 struct vm_area_struct *vma_mas, *vma_test; 1345 int test_count = 0; 1346 1347 vma_iter_set(vms->vmi, vms->start); 1348 rcu_read_lock(); 1349 vma_test = mas_find(&test, vms->vma_count - 1); 1350 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1351 BUG_ON(vma_mas != vma_test); 1352 test_count++; 1353 vma_test = mas_next(&test, vms->vma_count - 1); 1354 } 1355 rcu_read_unlock(); 1356 BUG_ON(vms->vma_count != test_count); 1357 } 1358 #endif 1359 1360 while (vma_iter_addr(vms->vmi) > vms->start) 1361 vma_iter_prev_range(vms->vmi); 1362 1363 vms->clear_ptes = true; 1364 return 0; 1365 1366 userfaultfd_error: 1367 munmap_gather_failed: 1368 end_split_failed: 1369 modify_vma_failed: 1370 reattach_vmas(mas_detach); 1371 start_split_failed: 1372 map_count_exceeded: 1373 return error; 1374 } 1375 1376 /* 1377 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1378 * @vms: The vma munmap struct 1379 * @vmi: The vma iterator 1380 * @vma: The first vm_area_struct to munmap 1381 * @start: The aligned start address to munmap 1382 * @end: The aligned end address to munmap 1383 * @uf: The userfaultfd list_head 1384 * @unlock: Unlock after the operation. Only unlocked on success 1385 */ 1386 static void init_vma_munmap(struct vma_munmap_struct *vms, 1387 struct vma_iterator *vmi, struct vm_area_struct *vma, 1388 unsigned long start, unsigned long end, struct list_head *uf, 1389 bool unlock) 1390 { 1391 vms->vmi = vmi; 1392 vms->vma = vma; 1393 if (vma) { 1394 vms->start = start; 1395 vms->end = end; 1396 } else { 1397 vms->start = vms->end = 0; 1398 } 1399 vms->unlock = unlock; 1400 vms->uf = uf; 1401 vms->vma_count = 0; 1402 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1403 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1404 vms->unmap_start = FIRST_USER_ADDRESS; 1405 vms->unmap_end = USER_PGTABLES_CEILING; 1406 vms->clear_ptes = false; 1407 } 1408 1409 /* 1410 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1411 * @vmi: The vma iterator 1412 * @vma: The starting vm_area_struct 1413 * @mm: The mm_struct 1414 * @start: The aligned start address to munmap. 1415 * @end: The aligned end address to munmap. 1416 * @uf: The userfaultfd list_head 1417 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1418 * success. 1419 * 1420 * Return: 0 on success and drops the lock if so directed, error and leaves the 1421 * lock held otherwise. 1422 */ 1423 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1424 struct mm_struct *mm, unsigned long start, unsigned long end, 1425 struct list_head *uf, bool unlock) 1426 { 1427 struct maple_tree mt_detach; 1428 MA_STATE(mas_detach, &mt_detach, 0, 0); 1429 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1430 mt_on_stack(mt_detach); 1431 struct vma_munmap_struct vms; 1432 int error; 1433 1434 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1435 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1436 if (error) 1437 goto gather_failed; 1438 1439 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1440 if (error) 1441 goto clear_tree_failed; 1442 1443 /* Point of no return */ 1444 vms_complete_munmap_vmas(&vms, &mas_detach); 1445 return 0; 1446 1447 clear_tree_failed: 1448 reattach_vmas(&mas_detach); 1449 gather_failed: 1450 validate_mm(mm); 1451 return error; 1452 } 1453 1454 /* 1455 * do_vmi_munmap() - munmap a given range. 1456 * @vmi: The vma iterator 1457 * @mm: The mm_struct 1458 * @start: The start address to munmap 1459 * @len: The length of the range to munmap 1460 * @uf: The userfaultfd list_head 1461 * @unlock: set to true if the user wants to drop the mmap_lock on success 1462 * 1463 * This function takes a @mas that is either pointing to the previous VMA or set 1464 * to MA_START and sets it up to remove the mapping(s). The @len will be 1465 * aligned. 1466 * 1467 * Return: 0 on success and drops the lock if so directed, error and leaves the 1468 * lock held otherwise. 1469 */ 1470 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1471 unsigned long start, size_t len, struct list_head *uf, 1472 bool unlock) 1473 { 1474 unsigned long end; 1475 struct vm_area_struct *vma; 1476 1477 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1478 return -EINVAL; 1479 1480 end = start + PAGE_ALIGN(len); 1481 if (end == start) 1482 return -EINVAL; 1483 1484 /* Find the first overlapping VMA */ 1485 vma = vma_find(vmi, end); 1486 if (!vma) { 1487 if (unlock) 1488 mmap_write_unlock(mm); 1489 return 0; 1490 } 1491 1492 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1493 } 1494 1495 /* 1496 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1497 * context and anonymous VMA name within the range [start, end). 1498 * 1499 * As a result, we might be able to merge the newly modified VMA range with an 1500 * adjacent VMA with identical properties. 1501 * 1502 * If no merge is possible and the range does not span the entirety of the VMA, 1503 * we then need to split the VMA to accommodate the change. 1504 * 1505 * The function returns either the merged VMA, the original VMA if a split was 1506 * required instead, or an error if the split failed. 1507 */ 1508 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1509 { 1510 struct vm_area_struct *vma = vmg->vma; 1511 struct vm_area_struct *merged; 1512 1513 /* First, try to merge. */ 1514 merged = vma_merge_existing_range(vmg); 1515 if (merged) 1516 return merged; 1517 1518 /* Split any preceding portion of the VMA. */ 1519 if (vma->vm_start < vmg->start) { 1520 int err = split_vma(vmg->vmi, vma, vmg->start, 1); 1521 1522 if (err) 1523 return ERR_PTR(err); 1524 } 1525 1526 /* Split any trailing portion of the VMA. */ 1527 if (vma->vm_end > vmg->end) { 1528 int err = split_vma(vmg->vmi, vma, vmg->end, 0); 1529 1530 if (err) 1531 return ERR_PTR(err); 1532 } 1533 1534 return vma; 1535 } 1536 1537 struct vm_area_struct *vma_modify_flags( 1538 struct vma_iterator *vmi, struct vm_area_struct *prev, 1539 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1540 unsigned long new_flags) 1541 { 1542 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1543 1544 vmg.flags = new_flags; 1545 1546 return vma_modify(&vmg); 1547 } 1548 1549 struct vm_area_struct 1550 *vma_modify_flags_name(struct vma_iterator *vmi, 1551 struct vm_area_struct *prev, 1552 struct vm_area_struct *vma, 1553 unsigned long start, 1554 unsigned long end, 1555 unsigned long new_flags, 1556 struct anon_vma_name *new_name) 1557 { 1558 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1559 1560 vmg.flags = new_flags; 1561 vmg.anon_name = new_name; 1562 1563 return vma_modify(&vmg); 1564 } 1565 1566 struct vm_area_struct 1567 *vma_modify_policy(struct vma_iterator *vmi, 1568 struct vm_area_struct *prev, 1569 struct vm_area_struct *vma, 1570 unsigned long start, unsigned long end, 1571 struct mempolicy *new_pol) 1572 { 1573 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1574 1575 vmg.policy = new_pol; 1576 1577 return vma_modify(&vmg); 1578 } 1579 1580 struct vm_area_struct 1581 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1582 struct vm_area_struct *prev, 1583 struct vm_area_struct *vma, 1584 unsigned long start, unsigned long end, 1585 unsigned long new_flags, 1586 struct vm_userfaultfd_ctx new_ctx) 1587 { 1588 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1589 1590 vmg.flags = new_flags; 1591 vmg.uffd_ctx = new_ctx; 1592 1593 return vma_modify(&vmg); 1594 } 1595 1596 /* 1597 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1598 * VMA with identical properties. 1599 */ 1600 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1601 struct vm_area_struct *vma, 1602 unsigned long delta) 1603 { 1604 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1605 1606 vmg.next = vma_iter_next_rewind(vmi, NULL); 1607 vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */ 1608 1609 return vma_merge_new_range(&vmg); 1610 } 1611 1612 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1613 { 1614 vb->count = 0; 1615 } 1616 1617 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1618 { 1619 struct address_space *mapping; 1620 int i; 1621 1622 mapping = vb->vmas[0]->vm_file->f_mapping; 1623 i_mmap_lock_write(mapping); 1624 for (i = 0; i < vb->count; i++) { 1625 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1626 __remove_shared_vm_struct(vb->vmas[i], mapping); 1627 } 1628 i_mmap_unlock_write(mapping); 1629 1630 unlink_file_vma_batch_init(vb); 1631 } 1632 1633 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1634 struct vm_area_struct *vma) 1635 { 1636 if (vma->vm_file == NULL) 1637 return; 1638 1639 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1640 vb->count == ARRAY_SIZE(vb->vmas)) 1641 unlink_file_vma_batch_process(vb); 1642 1643 vb->vmas[vb->count] = vma; 1644 vb->count++; 1645 } 1646 1647 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1648 { 1649 if (vb->count > 0) 1650 unlink_file_vma_batch_process(vb); 1651 } 1652 1653 /* 1654 * Unlink a file-based vm structure from its interval tree, to hide 1655 * vma from rmap and vmtruncate before freeing its page tables. 1656 */ 1657 void unlink_file_vma(struct vm_area_struct *vma) 1658 { 1659 struct file *file = vma->vm_file; 1660 1661 if (file) { 1662 struct address_space *mapping = file->f_mapping; 1663 1664 i_mmap_lock_write(mapping); 1665 __remove_shared_vm_struct(vma, mapping); 1666 i_mmap_unlock_write(mapping); 1667 } 1668 } 1669 1670 void vma_link_file(struct vm_area_struct *vma) 1671 { 1672 struct file *file = vma->vm_file; 1673 struct address_space *mapping; 1674 1675 if (file) { 1676 mapping = file->f_mapping; 1677 i_mmap_lock_write(mapping); 1678 __vma_link_file(vma, mapping); 1679 i_mmap_unlock_write(mapping); 1680 } 1681 } 1682 1683 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1684 { 1685 VMA_ITERATOR(vmi, mm, 0); 1686 1687 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1688 if (vma_iter_prealloc(&vmi, vma)) 1689 return -ENOMEM; 1690 1691 vma_start_write(vma); 1692 vma_iter_store(&vmi, vma); 1693 vma_link_file(vma); 1694 mm->map_count++; 1695 validate_mm(mm); 1696 return 0; 1697 } 1698 1699 /* 1700 * Copy the vma structure to a new location in the same mm, 1701 * prior to moving page table entries, to effect an mremap move. 1702 */ 1703 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1704 unsigned long addr, unsigned long len, pgoff_t pgoff, 1705 bool *need_rmap_locks) 1706 { 1707 struct vm_area_struct *vma = *vmap; 1708 unsigned long vma_start = vma->vm_start; 1709 struct mm_struct *mm = vma->vm_mm; 1710 struct vm_area_struct *new_vma; 1711 bool faulted_in_anon_vma = true; 1712 VMA_ITERATOR(vmi, mm, addr); 1713 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1714 1715 /* 1716 * If anonymous vma has not yet been faulted, update new pgoff 1717 * to match new location, to increase its chance of merging. 1718 */ 1719 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1720 pgoff = addr >> PAGE_SHIFT; 1721 faulted_in_anon_vma = false; 1722 } 1723 1724 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1725 if (new_vma && new_vma->vm_start < addr + len) 1726 return NULL; /* should never get here */ 1727 1728 vmg.vma = NULL; /* New VMA range. */ 1729 vmg.pgoff = pgoff; 1730 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1731 new_vma = vma_merge_new_range(&vmg); 1732 1733 if (new_vma) { 1734 /* 1735 * Source vma may have been merged into new_vma 1736 */ 1737 if (unlikely(vma_start >= new_vma->vm_start && 1738 vma_start < new_vma->vm_end)) { 1739 /* 1740 * The only way we can get a vma_merge with 1741 * self during an mremap is if the vma hasn't 1742 * been faulted in yet and we were allowed to 1743 * reset the dst vma->vm_pgoff to the 1744 * destination address of the mremap to allow 1745 * the merge to happen. mremap must change the 1746 * vm_pgoff linearity between src and dst vmas 1747 * (in turn preventing a vma_merge) to be 1748 * safe. It is only safe to keep the vm_pgoff 1749 * linear if there are no pages mapped yet. 1750 */ 1751 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1752 *vmap = vma = new_vma; 1753 } 1754 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1755 } else { 1756 new_vma = vm_area_dup(vma); 1757 if (!new_vma) 1758 goto out; 1759 vma_set_range(new_vma, addr, addr + len, pgoff); 1760 if (vma_dup_policy(vma, new_vma)) 1761 goto out_free_vma; 1762 if (anon_vma_clone(new_vma, vma)) 1763 goto out_free_mempol; 1764 if (new_vma->vm_file) 1765 get_file(new_vma->vm_file); 1766 if (new_vma->vm_ops && new_vma->vm_ops->open) 1767 new_vma->vm_ops->open(new_vma); 1768 if (vma_link(mm, new_vma)) 1769 goto out_vma_link; 1770 *need_rmap_locks = false; 1771 } 1772 return new_vma; 1773 1774 out_vma_link: 1775 vma_close(new_vma); 1776 1777 if (new_vma->vm_file) 1778 fput(new_vma->vm_file); 1779 1780 unlink_anon_vmas(new_vma); 1781 out_free_mempol: 1782 mpol_put(vma_policy(new_vma)); 1783 out_free_vma: 1784 vm_area_free(new_vma); 1785 out: 1786 return NULL; 1787 } 1788 1789 /* 1790 * Rough compatibility check to quickly see if it's even worth looking 1791 * at sharing an anon_vma. 1792 * 1793 * They need to have the same vm_file, and the flags can only differ 1794 * in things that mprotect may change. 1795 * 1796 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1797 * we can merge the two vma's. For example, we refuse to merge a vma if 1798 * there is a vm_ops->close() function, because that indicates that the 1799 * driver is doing some kind of reference counting. But that doesn't 1800 * really matter for the anon_vma sharing case. 1801 */ 1802 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1803 { 1804 return a->vm_end == b->vm_start && 1805 mpol_equal(vma_policy(a), vma_policy(b)) && 1806 a->vm_file == b->vm_file && 1807 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1808 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1809 } 1810 1811 /* 1812 * Do some basic sanity checking to see if we can re-use the anon_vma 1813 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1814 * the same as 'old', the other will be the new one that is trying 1815 * to share the anon_vma. 1816 * 1817 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1818 * the anon_vma of 'old' is concurrently in the process of being set up 1819 * by another page fault trying to merge _that_. But that's ok: if it 1820 * is being set up, that automatically means that it will be a singleton 1821 * acceptable for merging, so we can do all of this optimistically. But 1822 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1823 * 1824 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1825 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1826 * is to return an anon_vma that is "complex" due to having gone through 1827 * a fork). 1828 * 1829 * We also make sure that the two vma's are compatible (adjacent, 1830 * and with the same memory policies). That's all stable, even with just 1831 * a read lock on the mmap_lock. 1832 */ 1833 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1834 struct vm_area_struct *a, 1835 struct vm_area_struct *b) 1836 { 1837 if (anon_vma_compatible(a, b)) { 1838 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1839 1840 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1841 return anon_vma; 1842 } 1843 return NULL; 1844 } 1845 1846 /* 1847 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1848 * neighbouring vmas for a suitable anon_vma, before it goes off 1849 * to allocate a new anon_vma. It checks because a repetitive 1850 * sequence of mprotects and faults may otherwise lead to distinct 1851 * anon_vmas being allocated, preventing vma merge in subsequent 1852 * mprotect. 1853 */ 1854 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1855 { 1856 struct anon_vma *anon_vma = NULL; 1857 struct vm_area_struct *prev, *next; 1858 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1859 1860 /* Try next first. */ 1861 next = vma_iter_load(&vmi); 1862 if (next) { 1863 anon_vma = reusable_anon_vma(next, vma, next); 1864 if (anon_vma) 1865 return anon_vma; 1866 } 1867 1868 prev = vma_prev(&vmi); 1869 VM_BUG_ON_VMA(prev != vma, vma); 1870 prev = vma_prev(&vmi); 1871 /* Try prev next. */ 1872 if (prev) 1873 anon_vma = reusable_anon_vma(prev, prev, vma); 1874 1875 /* 1876 * We might reach here with anon_vma == NULL if we can't find 1877 * any reusable anon_vma. 1878 * There's no absolute need to look only at touching neighbours: 1879 * we could search further afield for "compatible" anon_vmas. 1880 * But it would probably just be a waste of time searching, 1881 * or lead to too many vmas hanging off the same anon_vma. 1882 * We're trying to allow mprotect remerging later on, 1883 * not trying to minimize memory used for anon_vmas. 1884 */ 1885 return anon_vma; 1886 } 1887 1888 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1889 { 1890 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1891 } 1892 1893 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1894 { 1895 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1896 (VM_WRITE | VM_SHARED); 1897 } 1898 1899 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1900 { 1901 /* No managed pages to writeback. */ 1902 if (vma->vm_flags & VM_PFNMAP) 1903 return false; 1904 1905 return vma->vm_file && vma->vm_file->f_mapping && 1906 mapping_can_writeback(vma->vm_file->f_mapping); 1907 } 1908 1909 /* 1910 * Does this VMA require the underlying folios to have their dirty state 1911 * tracked? 1912 */ 1913 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1914 { 1915 /* Only shared, writable VMAs require dirty tracking. */ 1916 if (!vma_is_shared_writable(vma)) 1917 return false; 1918 1919 /* Does the filesystem need to be notified? */ 1920 if (vm_ops_needs_writenotify(vma->vm_ops)) 1921 return true; 1922 1923 /* 1924 * Even if the filesystem doesn't indicate a need for writenotify, if it 1925 * can writeback, dirty tracking is still required. 1926 */ 1927 return vma_fs_can_writeback(vma); 1928 } 1929 1930 /* 1931 * Some shared mappings will want the pages marked read-only 1932 * to track write events. If so, we'll downgrade vm_page_prot 1933 * to the private version (using protection_map[] without the 1934 * VM_SHARED bit). 1935 */ 1936 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1937 { 1938 /* If it was private or non-writable, the write bit is already clear */ 1939 if (!vma_is_shared_writable(vma)) 1940 return false; 1941 1942 /* The backer wishes to know when pages are first written to? */ 1943 if (vm_ops_needs_writenotify(vma->vm_ops)) 1944 return true; 1945 1946 /* The open routine did something to the protections that pgprot_modify 1947 * won't preserve? */ 1948 if (pgprot_val(vm_page_prot) != 1949 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1950 return false; 1951 1952 /* 1953 * Do we need to track softdirty? hugetlb does not support softdirty 1954 * tracking yet. 1955 */ 1956 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1957 return true; 1958 1959 /* Do we need write faults for uffd-wp tracking? */ 1960 if (userfaultfd_wp(vma)) 1961 return true; 1962 1963 /* Can the mapping track the dirty pages? */ 1964 return vma_fs_can_writeback(vma); 1965 } 1966 1967 static DEFINE_MUTEX(mm_all_locks_mutex); 1968 1969 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1970 { 1971 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1972 /* 1973 * The LSB of head.next can't change from under us 1974 * because we hold the mm_all_locks_mutex. 1975 */ 1976 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1977 /* 1978 * We can safely modify head.next after taking the 1979 * anon_vma->root->rwsem. If some other vma in this mm shares 1980 * the same anon_vma we won't take it again. 1981 * 1982 * No need of atomic instructions here, head.next 1983 * can't change from under us thanks to the 1984 * anon_vma->root->rwsem. 1985 */ 1986 if (__test_and_set_bit(0, (unsigned long *) 1987 &anon_vma->root->rb_root.rb_root.rb_node)) 1988 BUG(); 1989 } 1990 } 1991 1992 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 1993 { 1994 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1995 /* 1996 * AS_MM_ALL_LOCKS can't change from under us because 1997 * we hold the mm_all_locks_mutex. 1998 * 1999 * Operations on ->flags have to be atomic because 2000 * even if AS_MM_ALL_LOCKS is stable thanks to the 2001 * mm_all_locks_mutex, there may be other cpus 2002 * changing other bitflags in parallel to us. 2003 */ 2004 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2005 BUG(); 2006 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2007 } 2008 } 2009 2010 /* 2011 * This operation locks against the VM for all pte/vma/mm related 2012 * operations that could ever happen on a certain mm. This includes 2013 * vmtruncate, try_to_unmap, and all page faults. 2014 * 2015 * The caller must take the mmap_lock in write mode before calling 2016 * mm_take_all_locks(). The caller isn't allowed to release the 2017 * mmap_lock until mm_drop_all_locks() returns. 2018 * 2019 * mmap_lock in write mode is required in order to block all operations 2020 * that could modify pagetables and free pages without need of 2021 * altering the vma layout. It's also needed in write mode to avoid new 2022 * anon_vmas to be associated with existing vmas. 2023 * 2024 * A single task can't take more than one mm_take_all_locks() in a row 2025 * or it would deadlock. 2026 * 2027 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2028 * mapping->flags avoid to take the same lock twice, if more than one 2029 * vma in this mm is backed by the same anon_vma or address_space. 2030 * 2031 * We take locks in following order, accordingly to comment at beginning 2032 * of mm/rmap.c: 2033 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2034 * hugetlb mapping); 2035 * - all vmas marked locked 2036 * - all i_mmap_rwsem locks; 2037 * - all anon_vma->rwseml 2038 * 2039 * We can take all locks within these types randomly because the VM code 2040 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2041 * mm_all_locks_mutex. 2042 * 2043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2044 * that may have to take thousand of locks. 2045 * 2046 * mm_take_all_locks() can fail if it's interrupted by signals. 2047 */ 2048 int mm_take_all_locks(struct mm_struct *mm) 2049 { 2050 struct vm_area_struct *vma; 2051 struct anon_vma_chain *avc; 2052 VMA_ITERATOR(vmi, mm, 0); 2053 2054 mmap_assert_write_locked(mm); 2055 2056 mutex_lock(&mm_all_locks_mutex); 2057 2058 /* 2059 * vma_start_write() does not have a complement in mm_drop_all_locks() 2060 * because vma_start_write() is always asymmetrical; it marks a VMA as 2061 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2062 * is reached. 2063 */ 2064 for_each_vma(vmi, vma) { 2065 if (signal_pending(current)) 2066 goto out_unlock; 2067 vma_start_write(vma); 2068 } 2069 2070 vma_iter_init(&vmi, mm, 0); 2071 for_each_vma(vmi, vma) { 2072 if (signal_pending(current)) 2073 goto out_unlock; 2074 if (vma->vm_file && vma->vm_file->f_mapping && 2075 is_vm_hugetlb_page(vma)) 2076 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2077 } 2078 2079 vma_iter_init(&vmi, mm, 0); 2080 for_each_vma(vmi, vma) { 2081 if (signal_pending(current)) 2082 goto out_unlock; 2083 if (vma->vm_file && vma->vm_file->f_mapping && 2084 !is_vm_hugetlb_page(vma)) 2085 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2086 } 2087 2088 vma_iter_init(&vmi, mm, 0); 2089 for_each_vma(vmi, vma) { 2090 if (signal_pending(current)) 2091 goto out_unlock; 2092 if (vma->anon_vma) 2093 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2094 vm_lock_anon_vma(mm, avc->anon_vma); 2095 } 2096 2097 return 0; 2098 2099 out_unlock: 2100 mm_drop_all_locks(mm); 2101 return -EINTR; 2102 } 2103 2104 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2105 { 2106 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2107 /* 2108 * The LSB of head.next can't change to 0 from under 2109 * us because we hold the mm_all_locks_mutex. 2110 * 2111 * We must however clear the bitflag before unlocking 2112 * the vma so the users using the anon_vma->rb_root will 2113 * never see our bitflag. 2114 * 2115 * No need of atomic instructions here, head.next 2116 * can't change from under us until we release the 2117 * anon_vma->root->rwsem. 2118 */ 2119 if (!__test_and_clear_bit(0, (unsigned long *) 2120 &anon_vma->root->rb_root.rb_root.rb_node)) 2121 BUG(); 2122 anon_vma_unlock_write(anon_vma); 2123 } 2124 } 2125 2126 static void vm_unlock_mapping(struct address_space *mapping) 2127 { 2128 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2129 /* 2130 * AS_MM_ALL_LOCKS can't change to 0 from under us 2131 * because we hold the mm_all_locks_mutex. 2132 */ 2133 i_mmap_unlock_write(mapping); 2134 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2135 &mapping->flags)) 2136 BUG(); 2137 } 2138 } 2139 2140 /* 2141 * The mmap_lock cannot be released by the caller until 2142 * mm_drop_all_locks() returns. 2143 */ 2144 void mm_drop_all_locks(struct mm_struct *mm) 2145 { 2146 struct vm_area_struct *vma; 2147 struct anon_vma_chain *avc; 2148 VMA_ITERATOR(vmi, mm, 0); 2149 2150 mmap_assert_write_locked(mm); 2151 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2152 2153 for_each_vma(vmi, vma) { 2154 if (vma->anon_vma) 2155 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2156 vm_unlock_anon_vma(avc->anon_vma); 2157 if (vma->vm_file && vma->vm_file->f_mapping) 2158 vm_unlock_mapping(vma->vm_file->f_mapping); 2159 } 2160 2161 mutex_unlock(&mm_all_locks_mutex); 2162 } 2163 2164 /* 2165 * We account for memory if it's a private writeable mapping, 2166 * not hugepages and VM_NORESERVE wasn't set. 2167 */ 2168 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2169 { 2170 /* 2171 * hugetlb has its own accounting separate from the core VM 2172 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2173 */ 2174 if (file && is_file_hugepages(file)) 2175 return false; 2176 2177 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2178 } 2179 2180 /* 2181 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2182 * operation. 2183 * @vms: The vma unmap structure 2184 * @mas_detach: The maple state with the detached maple tree 2185 * 2186 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2187 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2188 * have been called), then a NULL is written over the vmas and the vmas are 2189 * removed (munmap() completed). 2190 */ 2191 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2192 struct ma_state *mas_detach) 2193 { 2194 struct ma_state *mas = &vms->vmi->mas; 2195 2196 if (!vms->nr_pages) 2197 return; 2198 2199 if (vms->clear_ptes) 2200 return reattach_vmas(mas_detach); 2201 2202 /* 2203 * Aborting cannot just call the vm_ops open() because they are often 2204 * not symmetrical and state data has been lost. Resort to the old 2205 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2206 */ 2207 mas_set_range(mas, vms->start, vms->end - 1); 2208 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2209 /* Clean up the insertion of the unfortunate gap */ 2210 vms_complete_munmap_vmas(vms, mas_detach); 2211 } 2212 2213 /* 2214 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2215 * unmapped once the map operation is completed, check limits, account mapping 2216 * and clean up any pre-existing VMAs. 2217 * 2218 * @map: Mapping state. 2219 * @uf: Userfaultfd context list. 2220 * 2221 * Returns: 0 on success, error code otherwise. 2222 */ 2223 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2224 { 2225 int error; 2226 struct vma_iterator *vmi = map->vmi; 2227 struct vma_munmap_struct *vms = &map->vms; 2228 2229 /* Find the first overlapping VMA and initialise unmap state. */ 2230 vms->vma = vma_find(vmi, map->end); 2231 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2232 /* unlock = */ false); 2233 2234 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2235 if (vms->vma) { 2236 mt_init_flags(&map->mt_detach, 2237 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2238 mt_on_stack(map->mt_detach); 2239 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2240 /* Prepare to unmap any existing mapping in the area */ 2241 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2242 if (error) { 2243 /* On error VMAs will already have been reattached. */ 2244 vms->nr_pages = 0; 2245 return error; 2246 } 2247 2248 map->next = vms->next; 2249 map->prev = vms->prev; 2250 } else { 2251 map->next = vma_iter_next_rewind(vmi, &map->prev); 2252 } 2253 2254 /* Check against address space limit. */ 2255 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2256 return -ENOMEM; 2257 2258 /* Private writable mapping: check memory availability. */ 2259 if (accountable_mapping(map->file, map->flags)) { 2260 map->charged = map->pglen; 2261 map->charged -= vms->nr_accounted; 2262 if (map->charged) { 2263 error = security_vm_enough_memory_mm(map->mm, map->charged); 2264 if (error) 2265 return error; 2266 } 2267 2268 vms->nr_accounted = 0; 2269 map->flags |= VM_ACCOUNT; 2270 } 2271 2272 /* 2273 * Clear PTEs while the vma is still in the tree so that rmap 2274 * cannot race with the freeing later in the truncate scenario. 2275 * This is also needed for mmap_file(), which is why vm_ops 2276 * close function is called. 2277 */ 2278 vms_clean_up_area(vms, &map->mas_detach); 2279 2280 return 0; 2281 } 2282 2283 2284 static int __mmap_new_file_vma(struct mmap_state *map, 2285 struct vm_area_struct *vma) 2286 { 2287 struct vma_iterator *vmi = map->vmi; 2288 int error; 2289 2290 vma->vm_file = get_file(map->file); 2291 error = mmap_file(vma->vm_file, vma); 2292 if (error) { 2293 fput(vma->vm_file); 2294 vma->vm_file = NULL; 2295 2296 vma_iter_set(vmi, vma->vm_end); 2297 /* Undo any partial mapping done by a device driver. */ 2298 unmap_region(&vmi->mas, vma, map->prev, map->next); 2299 2300 return error; 2301 } 2302 2303 /* Drivers cannot alter the address of the VMA. */ 2304 WARN_ON_ONCE(map->addr != vma->vm_start); 2305 /* 2306 * Drivers should not permit writability when previously it was 2307 * disallowed. 2308 */ 2309 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2310 !(map->flags & VM_MAYWRITE) && 2311 (vma->vm_flags & VM_MAYWRITE)); 2312 2313 /* If the flags change (and are mergeable), let's retry later. */ 2314 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); 2315 map->flags = vma->vm_flags; 2316 2317 return 0; 2318 } 2319 2320 /* 2321 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2322 * possible. 2323 * 2324 * @map: Mapping state. 2325 * @vmap: Output pointer for the new VMA. 2326 * 2327 * Returns: Zero on success, or an error. 2328 */ 2329 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2330 { 2331 struct vma_iterator *vmi = map->vmi; 2332 int error = 0; 2333 struct vm_area_struct *vma; 2334 2335 /* 2336 * Determine the object being mapped and call the appropriate 2337 * specific mapper. the address has already been validated, but 2338 * not unmapped, but the maps are removed from the list. 2339 */ 2340 vma = vm_area_alloc(map->mm); 2341 if (!vma) 2342 return -ENOMEM; 2343 2344 vma_iter_config(vmi, map->addr, map->end); 2345 vma_set_range(vma, map->addr, map->end, map->pgoff); 2346 vm_flags_init(vma, map->flags); 2347 vma->vm_page_prot = vm_get_page_prot(map->flags); 2348 2349 if (vma_iter_prealloc(vmi, vma)) { 2350 error = -ENOMEM; 2351 goto free_vma; 2352 } 2353 2354 if (map->file) 2355 error = __mmap_new_file_vma(map, vma); 2356 else if (map->flags & VM_SHARED) 2357 error = shmem_zero_setup(vma); 2358 else 2359 vma_set_anonymous(vma); 2360 2361 if (error) 2362 goto free_iter_vma; 2363 2364 #ifdef CONFIG_SPARC64 2365 /* TODO: Fix SPARC ADI! */ 2366 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2367 #endif 2368 2369 /* Lock the VMA since it is modified after insertion into VMA tree */ 2370 vma_start_write(vma); 2371 vma_iter_store(vmi, vma); 2372 map->mm->map_count++; 2373 vma_link_file(vma); 2374 2375 /* 2376 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2377 * call covers the non-merge case. 2378 */ 2379 khugepaged_enter_vma(vma, map->flags); 2380 ksm_add_vma(vma); 2381 *vmap = vma; 2382 return 0; 2383 2384 free_iter_vma: 2385 vma_iter_free(vmi); 2386 free_vma: 2387 vm_area_free(vma); 2388 return error; 2389 } 2390 2391 /* 2392 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2393 * statistics, handle locking and finalise the VMA. 2394 * 2395 * @map: Mapping state. 2396 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2397 */ 2398 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2399 { 2400 struct mm_struct *mm = map->mm; 2401 unsigned long vm_flags = vma->vm_flags; 2402 2403 perf_event_mmap(vma); 2404 2405 /* Unmap any existing mapping in the area. */ 2406 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2407 2408 vm_stat_account(mm, vma->vm_flags, map->pglen); 2409 if (vm_flags & VM_LOCKED) { 2410 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2411 is_vm_hugetlb_page(vma) || 2412 vma == get_gate_vma(mm)) 2413 vm_flags_clear(vma, VM_LOCKED_MASK); 2414 else 2415 mm->locked_vm += map->pglen; 2416 } 2417 2418 if (vma->vm_file) 2419 uprobe_mmap(vma); 2420 2421 /* 2422 * New (or expanded) vma always get soft dirty status. 2423 * Otherwise user-space soft-dirty page tracker won't 2424 * be able to distinguish situation when vma area unmapped, 2425 * then new mapped in-place (which must be aimed as 2426 * a completely new data area). 2427 */ 2428 vm_flags_set(vma, VM_SOFTDIRTY); 2429 2430 vma_set_page_prot(vma); 2431 } 2432 2433 unsigned long __mmap_region(struct file *file, unsigned long addr, 2434 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2435 struct list_head *uf) 2436 { 2437 struct mm_struct *mm = current->mm; 2438 struct vm_area_struct *vma = NULL; 2439 int error; 2440 VMA_ITERATOR(vmi, mm, addr); 2441 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2442 2443 error = __mmap_prepare(&map, uf); 2444 if (error) 2445 goto abort_munmap; 2446 2447 /* Attempt to merge with adjacent VMAs... */ 2448 if (map.prev || map.next) { 2449 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2450 2451 vma = vma_merge_new_range(&vmg); 2452 } 2453 2454 /* ...but if we can't, allocate a new VMA. */ 2455 if (!vma) { 2456 error = __mmap_new_vma(&map, &vma); 2457 if (error) 2458 goto unacct_error; 2459 } 2460 2461 /* If flags changed, we might be able to merge, so try again. */ 2462 if (map.retry_merge) { 2463 VMG_MMAP_STATE(vmg, &map, vma); 2464 2465 vma_iter_config(map.vmi, map.addr, map.end); 2466 vma_merge_existing_range(&vmg); 2467 } 2468 2469 __mmap_complete(&map, vma); 2470 2471 return addr; 2472 2473 /* Accounting was done by __mmap_prepare(). */ 2474 unacct_error: 2475 if (map.charged) 2476 vm_unacct_memory(map.charged); 2477 abort_munmap: 2478 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2479 return error; 2480 } 2481