1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 union { 19 vm_flags_t vm_flags; 20 vma_flags_t vma_flags; 21 }; 22 struct file *file; 23 pgprot_t page_prot; 24 25 /* User-defined fields, perhaps updated by .mmap_prepare(). */ 26 const struct vm_operations_struct *vm_ops; 27 void *vm_private_data; 28 29 unsigned long charged; 30 31 struct vm_area_struct *prev; 32 struct vm_area_struct *next; 33 34 /* Unmapping state. */ 35 struct vma_munmap_struct vms; 36 struct ma_state mas_detach; 37 struct maple_tree mt_detach; 38 39 /* Determine if we can check KSM flags early in mmap() logic. */ 40 bool check_ksm_early :1; 41 /* If we map new, hold the file rmap lock on mapping. */ 42 bool hold_file_rmap_lock :1; 43 /* If .mmap_prepare changed the file, we don't need to pin. */ 44 bool file_doesnt_need_get :1; 45 }; 46 47 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \ 48 struct mmap_state name = { \ 49 .mm = mm_, \ 50 .vmi = vmi_, \ 51 .addr = addr_, \ 52 .end = (addr_) + (len_), \ 53 .pgoff = pgoff_, \ 54 .pglen = PHYS_PFN(len_), \ 55 .vm_flags = vm_flags_, \ 56 .file = file_, \ 57 .page_prot = vm_get_page_prot(vm_flags_), \ 58 } 59 60 #define VMG_MMAP_STATE(name, map_, vma_) \ 61 struct vma_merge_struct name = { \ 62 .mm = (map_)->mm, \ 63 .vmi = (map_)->vmi, \ 64 .start = (map_)->addr, \ 65 .end = (map_)->end, \ 66 .vm_flags = (map_)->vm_flags, \ 67 .pgoff = (map_)->pgoff, \ 68 .file = (map_)->file, \ 69 .prev = (map_)->prev, \ 70 .middle = vma_, \ 71 .next = (vma_) ? NULL : (map_)->next, \ 72 .state = VMA_MERGE_START, \ 73 } 74 75 /* Was this VMA ever forked from a parent, i.e. maybe contains CoW mappings? */ 76 static bool vma_is_fork_child(struct vm_area_struct *vma) 77 { 78 /* 79 * The list_is_singular() test is to avoid merging VMA cloned from 80 * parents. This can improve scalability caused by the anon_vma root 81 * lock. 82 */ 83 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain); 84 } 85 86 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 87 { 88 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 89 90 if (!mpol_equal(vmg->policy, vma_policy(vma))) 91 return false; 92 if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_IGNORE_MERGE) 93 return false; 94 if (vma->vm_file != vmg->file) 95 return false; 96 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 97 return false; 98 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 99 return false; 100 return true; 101 } 102 103 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) 104 { 105 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; 106 struct vm_area_struct *src = vmg->middle; /* existing merge case. */ 107 struct anon_vma *tgt_anon = tgt->anon_vma; 108 struct anon_vma *src_anon = vmg->anon_vma; 109 110 /* 111 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we 112 * will remove the existing VMA's anon_vma's so there's no scalability 113 * concerns. 114 */ 115 VM_WARN_ON(src && src_anon != src->anon_vma); 116 117 /* Case 1 - we will dup_anon_vma() from src into tgt. */ 118 if (!tgt_anon && src_anon) { 119 struct vm_area_struct *copied_from = vmg->copied_from; 120 121 if (vma_is_fork_child(src)) 122 return false; 123 if (vma_is_fork_child(copied_from)) 124 return false; 125 126 return true; 127 } 128 /* Case 2 - we will simply use tgt's anon_vma. */ 129 if (tgt_anon && !src_anon) 130 return !vma_is_fork_child(tgt); 131 /* Case 3 - the anon_vma's are already shared. */ 132 return src_anon == tgt_anon; 133 } 134 135 /* 136 * init_multi_vma_prep() - Initializer for struct vma_prepare 137 * @vp: The vma_prepare struct 138 * @vma: The vma that will be altered once locked 139 * @vmg: The merge state that will be used to determine adjustment and VMA 140 * removal. 141 */ 142 static void init_multi_vma_prep(struct vma_prepare *vp, 143 struct vm_area_struct *vma, 144 struct vma_merge_struct *vmg) 145 { 146 struct vm_area_struct *adjust; 147 struct vm_area_struct **remove = &vp->remove; 148 149 memset(vp, 0, sizeof(struct vma_prepare)); 150 vp->vma = vma; 151 vp->anon_vma = vma->anon_vma; 152 153 if (vmg && vmg->__remove_middle) { 154 *remove = vmg->middle; 155 remove = &vp->remove2; 156 } 157 if (vmg && vmg->__remove_next) 158 *remove = vmg->next; 159 160 if (vmg && vmg->__adjust_middle_start) 161 adjust = vmg->middle; 162 else if (vmg && vmg->__adjust_next_start) 163 adjust = vmg->next; 164 else 165 adjust = NULL; 166 167 vp->adj_next = adjust; 168 if (!vp->anon_vma && adjust) 169 vp->anon_vma = adjust->anon_vma; 170 171 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 172 vp->anon_vma != adjust->anon_vma); 173 174 vp->file = vma->vm_file; 175 if (vp->file) 176 vp->mapping = vma->vm_file->f_mapping; 177 178 if (vmg && vmg->skip_vma_uprobe) 179 vp->skip_vma_uprobe = true; 180 } 181 182 /* 183 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 184 * in front of (at a lower virtual address and file offset than) the vma. 185 * 186 * We cannot merge two vmas if they have differently assigned (non-NULL) 187 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 188 * 189 * We don't check here for the merged mmap wrapping around the end of pagecache 190 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 191 * wrap, nor mmaps which cover the final page at index -1UL. 192 * 193 * We assume the vma may be removed as part of the merge. 194 */ 195 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 196 { 197 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 198 199 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 200 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { 201 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 202 return true; 203 } 204 205 return false; 206 } 207 208 /* 209 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 210 * beyond (at a higher virtual address and file offset than) the vma. 211 * 212 * We cannot merge two vmas if they have differently assigned (non-NULL) 213 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 214 * 215 * We assume that vma is not removed as part of the merge. 216 */ 217 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 218 { 219 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 220 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { 221 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 222 return true; 223 } 224 return false; 225 } 226 227 static void __vma_link_file(struct vm_area_struct *vma, 228 struct address_space *mapping) 229 { 230 if (vma_is_shared_maywrite(vma)) 231 mapping_allow_writable(mapping); 232 233 flush_dcache_mmap_lock(mapping); 234 vma_interval_tree_insert(vma, &mapping->i_mmap); 235 flush_dcache_mmap_unlock(mapping); 236 } 237 238 /* 239 * Requires inode->i_mapping->i_mmap_rwsem 240 */ 241 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 242 struct address_space *mapping) 243 { 244 if (vma_is_shared_maywrite(vma)) 245 mapping_unmap_writable(mapping); 246 247 flush_dcache_mmap_lock(mapping); 248 vma_interval_tree_remove(vma, &mapping->i_mmap); 249 flush_dcache_mmap_unlock(mapping); 250 } 251 252 /* 253 * vma has some anon_vma assigned, and is already inserted on that 254 * anon_vma's interval trees. 255 * 256 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 257 * vma must be removed from the anon_vma's interval trees using 258 * anon_vma_interval_tree_pre_update_vma(). 259 * 260 * After the update, the vma will be reinserted using 261 * anon_vma_interval_tree_post_update_vma(). 262 * 263 * The entire update must be protected by exclusive mmap_lock and by 264 * the root anon_vma's mutex. 265 */ 266 static void 267 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 268 { 269 struct anon_vma_chain *avc; 270 271 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 272 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 273 } 274 275 static void 276 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 277 { 278 struct anon_vma_chain *avc; 279 280 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 281 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 282 } 283 284 /* 285 * vma_prepare() - Helper function for handling locking VMAs prior to altering 286 * @vp: The initialized vma_prepare struct 287 */ 288 static void vma_prepare(struct vma_prepare *vp) 289 { 290 if (vp->file) { 291 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 292 293 if (vp->adj_next) 294 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 295 vp->adj_next->vm_end); 296 297 i_mmap_lock_write(vp->mapping); 298 if (vp->insert && vp->insert->vm_file) { 299 /* 300 * Put into interval tree now, so instantiated pages 301 * are visible to arm/parisc __flush_dcache_page 302 * throughout; but we cannot insert into address 303 * space until vma start or end is updated. 304 */ 305 __vma_link_file(vp->insert, 306 vp->insert->vm_file->f_mapping); 307 } 308 } 309 310 if (vp->anon_vma) { 311 anon_vma_lock_write(vp->anon_vma); 312 anon_vma_interval_tree_pre_update_vma(vp->vma); 313 if (vp->adj_next) 314 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 315 } 316 317 if (vp->file) { 318 flush_dcache_mmap_lock(vp->mapping); 319 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 320 if (vp->adj_next) 321 vma_interval_tree_remove(vp->adj_next, 322 &vp->mapping->i_mmap); 323 } 324 325 } 326 327 /* 328 * vma_complete- Helper function for handling the unlocking after altering VMAs, 329 * or for inserting a VMA. 330 * 331 * @vp: The vma_prepare struct 332 * @vmi: The vma iterator 333 * @mm: The mm_struct 334 */ 335 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 336 struct mm_struct *mm) 337 { 338 if (vp->file) { 339 if (vp->adj_next) 340 vma_interval_tree_insert(vp->adj_next, 341 &vp->mapping->i_mmap); 342 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 343 flush_dcache_mmap_unlock(vp->mapping); 344 } 345 346 if (vp->remove && vp->file) { 347 __remove_shared_vm_struct(vp->remove, vp->mapping); 348 if (vp->remove2) 349 __remove_shared_vm_struct(vp->remove2, vp->mapping); 350 } else if (vp->insert) { 351 /* 352 * split_vma has split insert from vma, and needs 353 * us to insert it before dropping the locks 354 * (it may either follow vma or precede it). 355 */ 356 vma_iter_store_new(vmi, vp->insert); 357 mm->map_count++; 358 } 359 360 if (vp->anon_vma) { 361 anon_vma_interval_tree_post_update_vma(vp->vma); 362 if (vp->adj_next) 363 anon_vma_interval_tree_post_update_vma(vp->adj_next); 364 anon_vma_unlock_write(vp->anon_vma); 365 } 366 367 if (vp->file) { 368 i_mmap_unlock_write(vp->mapping); 369 370 if (!vp->skip_vma_uprobe) { 371 uprobe_mmap(vp->vma); 372 373 if (vp->adj_next) 374 uprobe_mmap(vp->adj_next); 375 } 376 } 377 378 if (vp->remove) { 379 again: 380 vma_mark_detached(vp->remove); 381 if (vp->file) { 382 uprobe_munmap(vp->remove, vp->remove->vm_start, 383 vp->remove->vm_end); 384 fput(vp->file); 385 } 386 if (vp->remove->anon_vma) 387 unlink_anon_vmas(vp->remove); 388 mm->map_count--; 389 mpol_put(vma_policy(vp->remove)); 390 if (!vp->remove2) 391 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 392 vm_area_free(vp->remove); 393 394 /* 395 * In mprotect's case 6 (see comments on vma_merge), 396 * we are removing both mid and next vmas 397 */ 398 if (vp->remove2) { 399 vp->remove = vp->remove2; 400 vp->remove2 = NULL; 401 goto again; 402 } 403 } 404 if (vp->insert && vp->file) 405 uprobe_mmap(vp->insert); 406 } 407 408 /* 409 * init_vma_prep() - Initializer wrapper for vma_prepare struct 410 * @vp: The vma_prepare struct 411 * @vma: The vma that will be altered once locked 412 */ 413 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 414 { 415 init_multi_vma_prep(vp, vma, NULL); 416 } 417 418 /* 419 * Can the proposed VMA be merged with the left (previous) VMA taking into 420 * account the start position of the proposed range. 421 */ 422 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 423 424 { 425 return vmg->prev && vmg->prev->vm_end == vmg->start && 426 can_vma_merge_after(vmg); 427 } 428 429 /* 430 * Can the proposed VMA be merged with the right (next) VMA taking into 431 * account the end position of the proposed range. 432 * 433 * In addition, if we can merge with the left VMA, ensure that left and right 434 * anon_vma's are also compatible. 435 */ 436 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 437 bool can_merge_left) 438 { 439 struct vm_area_struct *next = vmg->next; 440 struct vm_area_struct *prev; 441 442 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) 443 return false; 444 445 if (!can_merge_left) 446 return true; 447 448 /* 449 * If we can merge with prev (left) and next (right), indicating that 450 * each VMA's anon_vma is compatible with the proposed anon_vma, this 451 * does not mean prev and next are compatible with EACH OTHER. 452 * 453 * We therefore check this in addition to mergeability to either side. 454 */ 455 prev = vmg->prev; 456 return !prev->anon_vma || !next->anon_vma || 457 prev->anon_vma == next->anon_vma; 458 } 459 460 /* 461 * Close a vm structure and free it. 462 */ 463 void remove_vma(struct vm_area_struct *vma) 464 { 465 might_sleep(); 466 vma_close(vma); 467 if (vma->vm_file) 468 fput(vma->vm_file); 469 mpol_put(vma_policy(vma)); 470 vm_area_free(vma); 471 } 472 473 /* 474 * Get rid of page table information in the indicated region. 475 * 476 * Called with the mm semaphore held. 477 */ 478 void unmap_region(struct unmap_desc *unmap) 479 { 480 struct mm_struct *mm = unmap->first->vm_mm; 481 struct mmu_gather tlb; 482 483 tlb_gather_mmu(&tlb, mm); 484 update_hiwater_rss(mm); 485 unmap_vmas(&tlb, unmap); 486 mas_set(unmap->mas, unmap->tree_reset); 487 free_pgtables(&tlb, unmap); 488 tlb_finish_mmu(&tlb); 489 } 490 491 /* 492 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 493 * has already been checked or doesn't make sense to fail. 494 * VMA Iterator will point to the original VMA. 495 */ 496 static __must_check int 497 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 498 unsigned long addr, int new_below) 499 { 500 struct vma_prepare vp; 501 struct vm_area_struct *new; 502 int err; 503 504 WARN_ON(vma->vm_start >= addr); 505 WARN_ON(vma->vm_end <= addr); 506 507 if (vma->vm_ops && vma->vm_ops->may_split) { 508 err = vma->vm_ops->may_split(vma, addr); 509 if (err) 510 return err; 511 } 512 513 new = vm_area_dup(vma); 514 if (!new) 515 return -ENOMEM; 516 517 if (new_below) { 518 new->vm_end = addr; 519 } else { 520 new->vm_start = addr; 521 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 522 } 523 524 err = -ENOMEM; 525 vma_iter_config(vmi, new->vm_start, new->vm_end); 526 if (vma_iter_prealloc(vmi, new)) 527 goto out_free_vma; 528 529 err = vma_dup_policy(vma, new); 530 if (err) 531 goto out_free_vmi; 532 533 err = anon_vma_clone(new, vma, VMA_OP_SPLIT); 534 if (err) 535 goto out_free_mpol; 536 537 if (new->vm_file) 538 get_file(new->vm_file); 539 540 if (new->vm_ops && new->vm_ops->open) 541 new->vm_ops->open(new); 542 543 vma_start_write(vma); 544 vma_start_write(new); 545 546 init_vma_prep(&vp, vma); 547 vp.insert = new; 548 vma_prepare(&vp); 549 550 /* 551 * Get rid of huge pages and shared page tables straddling the split 552 * boundary. 553 */ 554 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 555 if (is_vm_hugetlb_page(vma)) 556 hugetlb_split(vma, addr); 557 558 if (new_below) { 559 vma->vm_start = addr; 560 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 561 } else { 562 vma->vm_end = addr; 563 } 564 565 /* vma_complete stores the new vma */ 566 vma_complete(&vp, vmi, vma->vm_mm); 567 validate_mm(vma->vm_mm); 568 569 /* Success. */ 570 if (new_below) 571 vma_next(vmi); 572 else 573 vma_prev(vmi); 574 575 return 0; 576 577 out_free_mpol: 578 mpol_put(vma_policy(new)); 579 out_free_vmi: 580 vma_iter_free(vmi); 581 out_free_vma: 582 vm_area_free(new); 583 return err; 584 } 585 586 /* 587 * Split a vma into two pieces at address 'addr', a new vma is allocated 588 * either for the first part or the tail. 589 */ 590 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 591 unsigned long addr, int new_below) 592 { 593 if (vma->vm_mm->map_count >= sysctl_max_map_count) 594 return -ENOMEM; 595 596 return __split_vma(vmi, vma, addr, new_below); 597 } 598 599 /* 600 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the 601 * instance that the destination VMA has no anon_vma but the source does. 602 * 603 * @dst: The destination VMA 604 * @src: The source VMA 605 * @dup: Pointer to the destination VMA when successful. 606 * 607 * Returns: 0 on success. 608 */ 609 static int dup_anon_vma(struct vm_area_struct *dst, 610 struct vm_area_struct *src, struct vm_area_struct **dup) 611 { 612 /* 613 * There are three cases to consider for correctly propagating 614 * anon_vma's on merge. 615 * 616 * The first is trivial - neither VMA has anon_vma, we need not do 617 * anything. 618 * 619 * The second where both have anon_vma is also a no-op, as they must 620 * then be the same, so there is simply nothing to copy. 621 * 622 * Here we cover the third - if the destination VMA has no anon_vma, 623 * that is it is unfaulted, we need to ensure that the newly merged 624 * range is referenced by the anon_vma's of the source. 625 */ 626 if (src->anon_vma && !dst->anon_vma) { 627 int ret; 628 629 vma_assert_write_locked(dst); 630 dst->anon_vma = src->anon_vma; 631 ret = anon_vma_clone(dst, src, VMA_OP_MERGE_UNFAULTED); 632 if (ret) 633 return ret; 634 635 *dup = dst; 636 } 637 638 return 0; 639 } 640 641 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 642 void validate_mm(struct mm_struct *mm) 643 { 644 int bug = 0; 645 int i = 0; 646 struct vm_area_struct *vma; 647 VMA_ITERATOR(vmi, mm, 0); 648 649 mt_validate(&mm->mm_mt); 650 for_each_vma(vmi, vma) { 651 #ifdef CONFIG_DEBUG_VM_RB 652 struct anon_vma *anon_vma = vma->anon_vma; 653 struct anon_vma_chain *avc; 654 #endif 655 unsigned long vmi_start, vmi_end; 656 bool warn = 0; 657 658 vmi_start = vma_iter_addr(&vmi); 659 vmi_end = vma_iter_end(&vmi); 660 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 661 warn = 1; 662 663 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 664 warn = 1; 665 666 if (warn) { 667 pr_emerg("issue in %s\n", current->comm); 668 dump_stack(); 669 dump_vma(vma); 670 pr_emerg("tree range: %px start %lx end %lx\n", vma, 671 vmi_start, vmi_end - 1); 672 vma_iter_dump_tree(&vmi); 673 } 674 675 #ifdef CONFIG_DEBUG_VM_RB 676 if (anon_vma) { 677 anon_vma_lock_read(anon_vma); 678 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 679 anon_vma_interval_tree_verify(avc); 680 anon_vma_unlock_read(anon_vma); 681 } 682 #endif 683 /* Check for a infinite loop */ 684 if (++i > mm->map_count + 10) { 685 i = -1; 686 break; 687 } 688 } 689 if (i != mm->map_count) { 690 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 691 bug = 1; 692 } 693 VM_BUG_ON_MM(bug, mm); 694 } 695 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 696 697 /* 698 * Based on the vmg flag indicating whether we need to adjust the vm_start field 699 * for the middle or next VMA, we calculate what the range of the newly adjusted 700 * VMA ought to be, and set the VMA's range accordingly. 701 */ 702 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 703 { 704 struct vm_area_struct *adjust; 705 pgoff_t pgoff; 706 707 if (vmg->__adjust_middle_start) { 708 adjust = vmg->middle; 709 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 710 } else if (vmg->__adjust_next_start) { 711 adjust = vmg->next; 712 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 713 } else { 714 return; 715 } 716 717 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 718 } 719 720 /* 721 * Actually perform the VMA merge operation. 722 * 723 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not 724 * modify any VMAs or cause inconsistent state should an OOM condition arise. 725 * 726 * Returns 0 on success, or an error value on failure. 727 */ 728 static int commit_merge(struct vma_merge_struct *vmg) 729 { 730 struct vm_area_struct *vma; 731 struct vma_prepare vp; 732 733 if (vmg->__adjust_next_start) { 734 /* We manipulate middle and adjust next, which is the target. */ 735 vma = vmg->middle; 736 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 737 } else { 738 vma = vmg->target; 739 /* Note: vma iterator must be pointing to 'start'. */ 740 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 741 } 742 743 init_multi_vma_prep(&vp, vma, vmg); 744 745 /* 746 * If vmg->give_up_on_oom is set, we're safe, because we don't actually 747 * manipulate any VMAs until we succeed at preallocation. 748 * 749 * Past this point, we will not return an error. 750 */ 751 if (vma_iter_prealloc(vmg->vmi, vma)) 752 return -ENOMEM; 753 754 vma_prepare(&vp); 755 /* 756 * THP pages may need to do additional splits if we increase 757 * middle->vm_start. 758 */ 759 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 760 vmg->__adjust_middle_start ? vmg->middle : NULL); 761 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 762 vmg_adjust_set_range(vmg); 763 vma_iter_store_overwrite(vmg->vmi, vmg->target); 764 765 vma_complete(&vp, vmg->vmi, vma->vm_mm); 766 767 return 0; 768 } 769 770 /* We can only remove VMAs when merging if they do not have a close hook. */ 771 static bool can_merge_remove_vma(struct vm_area_struct *vma) 772 { 773 return !vma->vm_ops || !vma->vm_ops->close; 774 } 775 776 /* 777 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 778 * attributes modified. 779 * 780 * @vmg: Describes the modifications being made to a VMA and associated 781 * metadata. 782 * 783 * When the attributes of a range within a VMA change, then it might be possible 784 * for immediately adjacent VMAs to be merged into that VMA due to having 785 * identical properties. 786 * 787 * This function checks for the existence of any such mergeable VMAs and updates 788 * the maple tree describing the @vmg->middle->vm_mm address space to account 789 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 790 * merge. 791 * 792 * As part of this operation, if a merge occurs, the @vmg object will have its 793 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 794 * calls to this function should reset these fields. 795 * 796 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 797 * 798 * ASSUMPTIONS: 799 * - The caller must assign the VMA to be modified to @vmg->middle. 800 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 801 * - The caller must not set @vmg->next, as we determine this. 802 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 803 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 804 */ 805 static __must_check struct vm_area_struct *vma_merge_existing_range( 806 struct vma_merge_struct *vmg) 807 { 808 vm_flags_t sticky_flags = vmg->vm_flags & VM_STICKY; 809 struct vm_area_struct *middle = vmg->middle; 810 struct vm_area_struct *prev = vmg->prev; 811 struct vm_area_struct *next; 812 struct vm_area_struct *anon_dup = NULL; 813 unsigned long start = vmg->start; 814 unsigned long end = vmg->end; 815 bool left_side = middle && start == middle->vm_start; 816 bool right_side = middle && end == middle->vm_end; 817 int err = 0; 818 bool merge_left, merge_right, merge_both; 819 820 mmap_assert_write_locked(vmg->mm); 821 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 822 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 823 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 824 VM_WARN_ON_VMG(start >= end, vmg); 825 826 /* 827 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 828 * not, we must span a portion of the VMA. 829 */ 830 VM_WARN_ON_VMG(middle && 831 ((middle != prev && vmg->start != middle->vm_start) || 832 vmg->end > middle->vm_end), vmg); 833 /* The vmi must be positioned within vmg->middle. */ 834 VM_WARN_ON_VMG(middle && 835 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 836 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 837 /* An existing merge can never be used by the mremap() logic. */ 838 VM_WARN_ON_VMG(vmg->copied_from, vmg); 839 840 vmg->state = VMA_MERGE_NOMERGE; 841 842 /* 843 * If a special mapping or if the range being modified is neither at the 844 * furthermost left or right side of the VMA, then we have no chance of 845 * merging and should abort. 846 */ 847 if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side)) 848 return NULL; 849 850 if (left_side) 851 merge_left = can_vma_merge_left(vmg); 852 else 853 merge_left = false; 854 855 if (right_side) { 856 next = vmg->next = vma_iter_next_range(vmg->vmi); 857 vma_iter_prev_range(vmg->vmi); 858 859 merge_right = can_vma_merge_right(vmg, merge_left); 860 } else { 861 merge_right = false; 862 next = NULL; 863 } 864 865 if (merge_left) /* If merging prev, position iterator there. */ 866 vma_prev(vmg->vmi); 867 else if (!merge_right) /* If we have nothing to merge, abort. */ 868 return NULL; 869 870 merge_both = merge_left && merge_right; 871 /* If we span the entire VMA, a merge implies it will be deleted. */ 872 vmg->__remove_middle = left_side && right_side; 873 874 /* 875 * If we need to remove middle in its entirety but are unable to do so, 876 * we have no sensible recourse but to abort the merge. 877 */ 878 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 879 return NULL; 880 881 /* 882 * If we merge both VMAs, then next is also deleted. This implies 883 * merge_will_delete_vma also. 884 */ 885 vmg->__remove_next = merge_both; 886 887 /* 888 * If we cannot delete next, then we can reduce the operation to merging 889 * prev and middle (thereby deleting middle). 890 */ 891 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 892 vmg->__remove_next = false; 893 merge_right = false; 894 merge_both = false; 895 } 896 897 /* No matter what happens, we will be adjusting middle. */ 898 vma_start_write(middle); 899 900 if (merge_right) { 901 vma_start_write(next); 902 vmg->target = next; 903 sticky_flags |= (next->vm_flags & VM_STICKY); 904 } 905 906 if (merge_left) { 907 vma_start_write(prev); 908 vmg->target = prev; 909 sticky_flags |= (prev->vm_flags & VM_STICKY); 910 } 911 912 if (merge_both) { 913 /* 914 * |<-------------------->| 915 * |-------********-------| 916 * prev middle next 917 * extend delete delete 918 */ 919 920 vmg->start = prev->vm_start; 921 vmg->end = next->vm_end; 922 vmg->pgoff = prev->vm_pgoff; 923 924 /* 925 * We already ensured anon_vma compatibility above, so now it's 926 * simply a case of, if prev has no anon_vma object, which of 927 * next or middle contains the anon_vma we must duplicate. 928 */ 929 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 930 &anon_dup); 931 } else if (merge_left) { 932 /* 933 * |<------------>| OR 934 * |<----------------->| 935 * |-------************* 936 * prev middle 937 * extend shrink/delete 938 */ 939 940 vmg->start = prev->vm_start; 941 vmg->pgoff = prev->vm_pgoff; 942 943 if (!vmg->__remove_middle) 944 vmg->__adjust_middle_start = true; 945 946 err = dup_anon_vma(prev, middle, &anon_dup); 947 } else { /* merge_right */ 948 /* 949 * |<------------->| OR 950 * |<----------------->| 951 * *************-------| 952 * middle next 953 * shrink/delete extend 954 */ 955 956 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 957 958 VM_WARN_ON_VMG(!merge_right, vmg); 959 /* If we are offset into a VMA, then prev must be middle. */ 960 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 961 962 if (vmg->__remove_middle) { 963 vmg->end = next->vm_end; 964 vmg->pgoff = next->vm_pgoff - pglen; 965 } else { 966 /* We shrink middle and expand next. */ 967 vmg->__adjust_next_start = true; 968 vmg->start = middle->vm_start; 969 vmg->end = start; 970 vmg->pgoff = middle->vm_pgoff; 971 } 972 973 err = dup_anon_vma(next, middle, &anon_dup); 974 } 975 976 if (err || commit_merge(vmg)) 977 goto abort; 978 979 vm_flags_set(vmg->target, sticky_flags); 980 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 981 vmg->state = VMA_MERGE_SUCCESS; 982 return vmg->target; 983 984 abort: 985 vma_iter_set(vmg->vmi, start); 986 vma_iter_load(vmg->vmi); 987 988 if (anon_dup) 989 unlink_anon_vmas(anon_dup); 990 991 /* 992 * This means we have failed to clone anon_vma's correctly, but no 993 * actual changes to VMAs have occurred, so no harm no foul - if the 994 * user doesn't want this reported and instead just wants to give up on 995 * the merge, allow it. 996 */ 997 if (!vmg->give_up_on_oom) 998 vmg->state = VMA_MERGE_ERROR_NOMEM; 999 return NULL; 1000 } 1001 1002 /* 1003 * vma_merge_new_range - Attempt to merge a new VMA into address space 1004 * 1005 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 1006 * (exclusive), which we try to merge with any adjacent VMAs if possible. 1007 * 1008 * We are about to add a VMA to the address space starting at @vmg->start and 1009 * ending at @vmg->end. There are three different possible scenarios: 1010 * 1011 * 1. There is a VMA with identical properties immediately adjacent to the 1012 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 1013 * EXPAND that VMA: 1014 * 1015 * Proposed: |-----| or |-----| 1016 * Existing: |----| |----| 1017 * 1018 * 2. There are VMAs with identical properties immediately adjacent to the 1019 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 1020 * EXPAND the former and REMOVE the latter: 1021 * 1022 * Proposed: |-----| 1023 * Existing: |----| |----| 1024 * 1025 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 1026 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 1027 * 1028 * In instances where we can merge, this function returns the expanded VMA which 1029 * will have its range adjusted accordingly and the underlying maple tree also 1030 * adjusted. 1031 * 1032 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1033 * to the VMA we expanded. 1034 * 1035 * This function adjusts @vmg to provide @vmg->next if not already specified, 1036 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 1037 * 1038 * ASSUMPTIONS: 1039 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1040 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 1041 other than VMAs that will be unmapped should the operation succeed. 1042 * - The caller must have specified the previous vma in @vmg->prev. 1043 * - The caller must have specified the next vma in @vmg->next. 1044 * - The caller must have positioned the vmi at or before the gap. 1045 */ 1046 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 1047 { 1048 struct vm_area_struct *prev = vmg->prev; 1049 struct vm_area_struct *next = vmg->next; 1050 unsigned long end = vmg->end; 1051 bool can_merge_left, can_merge_right; 1052 1053 mmap_assert_write_locked(vmg->mm); 1054 VM_WARN_ON_VMG(vmg->middle, vmg); 1055 VM_WARN_ON_VMG(vmg->target, vmg); 1056 /* vmi must point at or before the gap. */ 1057 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 1058 1059 vmg->state = VMA_MERGE_NOMERGE; 1060 1061 /* Special VMAs are unmergeable, also if no prev/next. */ 1062 if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next)) 1063 return NULL; 1064 1065 can_merge_left = can_vma_merge_left(vmg); 1066 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1067 1068 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1069 if (can_merge_right) { 1070 vmg->end = next->vm_end; 1071 vmg->target = next; 1072 } 1073 1074 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1075 if (can_merge_left) { 1076 vmg->start = prev->vm_start; 1077 vmg->target = prev; 1078 vmg->pgoff = prev->vm_pgoff; 1079 1080 /* 1081 * If this merge would result in removal of the next VMA but we 1082 * are not permitted to do so, reduce the operation to merging 1083 * prev and vma. 1084 */ 1085 if (can_merge_right && !can_merge_remove_vma(next)) 1086 vmg->end = end; 1087 1088 /* In expand-only case we are already positioned at prev. */ 1089 if (!vmg->just_expand) { 1090 /* Equivalent to going to the previous range. */ 1091 vma_prev(vmg->vmi); 1092 } 1093 } 1094 1095 /* 1096 * Now try to expand adjacent VMA(s). This takes care of removing the 1097 * following VMA if we have VMAs on both sides. 1098 */ 1099 if (vmg->target && !vma_expand(vmg)) { 1100 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 1101 vmg->state = VMA_MERGE_SUCCESS; 1102 return vmg->target; 1103 } 1104 1105 return NULL; 1106 } 1107 1108 /* 1109 * vma_merge_copied_range - Attempt to merge a VMA that is being copied by 1110 * mremap() 1111 * 1112 * @vmg: Describes the VMA we are adding, in the copied-to range @vmg->start to 1113 * @vmg->end (exclusive), which we try to merge with any adjacent VMAs if 1114 * possible. 1115 * 1116 * vmg->prev, next, start, end, pgoff should all be relative to the COPIED TO 1117 * range, i.e. the target range for the VMA. 1118 * 1119 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1120 * to the VMA we expanded. 1121 * 1122 * ASSUMPTIONS: Same as vma_merge_new_range(), except vmg->middle must contain 1123 * the copied-from VMA. 1124 */ 1125 static struct vm_area_struct *vma_merge_copied_range(struct vma_merge_struct *vmg) 1126 { 1127 /* We must have a copied-from VMA. */ 1128 VM_WARN_ON_VMG(!vmg->middle, vmg); 1129 1130 vmg->copied_from = vmg->middle; 1131 vmg->middle = NULL; 1132 return vma_merge_new_range(vmg); 1133 } 1134 1135 /* 1136 * vma_expand - Expand an existing VMA 1137 * 1138 * @vmg: Describes a VMA expansion operation. 1139 * 1140 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1141 * Will expand over vmg->next if it's different from vmg->target and vmg->end == 1142 * vmg->next->vm_end. Checking if the vmg->target can expand and merge with 1143 * vmg->next needs to be handled by the caller. 1144 * 1145 * Returns: 0 on success. 1146 * 1147 * ASSUMPTIONS: 1148 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1149 * - The caller must have set @vmg->target and @vmg->next. 1150 */ 1151 int vma_expand(struct vma_merge_struct *vmg) 1152 { 1153 struct vm_area_struct *anon_dup = NULL; 1154 struct vm_area_struct *target = vmg->target; 1155 struct vm_area_struct *next = vmg->next; 1156 bool remove_next = false; 1157 vm_flags_t sticky_flags; 1158 int ret = 0; 1159 1160 mmap_assert_write_locked(vmg->mm); 1161 vma_start_write(target); 1162 1163 if (next && target != next && vmg->end == next->vm_end) 1164 remove_next = true; 1165 1166 /* We must have a target. */ 1167 VM_WARN_ON_VMG(!target, vmg); 1168 /* This should have already been checked by this point. */ 1169 VM_WARN_ON_VMG(remove_next && !can_merge_remove_vma(next), vmg); 1170 /* Not merging but overwriting any part of next is not handled. */ 1171 VM_WARN_ON_VMG(next && !remove_next && 1172 next != target && vmg->end > next->vm_start, vmg); 1173 /* Only handles expanding. */ 1174 VM_WARN_ON_VMG(target->vm_start < vmg->start || 1175 target->vm_end > vmg->end, vmg); 1176 1177 sticky_flags = vmg->vm_flags & VM_STICKY; 1178 sticky_flags |= target->vm_flags & VM_STICKY; 1179 if (remove_next) 1180 sticky_flags |= next->vm_flags & VM_STICKY; 1181 1182 /* 1183 * If we are removing the next VMA or copying from a VMA 1184 * (e.g. mremap()'ing), we must propagate anon_vma state. 1185 * 1186 * Note that, by convention, callers ignore OOM for this case, so 1187 * we don't need to account for vmg->give_up_on_mm here. 1188 */ 1189 if (remove_next) 1190 ret = dup_anon_vma(target, next, &anon_dup); 1191 if (!ret && vmg->copied_from) 1192 ret = dup_anon_vma(target, vmg->copied_from, &anon_dup); 1193 if (ret) 1194 return ret; 1195 1196 if (remove_next) { 1197 vma_start_write(next); 1198 vmg->__remove_next = true; 1199 } 1200 if (commit_merge(vmg)) 1201 goto nomem; 1202 1203 vm_flags_set(target, sticky_flags); 1204 return 0; 1205 1206 nomem: 1207 if (anon_dup) 1208 unlink_anon_vmas(anon_dup); 1209 /* 1210 * If the user requests that we just give upon OOM, we are safe to do so 1211 * here, as commit merge provides this contract to us. Nothing has been 1212 * changed - no harm no foul, just don't report it. 1213 */ 1214 if (!vmg->give_up_on_oom) 1215 vmg->state = VMA_MERGE_ERROR_NOMEM; 1216 return -ENOMEM; 1217 } 1218 1219 /* 1220 * vma_shrink() - Reduce an existing VMAs memory area 1221 * @vmi: The vma iterator 1222 * @vma: The VMA to modify 1223 * @start: The new start 1224 * @end: The new end 1225 * 1226 * Returns: 0 on success, -ENOMEM otherwise 1227 */ 1228 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1229 unsigned long start, unsigned long end, pgoff_t pgoff) 1230 { 1231 struct vma_prepare vp; 1232 1233 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1234 1235 if (vma->vm_start < start) 1236 vma_iter_config(vmi, vma->vm_start, start); 1237 else 1238 vma_iter_config(vmi, end, vma->vm_end); 1239 1240 if (vma_iter_prealloc(vmi, NULL)) 1241 return -ENOMEM; 1242 1243 vma_start_write(vma); 1244 1245 init_vma_prep(&vp, vma); 1246 vma_prepare(&vp); 1247 vma_adjust_trans_huge(vma, start, end, NULL); 1248 1249 vma_iter_clear(vmi); 1250 vma_set_range(vma, start, end, pgoff); 1251 vma_complete(&vp, vmi, vma->vm_mm); 1252 validate_mm(vma->vm_mm); 1253 return 0; 1254 } 1255 1256 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1257 struct ma_state *mas_detach, bool mm_wr_locked) 1258 { 1259 struct unmap_desc unmap = { 1260 .mas = mas_detach, 1261 .first = vms->vma, 1262 /* start and end may be different if there is no prev or next vma. */ 1263 .pg_start = vms->unmap_start, 1264 .pg_end = vms->unmap_end, 1265 .vma_start = vms->start, 1266 .vma_end = vms->end, 1267 /* 1268 * The tree limits and reset differ from the normal case since it's a 1269 * side-tree 1270 */ 1271 .tree_reset = 1, 1272 .tree_end = vms->vma_count, 1273 /* 1274 * We can free page tables without write-locking mmap_lock because VMAs 1275 * were isolated before we downgraded mmap_lock. 1276 */ 1277 .mm_wr_locked = mm_wr_locked, 1278 }; 1279 1280 if (!vms->clear_ptes) /* Nothing to do */ 1281 return; 1282 1283 mas_set(mas_detach, 1); 1284 unmap_region(&unmap); 1285 vms->clear_ptes = false; 1286 } 1287 1288 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1289 struct ma_state *mas_detach) 1290 { 1291 struct vm_area_struct *vma; 1292 1293 if (!vms->nr_pages) 1294 return; 1295 1296 vms_clear_ptes(vms, mas_detach, true); 1297 mas_set(mas_detach, 0); 1298 mas_for_each(mas_detach, vma, ULONG_MAX) 1299 vma_close(vma); 1300 } 1301 1302 /* 1303 * vms_complete_munmap_vmas() - Finish the munmap() operation 1304 * @vms: The vma munmap struct 1305 * @mas_detach: The maple state of the detached vmas 1306 * 1307 * This updates the mm_struct, unmaps the region, frees the resources 1308 * used for the munmap() and may downgrade the lock - if requested. Everything 1309 * needed to be done once the vma maple tree is updated. 1310 */ 1311 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1312 struct ma_state *mas_detach) 1313 { 1314 struct vm_area_struct *vma; 1315 struct mm_struct *mm; 1316 1317 mm = current->mm; 1318 mm->map_count -= vms->vma_count; 1319 mm->locked_vm -= vms->locked_vm; 1320 if (vms->unlock) 1321 mmap_write_downgrade(mm); 1322 1323 if (!vms->nr_pages) 1324 return; 1325 1326 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1327 /* Update high watermark before we lower total_vm */ 1328 update_hiwater_vm(mm); 1329 /* Stat accounting */ 1330 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1331 /* Paranoid bookkeeping */ 1332 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1333 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1334 VM_WARN_ON(vms->data_vm > mm->data_vm); 1335 mm->exec_vm -= vms->exec_vm; 1336 mm->stack_vm -= vms->stack_vm; 1337 mm->data_vm -= vms->data_vm; 1338 1339 /* Remove and clean up vmas */ 1340 mas_set(mas_detach, 0); 1341 mas_for_each(mas_detach, vma, ULONG_MAX) 1342 remove_vma(vma); 1343 1344 vm_unacct_memory(vms->nr_accounted); 1345 validate_mm(mm); 1346 if (vms->unlock) 1347 mmap_read_unlock(mm); 1348 1349 __mt_destroy(mas_detach->tree); 1350 } 1351 1352 /* 1353 * reattach_vmas() - Undo any munmap work and free resources 1354 * @mas_detach: The maple state with the detached maple tree 1355 * 1356 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1357 */ 1358 static void reattach_vmas(struct ma_state *mas_detach) 1359 { 1360 struct vm_area_struct *vma; 1361 1362 mas_set(mas_detach, 0); 1363 mas_for_each(mas_detach, vma, ULONG_MAX) 1364 vma_mark_attached(vma); 1365 1366 __mt_destroy(mas_detach->tree); 1367 } 1368 1369 /* 1370 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1371 * for removal at a later date. Handles splitting first and last if necessary 1372 * and marking the vmas as isolated. 1373 * 1374 * @vms: The vma munmap struct 1375 * @mas_detach: The maple state tracking the detached tree 1376 * 1377 * Return: 0 on success, error otherwise 1378 */ 1379 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1380 struct ma_state *mas_detach) 1381 { 1382 struct vm_area_struct *next = NULL; 1383 int error; 1384 1385 /* 1386 * If we need to split any vma, do it now to save pain later. 1387 * Does it split the first one? 1388 */ 1389 if (vms->start > vms->vma->vm_start) { 1390 1391 /* 1392 * Make sure that map_count on return from munmap() will 1393 * not exceed its limit; but let map_count go just above 1394 * its limit temporarily, to help free resources as expected. 1395 */ 1396 if (vms->end < vms->vma->vm_end && 1397 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1398 error = -ENOMEM; 1399 goto map_count_exceeded; 1400 } 1401 1402 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1403 if (vma_is_sealed(vms->vma)) { 1404 error = -EPERM; 1405 goto start_split_failed; 1406 } 1407 1408 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1409 if (error) 1410 goto start_split_failed; 1411 } 1412 vms->prev = vma_prev(vms->vmi); 1413 if (vms->prev) 1414 vms->unmap_start = vms->prev->vm_end; 1415 1416 /* 1417 * Detach a range of VMAs from the mm. Using next as a temp variable as 1418 * it is always overwritten. 1419 */ 1420 for_each_vma_range(*(vms->vmi), next, vms->end) { 1421 long nrpages; 1422 1423 if (vma_is_sealed(next)) { 1424 error = -EPERM; 1425 goto modify_vma_failed; 1426 } 1427 /* Does it split the end? */ 1428 if (next->vm_end > vms->end) { 1429 error = __split_vma(vms->vmi, next, vms->end, 0); 1430 if (error) 1431 goto end_split_failed; 1432 } 1433 vma_start_write(next); 1434 mas_set(mas_detach, vms->vma_count++); 1435 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1436 if (error) 1437 goto munmap_gather_failed; 1438 1439 vma_mark_detached(next); 1440 nrpages = vma_pages(next); 1441 1442 vms->nr_pages += nrpages; 1443 if (next->vm_flags & VM_LOCKED) 1444 vms->locked_vm += nrpages; 1445 1446 if (next->vm_flags & VM_ACCOUNT) 1447 vms->nr_accounted += nrpages; 1448 1449 if (is_exec_mapping(next->vm_flags)) 1450 vms->exec_vm += nrpages; 1451 else if (is_stack_mapping(next->vm_flags)) 1452 vms->stack_vm += nrpages; 1453 else if (is_data_mapping(next->vm_flags)) 1454 vms->data_vm += nrpages; 1455 1456 if (vms->uf) { 1457 /* 1458 * If userfaultfd_unmap_prep returns an error the vmas 1459 * will remain split, but userland will get a 1460 * highly unexpected error anyway. This is no 1461 * different than the case where the first of the two 1462 * __split_vma fails, but we don't undo the first 1463 * split, despite we could. This is unlikely enough 1464 * failure that it's not worth optimizing it for. 1465 */ 1466 error = userfaultfd_unmap_prep(next, vms->start, 1467 vms->end, vms->uf); 1468 if (error) 1469 goto userfaultfd_error; 1470 } 1471 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1472 BUG_ON(next->vm_start < vms->start); 1473 BUG_ON(next->vm_start > vms->end); 1474 #endif 1475 } 1476 1477 vms->next = vma_next(vms->vmi); 1478 if (vms->next) 1479 vms->unmap_end = vms->next->vm_start; 1480 1481 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1482 /* Make sure no VMAs are about to be lost. */ 1483 { 1484 MA_STATE(test, mas_detach->tree, 0, 0); 1485 struct vm_area_struct *vma_mas, *vma_test; 1486 int test_count = 0; 1487 1488 vma_iter_set(vms->vmi, vms->start); 1489 rcu_read_lock(); 1490 vma_test = mas_find(&test, vms->vma_count - 1); 1491 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1492 BUG_ON(vma_mas != vma_test); 1493 test_count++; 1494 vma_test = mas_next(&test, vms->vma_count - 1); 1495 } 1496 rcu_read_unlock(); 1497 BUG_ON(vms->vma_count != test_count); 1498 } 1499 #endif 1500 1501 while (vma_iter_addr(vms->vmi) > vms->start) 1502 vma_iter_prev_range(vms->vmi); 1503 1504 vms->clear_ptes = true; 1505 return 0; 1506 1507 userfaultfd_error: 1508 munmap_gather_failed: 1509 end_split_failed: 1510 modify_vma_failed: 1511 reattach_vmas(mas_detach); 1512 start_split_failed: 1513 map_count_exceeded: 1514 return error; 1515 } 1516 1517 /* 1518 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1519 * @vms: The vma munmap struct 1520 * @vmi: The vma iterator 1521 * @vma: The first vm_area_struct to munmap 1522 * @start: The aligned start address to munmap 1523 * @end: The aligned end address to munmap 1524 * @uf: The userfaultfd list_head 1525 * @unlock: Unlock after the operation. Only unlocked on success 1526 */ 1527 static void init_vma_munmap(struct vma_munmap_struct *vms, 1528 struct vma_iterator *vmi, struct vm_area_struct *vma, 1529 unsigned long start, unsigned long end, struct list_head *uf, 1530 bool unlock) 1531 { 1532 vms->vmi = vmi; 1533 vms->vma = vma; 1534 if (vma) { 1535 vms->start = start; 1536 vms->end = end; 1537 } else { 1538 vms->start = vms->end = 0; 1539 } 1540 vms->unlock = unlock; 1541 vms->uf = uf; 1542 vms->vma_count = 0; 1543 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1544 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1545 vms->unmap_start = FIRST_USER_ADDRESS; 1546 vms->unmap_end = USER_PGTABLES_CEILING; 1547 vms->clear_ptes = false; 1548 } 1549 1550 /* 1551 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1552 * @vmi: The vma iterator 1553 * @vma: The starting vm_area_struct 1554 * @mm: The mm_struct 1555 * @start: The aligned start address to munmap. 1556 * @end: The aligned end address to munmap. 1557 * @uf: The userfaultfd list_head 1558 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1559 * success. 1560 * 1561 * Return: 0 on success and drops the lock if so directed, error and leaves the 1562 * lock held otherwise. 1563 */ 1564 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1565 struct mm_struct *mm, unsigned long start, unsigned long end, 1566 struct list_head *uf, bool unlock) 1567 { 1568 struct maple_tree mt_detach; 1569 MA_STATE(mas_detach, &mt_detach, 0, 0); 1570 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1571 mt_on_stack(mt_detach); 1572 struct vma_munmap_struct vms; 1573 int error; 1574 1575 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1576 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1577 if (error) 1578 goto gather_failed; 1579 1580 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1581 if (error) 1582 goto clear_tree_failed; 1583 1584 /* Point of no return */ 1585 vms_complete_munmap_vmas(&vms, &mas_detach); 1586 return 0; 1587 1588 clear_tree_failed: 1589 reattach_vmas(&mas_detach); 1590 gather_failed: 1591 validate_mm(mm); 1592 return error; 1593 } 1594 1595 /* 1596 * do_vmi_munmap() - munmap a given range. 1597 * @vmi: The vma iterator 1598 * @mm: The mm_struct 1599 * @start: The start address to munmap 1600 * @len: The length of the range to munmap 1601 * @uf: The userfaultfd list_head 1602 * @unlock: set to true if the user wants to drop the mmap_lock on success 1603 * 1604 * This function takes a @mas that is either pointing to the previous VMA or set 1605 * to MA_START and sets it up to remove the mapping(s). The @len will be 1606 * aligned. 1607 * 1608 * Return: 0 on success and drops the lock if so directed, error and leaves the 1609 * lock held otherwise. 1610 */ 1611 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1612 unsigned long start, size_t len, struct list_head *uf, 1613 bool unlock) 1614 { 1615 unsigned long end; 1616 struct vm_area_struct *vma; 1617 1618 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1619 return -EINVAL; 1620 1621 end = start + PAGE_ALIGN(len); 1622 if (end == start) 1623 return -EINVAL; 1624 1625 /* Find the first overlapping VMA */ 1626 vma = vma_find(vmi, end); 1627 if (!vma) { 1628 if (unlock) 1629 mmap_write_unlock(mm); 1630 return 0; 1631 } 1632 1633 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1634 } 1635 1636 /* 1637 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1638 * context and anonymous VMA name within the range [start, end). 1639 * 1640 * As a result, we might be able to merge the newly modified VMA range with an 1641 * adjacent VMA with identical properties. 1642 * 1643 * If no merge is possible and the range does not span the entirety of the VMA, 1644 * we then need to split the VMA to accommodate the change. 1645 * 1646 * The function returns either the merged VMA, the original VMA if a split was 1647 * required instead, or an error if the split failed. 1648 */ 1649 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1650 { 1651 struct vm_area_struct *vma = vmg->middle; 1652 unsigned long start = vmg->start; 1653 unsigned long end = vmg->end; 1654 struct vm_area_struct *merged; 1655 1656 /* First, try to merge. */ 1657 merged = vma_merge_existing_range(vmg); 1658 if (merged) 1659 return merged; 1660 if (vmg_nomem(vmg)) 1661 return ERR_PTR(-ENOMEM); 1662 1663 /* 1664 * Split can fail for reasons other than OOM, so if the user requests 1665 * this it's probably a mistake. 1666 */ 1667 VM_WARN_ON(vmg->give_up_on_oom && 1668 (vma->vm_start != start || vma->vm_end != end)); 1669 1670 /* Split any preceding portion of the VMA. */ 1671 if (vma->vm_start < start) { 1672 int err = split_vma(vmg->vmi, vma, start, 1); 1673 1674 if (err) 1675 return ERR_PTR(err); 1676 } 1677 1678 /* Split any trailing portion of the VMA. */ 1679 if (vma->vm_end > end) { 1680 int err = split_vma(vmg->vmi, vma, end, 0); 1681 1682 if (err) 1683 return ERR_PTR(err); 1684 } 1685 1686 return vma; 1687 } 1688 1689 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, 1690 struct vm_area_struct *prev, struct vm_area_struct *vma, 1691 unsigned long start, unsigned long end, 1692 vm_flags_t *vm_flags_ptr) 1693 { 1694 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1695 const vm_flags_t vm_flags = *vm_flags_ptr; 1696 struct vm_area_struct *ret; 1697 1698 vmg.vm_flags = vm_flags; 1699 1700 ret = vma_modify(&vmg); 1701 if (IS_ERR(ret)) 1702 return ret; 1703 1704 /* 1705 * For a merge to succeed, the flags must match those 1706 * requested. However, sticky flags may have been retained, so propagate 1707 * them to the caller. 1708 */ 1709 if (vmg.state == VMA_MERGE_SUCCESS) 1710 *vm_flags_ptr = ret->vm_flags; 1711 return ret; 1712 } 1713 1714 struct vm_area_struct *vma_modify_name(struct vma_iterator *vmi, 1715 struct vm_area_struct *prev, struct vm_area_struct *vma, 1716 unsigned long start, unsigned long end, 1717 struct anon_vma_name *new_name) 1718 { 1719 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1720 1721 vmg.anon_name = new_name; 1722 1723 return vma_modify(&vmg); 1724 } 1725 1726 struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi, 1727 struct vm_area_struct *prev, struct vm_area_struct *vma, 1728 unsigned long start, unsigned long end, 1729 struct mempolicy *new_pol) 1730 { 1731 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1732 1733 vmg.policy = new_pol; 1734 1735 return vma_modify(&vmg); 1736 } 1737 1738 struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi, 1739 struct vm_area_struct *prev, struct vm_area_struct *vma, 1740 unsigned long start, unsigned long end, vm_flags_t vm_flags, 1741 struct vm_userfaultfd_ctx new_ctx, bool give_up_on_oom) 1742 { 1743 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1744 1745 vmg.vm_flags = vm_flags; 1746 vmg.uffd_ctx = new_ctx; 1747 if (give_up_on_oom) 1748 vmg.give_up_on_oom = true; 1749 1750 return vma_modify(&vmg); 1751 } 1752 1753 /* 1754 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1755 * VMA with identical properties. 1756 */ 1757 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1758 struct vm_area_struct *vma, 1759 unsigned long delta) 1760 { 1761 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1762 1763 vmg.next = vma_iter_next_rewind(vmi, NULL); 1764 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1765 1766 return vma_merge_new_range(&vmg); 1767 } 1768 1769 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1770 { 1771 vb->count = 0; 1772 } 1773 1774 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1775 { 1776 struct address_space *mapping; 1777 int i; 1778 1779 mapping = vb->vmas[0]->vm_file->f_mapping; 1780 i_mmap_lock_write(mapping); 1781 for (i = 0; i < vb->count; i++) { 1782 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1783 __remove_shared_vm_struct(vb->vmas[i], mapping); 1784 } 1785 i_mmap_unlock_write(mapping); 1786 1787 unlink_file_vma_batch_init(vb); 1788 } 1789 1790 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1791 struct vm_area_struct *vma) 1792 { 1793 if (vma->vm_file == NULL) 1794 return; 1795 1796 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1797 vb->count == ARRAY_SIZE(vb->vmas)) 1798 unlink_file_vma_batch_process(vb); 1799 1800 vb->vmas[vb->count] = vma; 1801 vb->count++; 1802 } 1803 1804 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1805 { 1806 if (vb->count > 0) 1807 unlink_file_vma_batch_process(vb); 1808 } 1809 1810 static void vma_link_file(struct vm_area_struct *vma, bool hold_rmap_lock) 1811 { 1812 struct file *file = vma->vm_file; 1813 struct address_space *mapping; 1814 1815 if (file) { 1816 mapping = file->f_mapping; 1817 i_mmap_lock_write(mapping); 1818 __vma_link_file(vma, mapping); 1819 if (!hold_rmap_lock) 1820 i_mmap_unlock_write(mapping); 1821 } 1822 } 1823 1824 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1825 { 1826 VMA_ITERATOR(vmi, mm, 0); 1827 1828 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1829 if (vma_iter_prealloc(&vmi, vma)) 1830 return -ENOMEM; 1831 1832 vma_start_write(vma); 1833 vma_iter_store_new(&vmi, vma); 1834 vma_link_file(vma, /* hold_rmap_lock= */false); 1835 mm->map_count++; 1836 validate_mm(mm); 1837 return 0; 1838 } 1839 1840 /* 1841 * Copy the vma structure to a new location in the same mm, 1842 * prior to moving page table entries, to effect an mremap move. 1843 */ 1844 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1845 unsigned long addr, unsigned long len, pgoff_t pgoff, 1846 bool *need_rmap_locks) 1847 { 1848 struct vm_area_struct *vma = *vmap; 1849 unsigned long vma_start = vma->vm_start; 1850 struct mm_struct *mm = vma->vm_mm; 1851 struct vm_area_struct *new_vma; 1852 bool faulted_in_anon_vma = true; 1853 VMA_ITERATOR(vmi, mm, addr); 1854 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1855 1856 /* 1857 * If anonymous vma has not yet been faulted, update new pgoff 1858 * to match new location, to increase its chance of merging. 1859 */ 1860 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1861 pgoff = addr >> PAGE_SHIFT; 1862 faulted_in_anon_vma = false; 1863 } 1864 1865 /* 1866 * If the VMA we are copying might contain a uprobe PTE, ensure 1867 * that we do not establish one upon merge. Otherwise, when mremap() 1868 * moves page tables, it will orphan the newly created PTE. 1869 */ 1870 if (vma->vm_file) 1871 vmg.skip_vma_uprobe = true; 1872 1873 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1874 if (new_vma && new_vma->vm_start < addr + len) 1875 return NULL; /* should never get here */ 1876 1877 vmg.pgoff = pgoff; 1878 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1879 new_vma = vma_merge_copied_range(&vmg); 1880 1881 if (new_vma) { 1882 /* 1883 * Source vma may have been merged into new_vma 1884 */ 1885 if (unlikely(vma_start >= new_vma->vm_start && 1886 vma_start < new_vma->vm_end)) { 1887 /* 1888 * The only way we can get a vma_merge with 1889 * self during an mremap is if the vma hasn't 1890 * been faulted in yet and we were allowed to 1891 * reset the dst vma->vm_pgoff to the 1892 * destination address of the mremap to allow 1893 * the merge to happen. mremap must change the 1894 * vm_pgoff linearity between src and dst vmas 1895 * (in turn preventing a vma_merge) to be 1896 * safe. It is only safe to keep the vm_pgoff 1897 * linear if there are no pages mapped yet. 1898 */ 1899 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1900 *vmap = vma = new_vma; 1901 } 1902 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1903 } else { 1904 new_vma = vm_area_dup(vma); 1905 if (!new_vma) 1906 goto out; 1907 vma_set_range(new_vma, addr, addr + len, pgoff); 1908 if (vma_dup_policy(vma, new_vma)) 1909 goto out_free_vma; 1910 if (anon_vma_clone(new_vma, vma, VMA_OP_REMAP)) 1911 goto out_free_mempol; 1912 if (new_vma->vm_file) 1913 get_file(new_vma->vm_file); 1914 if (new_vma->vm_ops && new_vma->vm_ops->open) 1915 new_vma->vm_ops->open(new_vma); 1916 if (vma_link(mm, new_vma)) 1917 goto out_vma_link; 1918 *need_rmap_locks = false; 1919 } 1920 return new_vma; 1921 1922 out_vma_link: 1923 fixup_hugetlb_reservations(new_vma); 1924 vma_close(new_vma); 1925 1926 if (new_vma->vm_file) 1927 fput(new_vma->vm_file); 1928 1929 unlink_anon_vmas(new_vma); 1930 out_free_mempol: 1931 mpol_put(vma_policy(new_vma)); 1932 out_free_vma: 1933 vm_area_free(new_vma); 1934 out: 1935 return NULL; 1936 } 1937 1938 /* 1939 * Rough compatibility check to quickly see if it's even worth looking 1940 * at sharing an anon_vma. 1941 * 1942 * They need to have the same vm_file, and the flags can only differ 1943 * in things that mprotect may change. 1944 * 1945 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1946 * we can merge the two vma's. For example, we refuse to merge a vma if 1947 * there is a vm_ops->close() function, because that indicates that the 1948 * driver is doing some kind of reference counting. But that doesn't 1949 * really matter for the anon_vma sharing case. 1950 */ 1951 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1952 { 1953 return a->vm_end == b->vm_start && 1954 mpol_equal(vma_policy(a), vma_policy(b)) && 1955 a->vm_file == b->vm_file && 1956 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_IGNORE_MERGE)) && 1957 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1958 } 1959 1960 /* 1961 * Do some basic sanity checking to see if we can re-use the anon_vma 1962 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1963 * the same as 'old', the other will be the new one that is trying 1964 * to share the anon_vma. 1965 * 1966 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1967 * the anon_vma of 'old' is concurrently in the process of being set up 1968 * by another page fault trying to merge _that_. But that's ok: if it 1969 * is being set up, that automatically means that it will be a singleton 1970 * acceptable for merging, so we can do all of this optimistically. But 1971 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1972 * 1973 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1974 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1975 * is to return an anon_vma that is "complex" due to having gone through 1976 * a fork). 1977 * 1978 * We also make sure that the two vma's are compatible (adjacent, 1979 * and with the same memory policies). That's all stable, even with just 1980 * a read lock on the mmap_lock. 1981 */ 1982 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1983 struct vm_area_struct *a, 1984 struct vm_area_struct *b) 1985 { 1986 if (anon_vma_compatible(a, b)) { 1987 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1988 1989 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1990 return anon_vma; 1991 } 1992 return NULL; 1993 } 1994 1995 /* 1996 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1997 * neighbouring vmas for a suitable anon_vma, before it goes off 1998 * to allocate a new anon_vma. It checks because a repetitive 1999 * sequence of mprotects and faults may otherwise lead to distinct 2000 * anon_vmas being allocated, preventing vma merge in subsequent 2001 * mprotect. 2002 */ 2003 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 2004 { 2005 struct anon_vma *anon_vma = NULL; 2006 struct vm_area_struct *prev, *next; 2007 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 2008 2009 /* Try next first. */ 2010 next = vma_iter_load(&vmi); 2011 if (next) { 2012 anon_vma = reusable_anon_vma(next, vma, next); 2013 if (anon_vma) 2014 return anon_vma; 2015 } 2016 2017 prev = vma_prev(&vmi); 2018 VM_BUG_ON_VMA(prev != vma, vma); 2019 prev = vma_prev(&vmi); 2020 /* Try prev next. */ 2021 if (prev) 2022 anon_vma = reusable_anon_vma(prev, prev, vma); 2023 2024 /* 2025 * We might reach here with anon_vma == NULL if we can't find 2026 * any reusable anon_vma. 2027 * There's no absolute need to look only at touching neighbours: 2028 * we could search further afield for "compatible" anon_vmas. 2029 * But it would probably just be a waste of time searching, 2030 * or lead to too many vmas hanging off the same anon_vma. 2031 * We're trying to allow mprotect remerging later on, 2032 * not trying to minimize memory used for anon_vmas. 2033 */ 2034 return anon_vma; 2035 } 2036 2037 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 2038 { 2039 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 2040 } 2041 2042 static bool vma_is_shared_writable(struct vm_area_struct *vma) 2043 { 2044 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 2045 (VM_WRITE | VM_SHARED); 2046 } 2047 2048 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 2049 { 2050 /* No managed pages to writeback. */ 2051 if (vma->vm_flags & VM_PFNMAP) 2052 return false; 2053 2054 return vma->vm_file && vma->vm_file->f_mapping && 2055 mapping_can_writeback(vma->vm_file->f_mapping); 2056 } 2057 2058 /* 2059 * Does this VMA require the underlying folios to have their dirty state 2060 * tracked? 2061 */ 2062 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 2063 { 2064 /* Only shared, writable VMAs require dirty tracking. */ 2065 if (!vma_is_shared_writable(vma)) 2066 return false; 2067 2068 /* Does the filesystem need to be notified? */ 2069 if (vm_ops_needs_writenotify(vma->vm_ops)) 2070 return true; 2071 2072 /* 2073 * Even if the filesystem doesn't indicate a need for writenotify, if it 2074 * can writeback, dirty tracking is still required. 2075 */ 2076 return vma_fs_can_writeback(vma); 2077 } 2078 2079 /* 2080 * Some shared mappings will want the pages marked read-only 2081 * to track write events. If so, we'll downgrade vm_page_prot 2082 * to the private version (using protection_map[] without the 2083 * VM_SHARED bit). 2084 */ 2085 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 2086 { 2087 /* If it was private or non-writable, the write bit is already clear */ 2088 if (!vma_is_shared_writable(vma)) 2089 return false; 2090 2091 /* The backer wishes to know when pages are first written to? */ 2092 if (vm_ops_needs_writenotify(vma->vm_ops)) 2093 return true; 2094 2095 /* The open routine did something to the protections that pgprot_modify 2096 * won't preserve? */ 2097 if (pgprot_val(vm_page_prot) != 2098 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 2099 return false; 2100 2101 /* 2102 * Do we need to track softdirty? hugetlb does not support softdirty 2103 * tracking yet. 2104 */ 2105 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 2106 return true; 2107 2108 /* Do we need write faults for uffd-wp tracking? */ 2109 if (userfaultfd_wp(vma)) 2110 return true; 2111 2112 /* Can the mapping track the dirty pages? */ 2113 return vma_fs_can_writeback(vma); 2114 } 2115 2116 static DEFINE_MUTEX(mm_all_locks_mutex); 2117 2118 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2119 { 2120 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2121 /* 2122 * The LSB of head.next can't change from under us 2123 * because we hold the mm_all_locks_mutex. 2124 */ 2125 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 2126 /* 2127 * We can safely modify head.next after taking the 2128 * anon_vma->root->rwsem. If some other vma in this mm shares 2129 * the same anon_vma we won't take it again. 2130 * 2131 * No need of atomic instructions here, head.next 2132 * can't change from under us thanks to the 2133 * anon_vma->root->rwsem. 2134 */ 2135 if (__test_and_set_bit(0, (unsigned long *) 2136 &anon_vma->root->rb_root.rb_root.rb_node)) 2137 BUG(); 2138 } 2139 } 2140 2141 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2142 { 2143 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2144 /* 2145 * AS_MM_ALL_LOCKS can't change from under us because 2146 * we hold the mm_all_locks_mutex. 2147 * 2148 * Operations on ->flags have to be atomic because 2149 * even if AS_MM_ALL_LOCKS is stable thanks to the 2150 * mm_all_locks_mutex, there may be other cpus 2151 * changing other bitflags in parallel to us. 2152 */ 2153 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2154 BUG(); 2155 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2156 } 2157 } 2158 2159 /* 2160 * This operation locks against the VM for all pte/vma/mm related 2161 * operations that could ever happen on a certain mm. This includes 2162 * vmtruncate, try_to_unmap, and all page faults. 2163 * 2164 * The caller must take the mmap_lock in write mode before calling 2165 * mm_take_all_locks(). The caller isn't allowed to release the 2166 * mmap_lock until mm_drop_all_locks() returns. 2167 * 2168 * mmap_lock in write mode is required in order to block all operations 2169 * that could modify pagetables and free pages without need of 2170 * altering the vma layout. It's also needed in write mode to avoid new 2171 * anon_vmas to be associated with existing vmas. 2172 * 2173 * A single task can't take more than one mm_take_all_locks() in a row 2174 * or it would deadlock. 2175 * 2176 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2177 * mapping->flags avoid to take the same lock twice, if more than one 2178 * vma in this mm is backed by the same anon_vma or address_space. 2179 * 2180 * We take locks in following order, accordingly to comment at beginning 2181 * of mm/rmap.c: 2182 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2183 * hugetlb mapping); 2184 * - all vmas marked locked 2185 * - all i_mmap_rwsem locks; 2186 * - all anon_vma->rwseml 2187 * 2188 * We can take all locks within these types randomly because the VM code 2189 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2190 * mm_all_locks_mutex. 2191 * 2192 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2193 * that may have to take thousand of locks. 2194 * 2195 * mm_take_all_locks() can fail if it's interrupted by signals. 2196 */ 2197 int mm_take_all_locks(struct mm_struct *mm) 2198 { 2199 struct vm_area_struct *vma; 2200 struct anon_vma_chain *avc; 2201 VMA_ITERATOR(vmi, mm, 0); 2202 2203 mmap_assert_write_locked(mm); 2204 2205 mutex_lock(&mm_all_locks_mutex); 2206 2207 /* 2208 * vma_start_write() does not have a complement in mm_drop_all_locks() 2209 * because vma_start_write() is always asymmetrical; it marks a VMA as 2210 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2211 * is reached. 2212 */ 2213 for_each_vma(vmi, vma) { 2214 if (signal_pending(current)) 2215 goto out_unlock; 2216 vma_start_write(vma); 2217 } 2218 2219 vma_iter_init(&vmi, mm, 0); 2220 for_each_vma(vmi, vma) { 2221 if (signal_pending(current)) 2222 goto out_unlock; 2223 if (vma->vm_file && vma->vm_file->f_mapping && 2224 is_vm_hugetlb_page(vma)) 2225 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2226 } 2227 2228 vma_iter_init(&vmi, mm, 0); 2229 for_each_vma(vmi, vma) { 2230 if (signal_pending(current)) 2231 goto out_unlock; 2232 if (vma->vm_file && vma->vm_file->f_mapping && 2233 !is_vm_hugetlb_page(vma)) 2234 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2235 } 2236 2237 vma_iter_init(&vmi, mm, 0); 2238 for_each_vma(vmi, vma) { 2239 if (signal_pending(current)) 2240 goto out_unlock; 2241 if (vma->anon_vma) 2242 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2243 vm_lock_anon_vma(mm, avc->anon_vma); 2244 } 2245 2246 return 0; 2247 2248 out_unlock: 2249 mm_drop_all_locks(mm); 2250 return -EINTR; 2251 } 2252 2253 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2254 { 2255 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2256 /* 2257 * The LSB of head.next can't change to 0 from under 2258 * us because we hold the mm_all_locks_mutex. 2259 * 2260 * We must however clear the bitflag before unlocking 2261 * the vma so the users using the anon_vma->rb_root will 2262 * never see our bitflag. 2263 * 2264 * No need of atomic instructions here, head.next 2265 * can't change from under us until we release the 2266 * anon_vma->root->rwsem. 2267 */ 2268 if (!__test_and_clear_bit(0, (unsigned long *) 2269 &anon_vma->root->rb_root.rb_root.rb_node)) 2270 BUG(); 2271 anon_vma_unlock_write(anon_vma); 2272 } 2273 } 2274 2275 static void vm_unlock_mapping(struct address_space *mapping) 2276 { 2277 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2278 /* 2279 * AS_MM_ALL_LOCKS can't change to 0 from under us 2280 * because we hold the mm_all_locks_mutex. 2281 */ 2282 i_mmap_unlock_write(mapping); 2283 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2284 &mapping->flags)) 2285 BUG(); 2286 } 2287 } 2288 2289 /* 2290 * The mmap_lock cannot be released by the caller until 2291 * mm_drop_all_locks() returns. 2292 */ 2293 void mm_drop_all_locks(struct mm_struct *mm) 2294 { 2295 struct vm_area_struct *vma; 2296 struct anon_vma_chain *avc; 2297 VMA_ITERATOR(vmi, mm, 0); 2298 2299 mmap_assert_write_locked(mm); 2300 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2301 2302 for_each_vma(vmi, vma) { 2303 if (vma->anon_vma) 2304 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2305 vm_unlock_anon_vma(avc->anon_vma); 2306 if (vma->vm_file && vma->vm_file->f_mapping) 2307 vm_unlock_mapping(vma->vm_file->f_mapping); 2308 } 2309 2310 mutex_unlock(&mm_all_locks_mutex); 2311 } 2312 2313 /* 2314 * We account for memory if it's a private writeable mapping, 2315 * not hugepages and VM_NORESERVE wasn't set. 2316 */ 2317 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2318 { 2319 /* 2320 * hugetlb has its own accounting separate from the core VM 2321 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2322 */ 2323 if (file && is_file_hugepages(file)) 2324 return false; 2325 2326 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2327 } 2328 2329 /* 2330 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2331 * operation. 2332 * @vms: The vma unmap structure 2333 * @mas_detach: The maple state with the detached maple tree 2334 * 2335 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2336 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2337 * have been called), then a NULL is written over the vmas and the vmas are 2338 * removed (munmap() completed). 2339 */ 2340 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2341 struct ma_state *mas_detach) 2342 { 2343 struct ma_state *mas = &vms->vmi->mas; 2344 2345 if (!vms->nr_pages) 2346 return; 2347 2348 if (vms->clear_ptes) 2349 return reattach_vmas(mas_detach); 2350 2351 /* 2352 * Aborting cannot just call the vm_ops open() because they are often 2353 * not symmetrical and state data has been lost. Resort to the old 2354 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2355 */ 2356 mas_set_range(mas, vms->start, vms->end - 1); 2357 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2358 /* Clean up the insertion of the unfortunate gap */ 2359 vms_complete_munmap_vmas(vms, mas_detach); 2360 } 2361 2362 static void update_ksm_flags(struct mmap_state *map) 2363 { 2364 map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags); 2365 } 2366 2367 static void set_desc_from_map(struct vm_area_desc *desc, 2368 const struct mmap_state *map) 2369 { 2370 desc->start = map->addr; 2371 desc->end = map->end; 2372 2373 desc->pgoff = map->pgoff; 2374 desc->vm_file = map->file; 2375 desc->vma_flags = map->vma_flags; 2376 desc->page_prot = map->page_prot; 2377 } 2378 2379 /* 2380 * __mmap_setup() - Prepare to gather any overlapping VMAs that need to be 2381 * unmapped once the map operation is completed, check limits, account mapping 2382 * and clean up any pre-existing VMAs. 2383 * 2384 * As a result it sets up the @map and @desc objects. 2385 * 2386 * @map: Mapping state. 2387 * @desc: VMA descriptor 2388 * @uf: Userfaultfd context list. 2389 * 2390 * Returns: 0 on success, error code otherwise. 2391 */ 2392 static int __mmap_setup(struct mmap_state *map, struct vm_area_desc *desc, 2393 struct list_head *uf) 2394 { 2395 int error; 2396 struct vma_iterator *vmi = map->vmi; 2397 struct vma_munmap_struct *vms = &map->vms; 2398 2399 /* Find the first overlapping VMA and initialise unmap state. */ 2400 vms->vma = vma_find(vmi, map->end); 2401 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2402 /* unlock = */ false); 2403 2404 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2405 if (vms->vma) { 2406 mt_init_flags(&map->mt_detach, 2407 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2408 mt_on_stack(map->mt_detach); 2409 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2410 /* Prepare to unmap any existing mapping in the area */ 2411 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2412 if (error) { 2413 /* On error VMAs will already have been reattached. */ 2414 vms->nr_pages = 0; 2415 return error; 2416 } 2417 2418 map->next = vms->next; 2419 map->prev = vms->prev; 2420 } else { 2421 map->next = vma_iter_next_rewind(vmi, &map->prev); 2422 } 2423 2424 /* Check against address space limit. */ 2425 if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages)) 2426 return -ENOMEM; 2427 2428 /* Private writable mapping: check memory availability. */ 2429 if (accountable_mapping(map->file, map->vm_flags)) { 2430 map->charged = map->pglen; 2431 map->charged -= vms->nr_accounted; 2432 if (map->charged) { 2433 error = security_vm_enough_memory_mm(map->mm, map->charged); 2434 if (error) 2435 return error; 2436 } 2437 2438 vms->nr_accounted = 0; 2439 map->vm_flags |= VM_ACCOUNT; 2440 } 2441 2442 /* 2443 * Clear PTEs while the vma is still in the tree so that rmap 2444 * cannot race with the freeing later in the truncate scenario. 2445 * This is also needed for mmap_file(), which is why vm_ops 2446 * close function is called. 2447 */ 2448 vms_clean_up_area(vms, &map->mas_detach); 2449 2450 set_desc_from_map(desc, map); 2451 return 0; 2452 } 2453 2454 2455 static int __mmap_new_file_vma(struct mmap_state *map, 2456 struct vm_area_struct *vma) 2457 { 2458 struct vma_iterator *vmi = map->vmi; 2459 int error; 2460 2461 vma->vm_file = map->file; 2462 if (!map->file_doesnt_need_get) 2463 get_file(map->file); 2464 2465 if (!map->file->f_op->mmap) 2466 return 0; 2467 2468 error = mmap_file(vma->vm_file, vma); 2469 if (error) { 2470 UNMAP_STATE(unmap, vmi, vma, vma->vm_start, vma->vm_end, 2471 map->prev, map->next); 2472 fput(vma->vm_file); 2473 vma->vm_file = NULL; 2474 2475 vma_iter_set(vmi, vma->vm_end); 2476 /* Undo any partial mapping done by a device driver. */ 2477 unmap_region(&unmap); 2478 return error; 2479 } 2480 2481 /* Drivers cannot alter the address of the VMA. */ 2482 WARN_ON_ONCE(map->addr != vma->vm_start); 2483 /* 2484 * Drivers should not permit writability when previously it was 2485 * disallowed. 2486 */ 2487 VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags && 2488 !(map->vm_flags & VM_MAYWRITE) && 2489 (vma->vm_flags & VM_MAYWRITE)); 2490 2491 map->file = vma->vm_file; 2492 map->vm_flags = vma->vm_flags; 2493 2494 return 0; 2495 } 2496 2497 /* 2498 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2499 * possible. 2500 * 2501 * @map: Mapping state. 2502 * @vmap: Output pointer for the new VMA. 2503 * 2504 * Returns: Zero on success, or an error. 2505 */ 2506 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2507 { 2508 struct vma_iterator *vmi = map->vmi; 2509 int error = 0; 2510 struct vm_area_struct *vma; 2511 2512 /* 2513 * Determine the object being mapped and call the appropriate 2514 * specific mapper. the address has already been validated, but 2515 * not unmapped, but the maps are removed from the list. 2516 */ 2517 vma = vm_area_alloc(map->mm); 2518 if (!vma) 2519 return -ENOMEM; 2520 2521 vma_iter_config(vmi, map->addr, map->end); 2522 vma_set_range(vma, map->addr, map->end, map->pgoff); 2523 vm_flags_init(vma, map->vm_flags); 2524 vma->vm_page_prot = map->page_prot; 2525 2526 if (vma_iter_prealloc(vmi, vma)) { 2527 error = -ENOMEM; 2528 goto free_vma; 2529 } 2530 2531 if (map->file) 2532 error = __mmap_new_file_vma(map, vma); 2533 else if (map->vm_flags & VM_SHARED) 2534 error = shmem_zero_setup(vma); 2535 else 2536 vma_set_anonymous(vma); 2537 2538 if (error) 2539 goto free_iter_vma; 2540 2541 if (!map->check_ksm_early) { 2542 update_ksm_flags(map); 2543 vm_flags_init(vma, map->vm_flags); 2544 } 2545 2546 #ifdef CONFIG_SPARC64 2547 /* TODO: Fix SPARC ADI! */ 2548 WARN_ON_ONCE(!arch_validate_flags(map->vm_flags)); 2549 #endif 2550 2551 /* Lock the VMA since it is modified after insertion into VMA tree */ 2552 vma_start_write(vma); 2553 vma_iter_store_new(vmi, vma); 2554 map->mm->map_count++; 2555 vma_link_file(vma, map->hold_file_rmap_lock); 2556 2557 /* 2558 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2559 * call covers the non-merge case. 2560 */ 2561 if (!vma_is_anonymous(vma)) 2562 khugepaged_enter_vma(vma, map->vm_flags); 2563 *vmap = vma; 2564 return 0; 2565 2566 free_iter_vma: 2567 vma_iter_free(vmi); 2568 free_vma: 2569 vm_area_free(vma); 2570 return error; 2571 } 2572 2573 /* 2574 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2575 * statistics, handle locking and finalise the VMA. 2576 * 2577 * @map: Mapping state. 2578 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2579 */ 2580 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2581 { 2582 struct mm_struct *mm = map->mm; 2583 vm_flags_t vm_flags = vma->vm_flags; 2584 2585 perf_event_mmap(vma); 2586 2587 /* Unmap any existing mapping in the area. */ 2588 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2589 2590 vm_stat_account(mm, vma->vm_flags, map->pglen); 2591 if (vm_flags & VM_LOCKED) { 2592 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2593 is_vm_hugetlb_page(vma) || 2594 vma == get_gate_vma(mm)) 2595 vm_flags_clear(vma, VM_LOCKED_MASK); 2596 else 2597 mm->locked_vm += map->pglen; 2598 } 2599 2600 if (vma->vm_file) 2601 uprobe_mmap(vma); 2602 2603 /* 2604 * New (or expanded) vma always get soft dirty status. 2605 * Otherwise user-space soft-dirty page tracker won't 2606 * be able to distinguish situation when vma area unmapped, 2607 * then new mapped in-place (which must be aimed as 2608 * a completely new data area). 2609 */ 2610 if (pgtable_supports_soft_dirty()) 2611 vm_flags_set(vma, VM_SOFTDIRTY); 2612 2613 vma_set_page_prot(vma); 2614 } 2615 2616 static void call_action_prepare(struct mmap_state *map, 2617 struct vm_area_desc *desc) 2618 { 2619 struct mmap_action *action = &desc->action; 2620 2621 mmap_action_prepare(action, desc); 2622 2623 if (action->hide_from_rmap_until_complete) 2624 map->hold_file_rmap_lock = true; 2625 } 2626 2627 /* 2628 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that 2629 * specifies it. 2630 * 2631 * This is called prior to any merge attempt, and updates whitelisted fields 2632 * that are permitted to be updated by the caller. 2633 * 2634 * All but user-defined fields will be pre-populated with original values. 2635 * 2636 * Returns 0 on success, or an error code otherwise. 2637 */ 2638 static int call_mmap_prepare(struct mmap_state *map, 2639 struct vm_area_desc *desc) 2640 { 2641 int err; 2642 2643 /* Invoke the hook. */ 2644 err = vfs_mmap_prepare(map->file, desc); 2645 if (err) 2646 return err; 2647 2648 call_action_prepare(map, desc); 2649 2650 /* Update fields permitted to be changed. */ 2651 map->pgoff = desc->pgoff; 2652 if (desc->vm_file != map->file) { 2653 map->file_doesnt_need_get = true; 2654 map->file = desc->vm_file; 2655 } 2656 map->vma_flags = desc->vma_flags; 2657 map->page_prot = desc->page_prot; 2658 /* User-defined fields. */ 2659 map->vm_ops = desc->vm_ops; 2660 map->vm_private_data = desc->private_data; 2661 2662 return 0; 2663 } 2664 2665 static void set_vma_user_defined_fields(struct vm_area_struct *vma, 2666 struct mmap_state *map) 2667 { 2668 if (map->vm_ops) 2669 vma->vm_ops = map->vm_ops; 2670 vma->vm_private_data = map->vm_private_data; 2671 } 2672 2673 /* 2674 * Are we guaranteed no driver can change state such as to preclude KSM merging? 2675 * If so, let's set the KSM mergeable flag early so we don't break VMA merging. 2676 */ 2677 static bool can_set_ksm_flags_early(struct mmap_state *map) 2678 { 2679 struct file *file = map->file; 2680 2681 /* Anonymous mappings have no driver which can change them. */ 2682 if (!file) 2683 return true; 2684 2685 /* 2686 * If .mmap_prepare() is specified, then the driver will have already 2687 * manipulated state prior to updating KSM flags. So no need to worry 2688 * about mmap callbacks modifying VMA flags after the KSM flag has been 2689 * updated here, which could otherwise affect KSM eligibility. 2690 */ 2691 if (file->f_op->mmap_prepare) 2692 return true; 2693 2694 /* shmem is safe. */ 2695 if (shmem_file(file)) 2696 return true; 2697 2698 /* Any other .mmap callback is not safe. */ 2699 return false; 2700 } 2701 2702 static int call_action_complete(struct mmap_state *map, 2703 struct vm_area_desc *desc, 2704 struct vm_area_struct *vma) 2705 { 2706 struct mmap_action *action = &desc->action; 2707 int ret; 2708 2709 ret = mmap_action_complete(action, vma); 2710 2711 /* If we held the file rmap we need to release it. */ 2712 if (map->hold_file_rmap_lock) { 2713 struct file *file = vma->vm_file; 2714 2715 i_mmap_unlock_write(file->f_mapping); 2716 } 2717 return ret; 2718 } 2719 2720 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2721 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2722 struct list_head *uf) 2723 { 2724 struct mm_struct *mm = current->mm; 2725 struct vm_area_struct *vma = NULL; 2726 bool have_mmap_prepare = file && file->f_op->mmap_prepare; 2727 VMA_ITERATOR(vmi, mm, addr); 2728 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2729 struct vm_area_desc desc = { 2730 .mm = mm, 2731 .file = file, 2732 .action = { 2733 .type = MMAP_NOTHING, /* Default to no further action. */ 2734 }, 2735 }; 2736 bool allocated_new = false; 2737 int error; 2738 2739 map.check_ksm_early = can_set_ksm_flags_early(&map); 2740 2741 error = __mmap_setup(&map, &desc, uf); 2742 if (!error && have_mmap_prepare) 2743 error = call_mmap_prepare(&map, &desc); 2744 if (error) 2745 goto abort_munmap; 2746 2747 if (map.check_ksm_early) 2748 update_ksm_flags(&map); 2749 2750 /* Attempt to merge with adjacent VMAs... */ 2751 if (map.prev || map.next) { 2752 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2753 2754 vma = vma_merge_new_range(&vmg); 2755 } 2756 2757 /* ...but if we can't, allocate a new VMA. */ 2758 if (!vma) { 2759 error = __mmap_new_vma(&map, &vma); 2760 if (error) 2761 goto unacct_error; 2762 allocated_new = true; 2763 } 2764 2765 if (have_mmap_prepare) 2766 set_vma_user_defined_fields(vma, &map); 2767 2768 __mmap_complete(&map, vma); 2769 2770 if (have_mmap_prepare && allocated_new) { 2771 error = call_action_complete(&map, &desc, vma); 2772 2773 if (error) 2774 return error; 2775 } 2776 2777 return addr; 2778 2779 /* Accounting was done by __mmap_setup(). */ 2780 unacct_error: 2781 if (map.charged) 2782 vm_unacct_memory(map.charged); 2783 abort_munmap: 2784 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2785 return error; 2786 } 2787 2788 /** 2789 * mmap_region() - Actually perform the userland mapping of a VMA into 2790 * current->mm with known, aligned and overflow-checked @addr and @len, and 2791 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2792 * 2793 * This is an internal memory management function, and should not be used 2794 * directly. 2795 * 2796 * The caller must write-lock current->mm->mmap_lock. 2797 * 2798 * @file: If a file-backed mapping, a pointer to the struct file describing the 2799 * file to be mapped, otherwise NULL. 2800 * @addr: The page-aligned address at which to perform the mapping. 2801 * @len: The page-aligned, non-zero, length of the mapping. 2802 * @vm_flags: The VMA flags which should be applied to the mapping. 2803 * @pgoff: If @file is specified, the page offset into the file, if not then 2804 * the virtual page offset in memory of the anonymous mapping. 2805 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2806 * events. 2807 * 2808 * Returns: Either an error, or the address at which the requested mapping has 2809 * been performed. 2810 */ 2811 unsigned long mmap_region(struct file *file, unsigned long addr, 2812 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2813 struct list_head *uf) 2814 { 2815 unsigned long ret; 2816 bool writable_file_mapping = false; 2817 2818 mmap_assert_write_locked(current->mm); 2819 2820 /* Check to see if MDWE is applicable. */ 2821 if (map_deny_write_exec(vm_flags, vm_flags)) 2822 return -EACCES; 2823 2824 /* Allow architectures to sanity-check the vm_flags. */ 2825 if (!arch_validate_flags(vm_flags)) 2826 return -EINVAL; 2827 2828 /* Map writable and ensure this isn't a sealed memfd. */ 2829 if (file && is_shared_maywrite_vm_flags(vm_flags)) { 2830 int error = mapping_map_writable(file->f_mapping); 2831 2832 if (error) 2833 return error; 2834 writable_file_mapping = true; 2835 } 2836 2837 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2838 2839 /* Clear our write mapping regardless of error. */ 2840 if (writable_file_mapping) 2841 mapping_unmap_writable(file->f_mapping); 2842 2843 validate_mm(current->mm); 2844 return ret; 2845 } 2846 2847 /* 2848 * do_brk_flags() - Increase the brk vma if the flags match. 2849 * @vmi: The vma iterator 2850 * @addr: The start address 2851 * @len: The length of the increase 2852 * @vma: The vma, 2853 * @vm_flags: The VMA Flags 2854 * 2855 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2856 * do not match then create a new anonymous VMA. Eventually we may be able to 2857 * do some brk-specific accounting here. 2858 */ 2859 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2860 unsigned long addr, unsigned long len, vm_flags_t vm_flags) 2861 { 2862 struct mm_struct *mm = current->mm; 2863 2864 /* 2865 * Check against address space limits by the changed size 2866 * Note: This happens *after* clearing old mappings in some code paths. 2867 */ 2868 vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2869 vm_flags = ksm_vma_flags(mm, NULL, vm_flags); 2870 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) 2871 return -ENOMEM; 2872 2873 if (mm->map_count > sysctl_max_map_count) 2874 return -ENOMEM; 2875 2876 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2877 return -ENOMEM; 2878 2879 /* 2880 * Expand the existing vma if possible; Note that singular lists do not 2881 * occur after forking, so the expand will only happen on new VMAs. 2882 */ 2883 if (vma && vma->vm_end == addr) { 2884 VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr)); 2885 2886 vmg.prev = vma; 2887 /* vmi is positioned at prev, which this mode expects. */ 2888 vmg.just_expand = true; 2889 2890 if (vma_merge_new_range(&vmg)) 2891 goto out; 2892 else if (vmg_nomem(&vmg)) 2893 goto unacct_fail; 2894 } 2895 2896 if (vma) 2897 vma_iter_next_range(vmi); 2898 /* create a vma struct for an anonymous mapping */ 2899 vma = vm_area_alloc(mm); 2900 if (!vma) 2901 goto unacct_fail; 2902 2903 vma_set_anonymous(vma); 2904 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2905 vm_flags_init(vma, vm_flags); 2906 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2907 vma_start_write(vma); 2908 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2909 goto mas_store_fail; 2910 2911 mm->map_count++; 2912 validate_mm(mm); 2913 out: 2914 perf_event_mmap(vma); 2915 mm->total_vm += len >> PAGE_SHIFT; 2916 mm->data_vm += len >> PAGE_SHIFT; 2917 if (vm_flags & VM_LOCKED) 2918 mm->locked_vm += (len >> PAGE_SHIFT); 2919 if (pgtable_supports_soft_dirty()) 2920 vm_flags_set(vma, VM_SOFTDIRTY); 2921 return 0; 2922 2923 mas_store_fail: 2924 vm_area_free(vma); 2925 unacct_fail: 2926 vm_unacct_memory(len >> PAGE_SHIFT); 2927 return -ENOMEM; 2928 } 2929 2930 /** 2931 * unmapped_area() - Find an area between the low_limit and the high_limit with 2932 * the correct alignment and offset, all from @info. Note: current->mm is used 2933 * for the search. 2934 * 2935 * @info: The unmapped area information including the range [low_limit - 2936 * high_limit), the alignment offset and mask. 2937 * 2938 * Return: A memory address or -ENOMEM. 2939 */ 2940 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2941 { 2942 unsigned long length, gap; 2943 unsigned long low_limit, high_limit; 2944 struct vm_area_struct *tmp; 2945 VMA_ITERATOR(vmi, current->mm, 0); 2946 2947 /* Adjust search length to account for worst case alignment overhead */ 2948 length = info->length + info->align_mask + info->start_gap; 2949 if (length < info->length) 2950 return -ENOMEM; 2951 2952 low_limit = info->low_limit; 2953 if (low_limit < mmap_min_addr) 2954 low_limit = mmap_min_addr; 2955 high_limit = info->high_limit; 2956 retry: 2957 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2958 return -ENOMEM; 2959 2960 /* 2961 * Adjust for the gap first so it doesn't interfere with the later 2962 * alignment. The first step is the minimum needed to fulfill the start 2963 * gap, the next step is the minimum to align that. It is the minimum 2964 * needed to fulfill both. 2965 */ 2966 gap = vma_iter_addr(&vmi) + info->start_gap; 2967 gap += (info->align_offset - gap) & info->align_mask; 2968 tmp = vma_next(&vmi); 2969 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2970 if (vm_start_gap(tmp) < gap + length - 1) { 2971 low_limit = tmp->vm_end; 2972 vma_iter_reset(&vmi); 2973 goto retry; 2974 } 2975 } else { 2976 tmp = vma_prev(&vmi); 2977 if (tmp && vm_end_gap(tmp) > gap) { 2978 low_limit = vm_end_gap(tmp); 2979 vma_iter_reset(&vmi); 2980 goto retry; 2981 } 2982 } 2983 2984 return gap; 2985 } 2986 2987 /** 2988 * unmapped_area_topdown() - Find an area between the low_limit and the 2989 * high_limit with the correct alignment and offset at the highest available 2990 * address, all from @info. Note: current->mm is used for the search. 2991 * 2992 * @info: The unmapped area information including the range [low_limit - 2993 * high_limit), the alignment offset and mask. 2994 * 2995 * Return: A memory address or -ENOMEM. 2996 */ 2997 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2998 { 2999 unsigned long length, gap, gap_end; 3000 unsigned long low_limit, high_limit; 3001 struct vm_area_struct *tmp; 3002 VMA_ITERATOR(vmi, current->mm, 0); 3003 3004 /* Adjust search length to account for worst case alignment overhead */ 3005 length = info->length + info->align_mask + info->start_gap; 3006 if (length < info->length) 3007 return -ENOMEM; 3008 3009 low_limit = info->low_limit; 3010 if (low_limit < mmap_min_addr) 3011 low_limit = mmap_min_addr; 3012 high_limit = info->high_limit; 3013 retry: 3014 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 3015 return -ENOMEM; 3016 3017 gap = vma_iter_end(&vmi) - info->length; 3018 gap -= (gap - info->align_offset) & info->align_mask; 3019 gap_end = vma_iter_end(&vmi); 3020 tmp = vma_next(&vmi); 3021 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 3022 if (vm_start_gap(tmp) < gap_end) { 3023 high_limit = vm_start_gap(tmp); 3024 vma_iter_reset(&vmi); 3025 goto retry; 3026 } 3027 } else { 3028 tmp = vma_prev(&vmi); 3029 if (tmp && vm_end_gap(tmp) > gap) { 3030 high_limit = tmp->vm_start; 3031 vma_iter_reset(&vmi); 3032 goto retry; 3033 } 3034 } 3035 3036 return gap; 3037 } 3038 3039 /* 3040 * Verify that the stack growth is acceptable and 3041 * update accounting. This is shared with both the 3042 * grow-up and grow-down cases. 3043 */ 3044 static int acct_stack_growth(struct vm_area_struct *vma, 3045 unsigned long size, unsigned long grow) 3046 { 3047 struct mm_struct *mm = vma->vm_mm; 3048 unsigned long new_start; 3049 3050 /* address space limit tests */ 3051 if (!may_expand_vm(mm, vma->vm_flags, grow)) 3052 return -ENOMEM; 3053 3054 /* Stack limit test */ 3055 if (size > rlimit(RLIMIT_STACK)) 3056 return -ENOMEM; 3057 3058 /* mlock limit tests */ 3059 if (!mlock_future_ok(mm, vma->vm_flags & VM_LOCKED, grow << PAGE_SHIFT)) 3060 return -ENOMEM; 3061 3062 /* Check to ensure the stack will not grow into a hugetlb-only region */ 3063 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 3064 vma->vm_end - size; 3065 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 3066 return -EFAULT; 3067 3068 /* 3069 * Overcommit.. This must be the final test, as it will 3070 * update security statistics. 3071 */ 3072 if (security_vm_enough_memory_mm(mm, grow)) 3073 return -ENOMEM; 3074 3075 return 0; 3076 } 3077 3078 #if defined(CONFIG_STACK_GROWSUP) 3079 /* 3080 * PA-RISC uses this for its stack. 3081 * vma is the last one with address > vma->vm_end. Have to extend vma. 3082 */ 3083 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 3084 { 3085 struct mm_struct *mm = vma->vm_mm; 3086 struct vm_area_struct *next; 3087 unsigned long gap_addr; 3088 int error = 0; 3089 VMA_ITERATOR(vmi, mm, vma->vm_start); 3090 3091 if (!(vma->vm_flags & VM_GROWSUP)) 3092 return -EFAULT; 3093 3094 mmap_assert_write_locked(mm); 3095 3096 /* Guard against exceeding limits of the address space. */ 3097 address &= PAGE_MASK; 3098 if (address >= (TASK_SIZE & PAGE_MASK)) 3099 return -ENOMEM; 3100 address += PAGE_SIZE; 3101 3102 /* Enforce stack_guard_gap */ 3103 gap_addr = address + stack_guard_gap; 3104 3105 /* Guard against overflow */ 3106 if (gap_addr < address || gap_addr > TASK_SIZE) 3107 gap_addr = TASK_SIZE; 3108 3109 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 3110 if (next && vma_is_accessible(next)) { 3111 if (!(next->vm_flags & VM_GROWSUP)) 3112 return -ENOMEM; 3113 /* Check that both stack segments have the same anon_vma? */ 3114 } 3115 3116 if (next) 3117 vma_iter_prev_range_limit(&vmi, address); 3118 3119 vma_iter_config(&vmi, vma->vm_start, address); 3120 if (vma_iter_prealloc(&vmi, vma)) 3121 return -ENOMEM; 3122 3123 /* We must make sure the anon_vma is allocated. */ 3124 if (unlikely(anon_vma_prepare(vma))) { 3125 vma_iter_free(&vmi); 3126 return -ENOMEM; 3127 } 3128 3129 /* Lock the VMA before expanding to prevent concurrent page faults */ 3130 vma_start_write(vma); 3131 /* We update the anon VMA tree. */ 3132 anon_vma_lock_write(vma->anon_vma); 3133 3134 /* Somebody else might have raced and expanded it already */ 3135 if (address > vma->vm_end) { 3136 unsigned long size, grow; 3137 3138 size = address - vma->vm_start; 3139 grow = (address - vma->vm_end) >> PAGE_SHIFT; 3140 3141 error = -ENOMEM; 3142 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 3143 error = acct_stack_growth(vma, size, grow); 3144 if (!error) { 3145 if (vma->vm_flags & VM_LOCKED) 3146 mm->locked_vm += grow; 3147 vm_stat_account(mm, vma->vm_flags, grow); 3148 anon_vma_interval_tree_pre_update_vma(vma); 3149 vma->vm_end = address; 3150 /* Overwrite old entry in mtree. */ 3151 vma_iter_store_overwrite(&vmi, vma); 3152 anon_vma_interval_tree_post_update_vma(vma); 3153 3154 perf_event_mmap(vma); 3155 } 3156 } 3157 } 3158 anon_vma_unlock_write(vma->anon_vma); 3159 vma_iter_free(&vmi); 3160 validate_mm(mm); 3161 return error; 3162 } 3163 #endif /* CONFIG_STACK_GROWSUP */ 3164 3165 /* 3166 * vma is the first one with address < vma->vm_start. Have to extend vma. 3167 * mmap_lock held for writing. 3168 */ 3169 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 3170 { 3171 struct mm_struct *mm = vma->vm_mm; 3172 struct vm_area_struct *prev; 3173 int error = 0; 3174 VMA_ITERATOR(vmi, mm, vma->vm_start); 3175 3176 if (!(vma->vm_flags & VM_GROWSDOWN)) 3177 return -EFAULT; 3178 3179 mmap_assert_write_locked(mm); 3180 3181 address &= PAGE_MASK; 3182 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 3183 return -EPERM; 3184 3185 /* Enforce stack_guard_gap */ 3186 prev = vma_prev(&vmi); 3187 /* Check that both stack segments have the same anon_vma? */ 3188 if (prev) { 3189 if (!(prev->vm_flags & VM_GROWSDOWN) && 3190 vma_is_accessible(prev) && 3191 (address - prev->vm_end < stack_guard_gap)) 3192 return -ENOMEM; 3193 } 3194 3195 if (prev) 3196 vma_iter_next_range_limit(&vmi, vma->vm_start); 3197 3198 vma_iter_config(&vmi, address, vma->vm_end); 3199 if (vma_iter_prealloc(&vmi, vma)) 3200 return -ENOMEM; 3201 3202 /* We must make sure the anon_vma is allocated. */ 3203 if (unlikely(anon_vma_prepare(vma))) { 3204 vma_iter_free(&vmi); 3205 return -ENOMEM; 3206 } 3207 3208 /* Lock the VMA before expanding to prevent concurrent page faults */ 3209 vma_start_write(vma); 3210 /* We update the anon VMA tree. */ 3211 anon_vma_lock_write(vma->anon_vma); 3212 3213 /* Somebody else might have raced and expanded it already */ 3214 if (address < vma->vm_start) { 3215 unsigned long size, grow; 3216 3217 size = vma->vm_end - address; 3218 grow = (vma->vm_start - address) >> PAGE_SHIFT; 3219 3220 error = -ENOMEM; 3221 if (grow <= vma->vm_pgoff) { 3222 error = acct_stack_growth(vma, size, grow); 3223 if (!error) { 3224 if (vma->vm_flags & VM_LOCKED) 3225 mm->locked_vm += grow; 3226 vm_stat_account(mm, vma->vm_flags, grow); 3227 anon_vma_interval_tree_pre_update_vma(vma); 3228 vma->vm_start = address; 3229 vma->vm_pgoff -= grow; 3230 /* Overwrite old entry in mtree. */ 3231 vma_iter_store_overwrite(&vmi, vma); 3232 anon_vma_interval_tree_post_update_vma(vma); 3233 3234 perf_event_mmap(vma); 3235 } 3236 } 3237 } 3238 anon_vma_unlock_write(vma->anon_vma); 3239 vma_iter_free(&vmi); 3240 validate_mm(mm); 3241 return error; 3242 } 3243 3244 int __vm_munmap(unsigned long start, size_t len, bool unlock) 3245 { 3246 int ret; 3247 struct mm_struct *mm = current->mm; 3248 LIST_HEAD(uf); 3249 VMA_ITERATOR(vmi, mm, start); 3250 3251 if (mmap_write_lock_killable(mm)) 3252 return -EINTR; 3253 3254 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3255 if (ret || !unlock) 3256 mmap_write_unlock(mm); 3257 3258 userfaultfd_unmap_complete(mm, &uf); 3259 return ret; 3260 } 3261 3262 /* Insert vm structure into process list sorted by address 3263 * and into the inode's i_mmap tree. If vm_file is non-NULL 3264 * then i_mmap_rwsem is taken here. 3265 */ 3266 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3267 { 3268 unsigned long charged = vma_pages(vma); 3269 3270 3271 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3272 return -ENOMEM; 3273 3274 if ((vma->vm_flags & VM_ACCOUNT) && 3275 security_vm_enough_memory_mm(mm, charged)) 3276 return -ENOMEM; 3277 3278 /* 3279 * The vm_pgoff of a purely anonymous vma should be irrelevant 3280 * until its first write fault, when page's anon_vma and index 3281 * are set. But now set the vm_pgoff it will almost certainly 3282 * end up with (unless mremap moves it elsewhere before that 3283 * first wfault), so /proc/pid/maps tells a consistent story. 3284 * 3285 * By setting it to reflect the virtual start address of the 3286 * vma, merges and splits can happen in a seamless way, just 3287 * using the existing file pgoff checks and manipulations. 3288 * Similarly in do_mmap and in do_brk_flags. 3289 */ 3290 if (vma_is_anonymous(vma)) { 3291 BUG_ON(vma->anon_vma); 3292 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3293 } 3294 3295 if (vma_link(mm, vma)) { 3296 if (vma->vm_flags & VM_ACCOUNT) 3297 vm_unacct_memory(charged); 3298 return -ENOMEM; 3299 } 3300 3301 return 0; 3302 } 3303