1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 vm_flags_t vm_flags; 19 struct file *file; 20 pgprot_t page_prot; 21 22 /* User-defined fields, perhaps updated by .mmap_prepare(). */ 23 const struct vm_operations_struct *vm_ops; 24 void *vm_private_data; 25 26 unsigned long charged; 27 28 struct vm_area_struct *prev; 29 struct vm_area_struct *next; 30 31 /* Unmapping state. */ 32 struct vma_munmap_struct vms; 33 struct ma_state mas_detach; 34 struct maple_tree mt_detach; 35 36 /* Determine if we can check KSM flags early in mmap() logic. */ 37 bool check_ksm_early :1; 38 /* If we map new, hold the file rmap lock on mapping. */ 39 bool hold_file_rmap_lock :1; 40 }; 41 42 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \ 43 struct mmap_state name = { \ 44 .mm = mm_, \ 45 .vmi = vmi_, \ 46 .addr = addr_, \ 47 .end = (addr_) + (len_), \ 48 .pgoff = pgoff_, \ 49 .pglen = PHYS_PFN(len_), \ 50 .vm_flags = vm_flags_, \ 51 .file = file_, \ 52 .page_prot = vm_get_page_prot(vm_flags_), \ 53 } 54 55 #define VMG_MMAP_STATE(name, map_, vma_) \ 56 struct vma_merge_struct name = { \ 57 .mm = (map_)->mm, \ 58 .vmi = (map_)->vmi, \ 59 .start = (map_)->addr, \ 60 .end = (map_)->end, \ 61 .vm_flags = (map_)->vm_flags, \ 62 .pgoff = (map_)->pgoff, \ 63 .file = (map_)->file, \ 64 .prev = (map_)->prev, \ 65 .middle = vma_, \ 66 .next = (vma_) ? NULL : (map_)->next, \ 67 .state = VMA_MERGE_START, \ 68 } 69 70 /* 71 * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain 72 * more than one anon_vma_chain connecting it to more than one anon_vma. A merge 73 * would mean a wider range of folios sharing the root anon_vma lock, and thus 74 * potential lock contention, we do not wish to encourage merging such that this 75 * scales to a problem. 76 */ 77 static bool vma_had_uncowed_parents(struct vm_area_struct *vma) 78 { 79 /* 80 * The list_is_singular() test is to avoid merging VMA cloned from 81 * parents. This can improve scalability caused by anon_vma lock. 82 */ 83 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain); 84 } 85 86 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 87 { 88 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 89 90 if (!mpol_equal(vmg->policy, vma_policy(vma))) 91 return false; 92 if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_IGNORE_MERGE) 93 return false; 94 if (vma->vm_file != vmg->file) 95 return false; 96 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 97 return false; 98 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 99 return false; 100 return true; 101 } 102 103 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) 104 { 105 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; 106 struct vm_area_struct *src = vmg->middle; /* existing merge case. */ 107 struct anon_vma *tgt_anon = tgt->anon_vma; 108 struct anon_vma *src_anon = vmg->anon_vma; 109 110 /* 111 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we 112 * will remove the existing VMA's anon_vma's so there's no scalability 113 * concerns. 114 */ 115 VM_WARN_ON(src && src_anon != src->anon_vma); 116 117 /* Case 1 - we will dup_anon_vma() from src into tgt. */ 118 if (!tgt_anon && src_anon) 119 return !vma_had_uncowed_parents(src); 120 /* Case 2 - we will simply use tgt's anon_vma. */ 121 if (tgt_anon && !src_anon) 122 return !vma_had_uncowed_parents(tgt); 123 /* Case 3 - the anon_vma's are already shared. */ 124 return src_anon == tgt_anon; 125 } 126 127 /* 128 * init_multi_vma_prep() - Initializer for struct vma_prepare 129 * @vp: The vma_prepare struct 130 * @vma: The vma that will be altered once locked 131 * @vmg: The merge state that will be used to determine adjustment and VMA 132 * removal. 133 */ 134 static void init_multi_vma_prep(struct vma_prepare *vp, 135 struct vm_area_struct *vma, 136 struct vma_merge_struct *vmg) 137 { 138 struct vm_area_struct *adjust; 139 struct vm_area_struct **remove = &vp->remove; 140 141 memset(vp, 0, sizeof(struct vma_prepare)); 142 vp->vma = vma; 143 vp->anon_vma = vma->anon_vma; 144 145 if (vmg && vmg->__remove_middle) { 146 *remove = vmg->middle; 147 remove = &vp->remove2; 148 } 149 if (vmg && vmg->__remove_next) 150 *remove = vmg->next; 151 152 if (vmg && vmg->__adjust_middle_start) 153 adjust = vmg->middle; 154 else if (vmg && vmg->__adjust_next_start) 155 adjust = vmg->next; 156 else 157 adjust = NULL; 158 159 vp->adj_next = adjust; 160 if (!vp->anon_vma && adjust) 161 vp->anon_vma = adjust->anon_vma; 162 163 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 164 vp->anon_vma != adjust->anon_vma); 165 166 vp->file = vma->vm_file; 167 if (vp->file) 168 vp->mapping = vma->vm_file->f_mapping; 169 170 if (vmg && vmg->skip_vma_uprobe) 171 vp->skip_vma_uprobe = true; 172 } 173 174 /* 175 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 176 * in front of (at a lower virtual address and file offset than) the vma. 177 * 178 * We cannot merge two vmas if they have differently assigned (non-NULL) 179 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 180 * 181 * We don't check here for the merged mmap wrapping around the end of pagecache 182 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 183 * wrap, nor mmaps which cover the final page at index -1UL. 184 * 185 * We assume the vma may be removed as part of the merge. 186 */ 187 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 188 { 189 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 190 191 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 192 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { 193 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 194 return true; 195 } 196 197 return false; 198 } 199 200 /* 201 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 202 * beyond (at a higher virtual address and file offset than) the vma. 203 * 204 * We cannot merge two vmas if they have differently assigned (non-NULL) 205 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 206 * 207 * We assume that vma is not removed as part of the merge. 208 */ 209 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 210 { 211 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 212 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { 213 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 214 return true; 215 } 216 return false; 217 } 218 219 static void __vma_link_file(struct vm_area_struct *vma, 220 struct address_space *mapping) 221 { 222 if (vma_is_shared_maywrite(vma)) 223 mapping_allow_writable(mapping); 224 225 flush_dcache_mmap_lock(mapping); 226 vma_interval_tree_insert(vma, &mapping->i_mmap); 227 flush_dcache_mmap_unlock(mapping); 228 } 229 230 /* 231 * Requires inode->i_mapping->i_mmap_rwsem 232 */ 233 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 234 struct address_space *mapping) 235 { 236 if (vma_is_shared_maywrite(vma)) 237 mapping_unmap_writable(mapping); 238 239 flush_dcache_mmap_lock(mapping); 240 vma_interval_tree_remove(vma, &mapping->i_mmap); 241 flush_dcache_mmap_unlock(mapping); 242 } 243 244 /* 245 * vma has some anon_vma assigned, and is already inserted on that 246 * anon_vma's interval trees. 247 * 248 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 249 * vma must be removed from the anon_vma's interval trees using 250 * anon_vma_interval_tree_pre_update_vma(). 251 * 252 * After the update, the vma will be reinserted using 253 * anon_vma_interval_tree_post_update_vma(). 254 * 255 * The entire update must be protected by exclusive mmap_lock and by 256 * the root anon_vma's mutex. 257 */ 258 static void 259 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 260 { 261 struct anon_vma_chain *avc; 262 263 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 264 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 265 } 266 267 static void 268 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 269 { 270 struct anon_vma_chain *avc; 271 272 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 273 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 274 } 275 276 /* 277 * vma_prepare() - Helper function for handling locking VMAs prior to altering 278 * @vp: The initialized vma_prepare struct 279 */ 280 static void vma_prepare(struct vma_prepare *vp) 281 { 282 if (vp->file) { 283 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 284 285 if (vp->adj_next) 286 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 287 vp->adj_next->vm_end); 288 289 i_mmap_lock_write(vp->mapping); 290 if (vp->insert && vp->insert->vm_file) { 291 /* 292 * Put into interval tree now, so instantiated pages 293 * are visible to arm/parisc __flush_dcache_page 294 * throughout; but we cannot insert into address 295 * space until vma start or end is updated. 296 */ 297 __vma_link_file(vp->insert, 298 vp->insert->vm_file->f_mapping); 299 } 300 } 301 302 if (vp->anon_vma) { 303 anon_vma_lock_write(vp->anon_vma); 304 anon_vma_interval_tree_pre_update_vma(vp->vma); 305 if (vp->adj_next) 306 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 307 } 308 309 if (vp->file) { 310 flush_dcache_mmap_lock(vp->mapping); 311 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 312 if (vp->adj_next) 313 vma_interval_tree_remove(vp->adj_next, 314 &vp->mapping->i_mmap); 315 } 316 317 } 318 319 /* 320 * vma_complete- Helper function for handling the unlocking after altering VMAs, 321 * or for inserting a VMA. 322 * 323 * @vp: The vma_prepare struct 324 * @vmi: The vma iterator 325 * @mm: The mm_struct 326 */ 327 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 328 struct mm_struct *mm) 329 { 330 if (vp->file) { 331 if (vp->adj_next) 332 vma_interval_tree_insert(vp->adj_next, 333 &vp->mapping->i_mmap); 334 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 335 flush_dcache_mmap_unlock(vp->mapping); 336 } 337 338 if (vp->remove && vp->file) { 339 __remove_shared_vm_struct(vp->remove, vp->mapping); 340 if (vp->remove2) 341 __remove_shared_vm_struct(vp->remove2, vp->mapping); 342 } else if (vp->insert) { 343 /* 344 * split_vma has split insert from vma, and needs 345 * us to insert it before dropping the locks 346 * (it may either follow vma or precede it). 347 */ 348 vma_iter_store_new(vmi, vp->insert); 349 mm->map_count++; 350 } 351 352 if (vp->anon_vma) { 353 anon_vma_interval_tree_post_update_vma(vp->vma); 354 if (vp->adj_next) 355 anon_vma_interval_tree_post_update_vma(vp->adj_next); 356 anon_vma_unlock_write(vp->anon_vma); 357 } 358 359 if (vp->file) { 360 i_mmap_unlock_write(vp->mapping); 361 362 if (!vp->skip_vma_uprobe) { 363 uprobe_mmap(vp->vma); 364 365 if (vp->adj_next) 366 uprobe_mmap(vp->adj_next); 367 } 368 } 369 370 if (vp->remove) { 371 again: 372 vma_mark_detached(vp->remove); 373 if (vp->file) { 374 uprobe_munmap(vp->remove, vp->remove->vm_start, 375 vp->remove->vm_end); 376 fput(vp->file); 377 } 378 if (vp->remove->anon_vma) 379 anon_vma_merge(vp->vma, vp->remove); 380 mm->map_count--; 381 mpol_put(vma_policy(vp->remove)); 382 if (!vp->remove2) 383 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 384 vm_area_free(vp->remove); 385 386 /* 387 * In mprotect's case 6 (see comments on vma_merge), 388 * we are removing both mid and next vmas 389 */ 390 if (vp->remove2) { 391 vp->remove = vp->remove2; 392 vp->remove2 = NULL; 393 goto again; 394 } 395 } 396 if (vp->insert && vp->file) 397 uprobe_mmap(vp->insert); 398 } 399 400 /* 401 * init_vma_prep() - Initializer wrapper for vma_prepare struct 402 * @vp: The vma_prepare struct 403 * @vma: The vma that will be altered once locked 404 */ 405 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 406 { 407 init_multi_vma_prep(vp, vma, NULL); 408 } 409 410 /* 411 * Can the proposed VMA be merged with the left (previous) VMA taking into 412 * account the start position of the proposed range. 413 */ 414 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 415 416 { 417 return vmg->prev && vmg->prev->vm_end == vmg->start && 418 can_vma_merge_after(vmg); 419 } 420 421 /* 422 * Can the proposed VMA be merged with the right (next) VMA taking into 423 * account the end position of the proposed range. 424 * 425 * In addition, if we can merge with the left VMA, ensure that left and right 426 * anon_vma's are also compatible. 427 */ 428 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 429 bool can_merge_left) 430 { 431 struct vm_area_struct *next = vmg->next; 432 struct vm_area_struct *prev; 433 434 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) 435 return false; 436 437 if (!can_merge_left) 438 return true; 439 440 /* 441 * If we can merge with prev (left) and next (right), indicating that 442 * each VMA's anon_vma is compatible with the proposed anon_vma, this 443 * does not mean prev and next are compatible with EACH OTHER. 444 * 445 * We therefore check this in addition to mergeability to either side. 446 */ 447 prev = vmg->prev; 448 return !prev->anon_vma || !next->anon_vma || 449 prev->anon_vma == next->anon_vma; 450 } 451 452 /* 453 * Close a vm structure and free it. 454 */ 455 void remove_vma(struct vm_area_struct *vma) 456 { 457 might_sleep(); 458 vma_close(vma); 459 if (vma->vm_file) 460 fput(vma->vm_file); 461 mpol_put(vma_policy(vma)); 462 vm_area_free(vma); 463 } 464 465 /* 466 * Get rid of page table information in the indicated region. 467 * 468 * Called with the mm semaphore held. 469 */ 470 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 471 struct vm_area_struct *prev, struct vm_area_struct *next) 472 { 473 struct mm_struct *mm = vma->vm_mm; 474 struct mmu_gather tlb; 475 476 tlb_gather_mmu(&tlb, mm); 477 update_hiwater_rss(mm); 478 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end); 479 mas_set(mas, vma->vm_end); 480 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 481 next ? next->vm_start : USER_PGTABLES_CEILING, 482 /* mm_wr_locked = */ true); 483 tlb_finish_mmu(&tlb); 484 } 485 486 /* 487 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 488 * has already been checked or doesn't make sense to fail. 489 * VMA Iterator will point to the original VMA. 490 */ 491 static __must_check int 492 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 493 unsigned long addr, int new_below) 494 { 495 struct vma_prepare vp; 496 struct vm_area_struct *new; 497 int err; 498 499 WARN_ON(vma->vm_start >= addr); 500 WARN_ON(vma->vm_end <= addr); 501 502 if (vma->vm_ops && vma->vm_ops->may_split) { 503 err = vma->vm_ops->may_split(vma, addr); 504 if (err) 505 return err; 506 } 507 508 new = vm_area_dup(vma); 509 if (!new) 510 return -ENOMEM; 511 512 if (new_below) { 513 new->vm_end = addr; 514 } else { 515 new->vm_start = addr; 516 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 517 } 518 519 err = -ENOMEM; 520 vma_iter_config(vmi, new->vm_start, new->vm_end); 521 if (vma_iter_prealloc(vmi, new)) 522 goto out_free_vma; 523 524 err = vma_dup_policy(vma, new); 525 if (err) 526 goto out_free_vmi; 527 528 err = anon_vma_clone(new, vma); 529 if (err) 530 goto out_free_mpol; 531 532 if (new->vm_file) 533 get_file(new->vm_file); 534 535 if (new->vm_ops && new->vm_ops->open) 536 new->vm_ops->open(new); 537 538 vma_start_write(vma); 539 vma_start_write(new); 540 541 init_vma_prep(&vp, vma); 542 vp.insert = new; 543 vma_prepare(&vp); 544 545 /* 546 * Get rid of huge pages and shared page tables straddling the split 547 * boundary. 548 */ 549 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 550 if (is_vm_hugetlb_page(vma)) 551 hugetlb_split(vma, addr); 552 553 if (new_below) { 554 vma->vm_start = addr; 555 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 556 } else { 557 vma->vm_end = addr; 558 } 559 560 /* vma_complete stores the new vma */ 561 vma_complete(&vp, vmi, vma->vm_mm); 562 validate_mm(vma->vm_mm); 563 564 /* Success. */ 565 if (new_below) 566 vma_next(vmi); 567 else 568 vma_prev(vmi); 569 570 return 0; 571 572 out_free_mpol: 573 mpol_put(vma_policy(new)); 574 out_free_vmi: 575 vma_iter_free(vmi); 576 out_free_vma: 577 vm_area_free(new); 578 return err; 579 } 580 581 /* 582 * Split a vma into two pieces at address 'addr', a new vma is allocated 583 * either for the first part or the tail. 584 */ 585 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 586 unsigned long addr, int new_below) 587 { 588 if (vma->vm_mm->map_count >= sysctl_max_map_count) 589 return -ENOMEM; 590 591 return __split_vma(vmi, vma, addr, new_below); 592 } 593 594 /* 595 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the 596 * instance that the destination VMA has no anon_vma but the source does. 597 * 598 * @dst: The destination VMA 599 * @src: The source VMA 600 * @dup: Pointer to the destination VMA when successful. 601 * 602 * Returns: 0 on success. 603 */ 604 static int dup_anon_vma(struct vm_area_struct *dst, 605 struct vm_area_struct *src, struct vm_area_struct **dup) 606 { 607 /* 608 * There are three cases to consider for correctly propagating 609 * anon_vma's on merge. 610 * 611 * The first is trivial - neither VMA has anon_vma, we need not do 612 * anything. 613 * 614 * The second where both have anon_vma is also a no-op, as they must 615 * then be the same, so there is simply nothing to copy. 616 * 617 * Here we cover the third - if the destination VMA has no anon_vma, 618 * that is it is unfaulted, we need to ensure that the newly merged 619 * range is referenced by the anon_vma's of the source. 620 */ 621 if (src->anon_vma && !dst->anon_vma) { 622 int ret; 623 624 vma_assert_write_locked(dst); 625 dst->anon_vma = src->anon_vma; 626 ret = anon_vma_clone(dst, src); 627 if (ret) 628 return ret; 629 630 *dup = dst; 631 } 632 633 return 0; 634 } 635 636 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 637 void validate_mm(struct mm_struct *mm) 638 { 639 int bug = 0; 640 int i = 0; 641 struct vm_area_struct *vma; 642 VMA_ITERATOR(vmi, mm, 0); 643 644 mt_validate(&mm->mm_mt); 645 for_each_vma(vmi, vma) { 646 #ifdef CONFIG_DEBUG_VM_RB 647 struct anon_vma *anon_vma = vma->anon_vma; 648 struct anon_vma_chain *avc; 649 #endif 650 unsigned long vmi_start, vmi_end; 651 bool warn = 0; 652 653 vmi_start = vma_iter_addr(&vmi); 654 vmi_end = vma_iter_end(&vmi); 655 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 656 warn = 1; 657 658 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 659 warn = 1; 660 661 if (warn) { 662 pr_emerg("issue in %s\n", current->comm); 663 dump_stack(); 664 dump_vma(vma); 665 pr_emerg("tree range: %px start %lx end %lx\n", vma, 666 vmi_start, vmi_end - 1); 667 vma_iter_dump_tree(&vmi); 668 } 669 670 #ifdef CONFIG_DEBUG_VM_RB 671 if (anon_vma) { 672 anon_vma_lock_read(anon_vma); 673 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 674 anon_vma_interval_tree_verify(avc); 675 anon_vma_unlock_read(anon_vma); 676 } 677 #endif 678 /* Check for a infinite loop */ 679 if (++i > mm->map_count + 10) { 680 i = -1; 681 break; 682 } 683 } 684 if (i != mm->map_count) { 685 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 686 bug = 1; 687 } 688 VM_BUG_ON_MM(bug, mm); 689 } 690 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 691 692 /* 693 * Based on the vmg flag indicating whether we need to adjust the vm_start field 694 * for the middle or next VMA, we calculate what the range of the newly adjusted 695 * VMA ought to be, and set the VMA's range accordingly. 696 */ 697 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 698 { 699 struct vm_area_struct *adjust; 700 pgoff_t pgoff; 701 702 if (vmg->__adjust_middle_start) { 703 adjust = vmg->middle; 704 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 705 } else if (vmg->__adjust_next_start) { 706 adjust = vmg->next; 707 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 708 } else { 709 return; 710 } 711 712 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 713 } 714 715 /* 716 * Actually perform the VMA merge operation. 717 * 718 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not 719 * modify any VMAs or cause inconsistent state should an OOM condition arise. 720 * 721 * Returns 0 on success, or an error value on failure. 722 */ 723 static int commit_merge(struct vma_merge_struct *vmg) 724 { 725 struct vm_area_struct *vma; 726 struct vma_prepare vp; 727 728 if (vmg->__adjust_next_start) { 729 /* We manipulate middle and adjust next, which is the target. */ 730 vma = vmg->middle; 731 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 732 } else { 733 vma = vmg->target; 734 /* Note: vma iterator must be pointing to 'start'. */ 735 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 736 } 737 738 init_multi_vma_prep(&vp, vma, vmg); 739 740 /* 741 * If vmg->give_up_on_oom is set, we're safe, because we don't actually 742 * manipulate any VMAs until we succeed at preallocation. 743 * 744 * Past this point, we will not return an error. 745 */ 746 if (vma_iter_prealloc(vmg->vmi, vma)) 747 return -ENOMEM; 748 749 vma_prepare(&vp); 750 /* 751 * THP pages may need to do additional splits if we increase 752 * middle->vm_start. 753 */ 754 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 755 vmg->__adjust_middle_start ? vmg->middle : NULL); 756 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 757 vmg_adjust_set_range(vmg); 758 vma_iter_store_overwrite(vmg->vmi, vmg->target); 759 760 vma_complete(&vp, vmg->vmi, vma->vm_mm); 761 762 return 0; 763 } 764 765 /* We can only remove VMAs when merging if they do not have a close hook. */ 766 static bool can_merge_remove_vma(struct vm_area_struct *vma) 767 { 768 return !vma->vm_ops || !vma->vm_ops->close; 769 } 770 771 /* 772 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 773 * attributes modified. 774 * 775 * @vmg: Describes the modifications being made to a VMA and associated 776 * metadata. 777 * 778 * When the attributes of a range within a VMA change, then it might be possible 779 * for immediately adjacent VMAs to be merged into that VMA due to having 780 * identical properties. 781 * 782 * This function checks for the existence of any such mergeable VMAs and updates 783 * the maple tree describing the @vmg->middle->vm_mm address space to account 784 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 785 * merge. 786 * 787 * As part of this operation, if a merge occurs, the @vmg object will have its 788 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 789 * calls to this function should reset these fields. 790 * 791 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 792 * 793 * ASSUMPTIONS: 794 * - The caller must assign the VMA to be modified to @vmg->middle. 795 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 796 * - The caller must not set @vmg->next, as we determine this. 797 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 798 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 799 */ 800 static __must_check struct vm_area_struct *vma_merge_existing_range( 801 struct vma_merge_struct *vmg) 802 { 803 vm_flags_t sticky_flags = vmg->vm_flags & VM_STICKY; 804 struct vm_area_struct *middle = vmg->middle; 805 struct vm_area_struct *prev = vmg->prev; 806 struct vm_area_struct *next; 807 struct vm_area_struct *anon_dup = NULL; 808 unsigned long start = vmg->start; 809 unsigned long end = vmg->end; 810 bool left_side = middle && start == middle->vm_start; 811 bool right_side = middle && end == middle->vm_end; 812 int err = 0; 813 bool merge_left, merge_right, merge_both; 814 815 mmap_assert_write_locked(vmg->mm); 816 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 817 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 818 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 819 VM_WARN_ON_VMG(start >= end, vmg); 820 821 /* 822 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 823 * not, we must span a portion of the VMA. 824 */ 825 VM_WARN_ON_VMG(middle && 826 ((middle != prev && vmg->start != middle->vm_start) || 827 vmg->end > middle->vm_end), vmg); 828 /* The vmi must be positioned within vmg->middle. */ 829 VM_WARN_ON_VMG(middle && 830 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 831 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 832 833 vmg->state = VMA_MERGE_NOMERGE; 834 835 /* 836 * If a special mapping or if the range being modified is neither at the 837 * furthermost left or right side of the VMA, then we have no chance of 838 * merging and should abort. 839 */ 840 if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side)) 841 return NULL; 842 843 if (left_side) 844 merge_left = can_vma_merge_left(vmg); 845 else 846 merge_left = false; 847 848 if (right_side) { 849 next = vmg->next = vma_iter_next_range(vmg->vmi); 850 vma_iter_prev_range(vmg->vmi); 851 852 merge_right = can_vma_merge_right(vmg, merge_left); 853 } else { 854 merge_right = false; 855 next = NULL; 856 } 857 858 if (merge_left) /* If merging prev, position iterator there. */ 859 vma_prev(vmg->vmi); 860 else if (!merge_right) /* If we have nothing to merge, abort. */ 861 return NULL; 862 863 merge_both = merge_left && merge_right; 864 /* If we span the entire VMA, a merge implies it will be deleted. */ 865 vmg->__remove_middle = left_side && right_side; 866 867 /* 868 * If we need to remove middle in its entirety but are unable to do so, 869 * we have no sensible recourse but to abort the merge. 870 */ 871 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 872 return NULL; 873 874 /* 875 * If we merge both VMAs, then next is also deleted. This implies 876 * merge_will_delete_vma also. 877 */ 878 vmg->__remove_next = merge_both; 879 880 /* 881 * If we cannot delete next, then we can reduce the operation to merging 882 * prev and middle (thereby deleting middle). 883 */ 884 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 885 vmg->__remove_next = false; 886 merge_right = false; 887 merge_both = false; 888 } 889 890 /* No matter what happens, we will be adjusting middle. */ 891 vma_start_write(middle); 892 893 if (merge_right) { 894 vma_start_write(next); 895 vmg->target = next; 896 sticky_flags |= (next->vm_flags & VM_STICKY); 897 } 898 899 if (merge_left) { 900 vma_start_write(prev); 901 vmg->target = prev; 902 sticky_flags |= (prev->vm_flags & VM_STICKY); 903 } 904 905 if (merge_both) { 906 /* 907 * |<-------------------->| 908 * |-------********-------| 909 * prev middle next 910 * extend delete delete 911 */ 912 913 vmg->start = prev->vm_start; 914 vmg->end = next->vm_end; 915 vmg->pgoff = prev->vm_pgoff; 916 917 /* 918 * We already ensured anon_vma compatibility above, so now it's 919 * simply a case of, if prev has no anon_vma object, which of 920 * next or middle contains the anon_vma we must duplicate. 921 */ 922 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 923 &anon_dup); 924 } else if (merge_left) { 925 /* 926 * |<------------>| OR 927 * |<----------------->| 928 * |-------************* 929 * prev middle 930 * extend shrink/delete 931 */ 932 933 vmg->start = prev->vm_start; 934 vmg->pgoff = prev->vm_pgoff; 935 936 if (!vmg->__remove_middle) 937 vmg->__adjust_middle_start = true; 938 939 err = dup_anon_vma(prev, middle, &anon_dup); 940 } else { /* merge_right */ 941 /* 942 * |<------------->| OR 943 * |<----------------->| 944 * *************-------| 945 * middle next 946 * shrink/delete extend 947 */ 948 949 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 950 951 VM_WARN_ON_VMG(!merge_right, vmg); 952 /* If we are offset into a VMA, then prev must be middle. */ 953 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 954 955 if (vmg->__remove_middle) { 956 vmg->end = next->vm_end; 957 vmg->pgoff = next->vm_pgoff - pglen; 958 } else { 959 /* We shrink middle and expand next. */ 960 vmg->__adjust_next_start = true; 961 vmg->start = middle->vm_start; 962 vmg->end = start; 963 vmg->pgoff = middle->vm_pgoff; 964 } 965 966 err = dup_anon_vma(next, middle, &anon_dup); 967 } 968 969 if (err || commit_merge(vmg)) 970 goto abort; 971 972 vm_flags_set(vmg->target, sticky_flags); 973 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 974 vmg->state = VMA_MERGE_SUCCESS; 975 return vmg->target; 976 977 abort: 978 vma_iter_set(vmg->vmi, start); 979 vma_iter_load(vmg->vmi); 980 981 if (anon_dup) 982 unlink_anon_vmas(anon_dup); 983 984 /* 985 * This means we have failed to clone anon_vma's correctly, but no 986 * actual changes to VMAs have occurred, so no harm no foul - if the 987 * user doesn't want this reported and instead just wants to give up on 988 * the merge, allow it. 989 */ 990 if (!vmg->give_up_on_oom) 991 vmg->state = VMA_MERGE_ERROR_NOMEM; 992 return NULL; 993 } 994 995 /* 996 * vma_merge_new_range - Attempt to merge a new VMA into address space 997 * 998 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 999 * (exclusive), which we try to merge with any adjacent VMAs if possible. 1000 * 1001 * We are about to add a VMA to the address space starting at @vmg->start and 1002 * ending at @vmg->end. There are three different possible scenarios: 1003 * 1004 * 1. There is a VMA with identical properties immediately adjacent to the 1005 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 1006 * EXPAND that VMA: 1007 * 1008 * Proposed: |-----| or |-----| 1009 * Existing: |----| |----| 1010 * 1011 * 2. There are VMAs with identical properties immediately adjacent to the 1012 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 1013 * EXPAND the former and REMOVE the latter: 1014 * 1015 * Proposed: |-----| 1016 * Existing: |----| |----| 1017 * 1018 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 1019 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 1020 * 1021 * In instances where we can merge, this function returns the expanded VMA which 1022 * will have its range adjusted accordingly and the underlying maple tree also 1023 * adjusted. 1024 * 1025 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1026 * to the VMA we expanded. 1027 * 1028 * This function adjusts @vmg to provide @vmg->next if not already specified, 1029 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 1030 * 1031 * ASSUMPTIONS: 1032 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1033 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 1034 other than VMAs that will be unmapped should the operation succeed. 1035 * - The caller must have specified the previous vma in @vmg->prev. 1036 * - The caller must have specified the next vma in @vmg->next. 1037 * - The caller must have positioned the vmi at or before the gap. 1038 */ 1039 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 1040 { 1041 struct vm_area_struct *prev = vmg->prev; 1042 struct vm_area_struct *next = vmg->next; 1043 unsigned long end = vmg->end; 1044 bool can_merge_left, can_merge_right; 1045 1046 mmap_assert_write_locked(vmg->mm); 1047 VM_WARN_ON_VMG(vmg->middle, vmg); 1048 VM_WARN_ON_VMG(vmg->target, vmg); 1049 /* vmi must point at or before the gap. */ 1050 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 1051 1052 vmg->state = VMA_MERGE_NOMERGE; 1053 1054 /* Special VMAs are unmergeable, also if no prev/next. */ 1055 if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next)) 1056 return NULL; 1057 1058 can_merge_left = can_vma_merge_left(vmg); 1059 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1060 1061 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1062 if (can_merge_right) { 1063 vmg->end = next->vm_end; 1064 vmg->target = next; 1065 } 1066 1067 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1068 if (can_merge_left) { 1069 vmg->start = prev->vm_start; 1070 vmg->target = prev; 1071 vmg->pgoff = prev->vm_pgoff; 1072 1073 /* 1074 * If this merge would result in removal of the next VMA but we 1075 * are not permitted to do so, reduce the operation to merging 1076 * prev and vma. 1077 */ 1078 if (can_merge_right && !can_merge_remove_vma(next)) 1079 vmg->end = end; 1080 1081 /* In expand-only case we are already positioned at prev. */ 1082 if (!vmg->just_expand) { 1083 /* Equivalent to going to the previous range. */ 1084 vma_prev(vmg->vmi); 1085 } 1086 } 1087 1088 /* 1089 * Now try to expand adjacent VMA(s). This takes care of removing the 1090 * following VMA if we have VMAs on both sides. 1091 */ 1092 if (vmg->target && !vma_expand(vmg)) { 1093 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 1094 vmg->state = VMA_MERGE_SUCCESS; 1095 return vmg->target; 1096 } 1097 1098 return NULL; 1099 } 1100 1101 /* 1102 * vma_expand - Expand an existing VMA 1103 * 1104 * @vmg: Describes a VMA expansion operation. 1105 * 1106 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1107 * Will expand over vmg->next if it's different from vmg->target and vmg->end == 1108 * vmg->next->vm_end. Checking if the vmg->target can expand and merge with 1109 * vmg->next needs to be handled by the caller. 1110 * 1111 * Returns: 0 on success. 1112 * 1113 * ASSUMPTIONS: 1114 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1115 * - The caller must have set @vmg->target and @vmg->next. 1116 */ 1117 int vma_expand(struct vma_merge_struct *vmg) 1118 { 1119 struct vm_area_struct *anon_dup = NULL; 1120 bool remove_next = false; 1121 struct vm_area_struct *target = vmg->target; 1122 struct vm_area_struct *next = vmg->next; 1123 vm_flags_t sticky_flags; 1124 1125 sticky_flags = vmg->vm_flags & VM_STICKY; 1126 sticky_flags |= target->vm_flags & VM_STICKY; 1127 1128 VM_WARN_ON_VMG(!target, vmg); 1129 1130 mmap_assert_write_locked(vmg->mm); 1131 1132 vma_start_write(target); 1133 if (next && (target != next) && (vmg->end == next->vm_end)) { 1134 int ret; 1135 1136 sticky_flags |= next->vm_flags & VM_STICKY; 1137 remove_next = true; 1138 /* This should already have been checked by this point. */ 1139 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1140 vma_start_write(next); 1141 /* 1142 * In this case we don't report OOM, so vmg->give_up_on_mm is 1143 * safe. 1144 */ 1145 ret = dup_anon_vma(target, next, &anon_dup); 1146 if (ret) 1147 return ret; 1148 } 1149 1150 /* Not merging but overwriting any part of next is not handled. */ 1151 VM_WARN_ON_VMG(next && !remove_next && 1152 next != target && vmg->end > next->vm_start, vmg); 1153 /* Only handles expanding */ 1154 VM_WARN_ON_VMG(target->vm_start < vmg->start || 1155 target->vm_end > vmg->end, vmg); 1156 1157 if (remove_next) 1158 vmg->__remove_next = true; 1159 1160 if (commit_merge(vmg)) 1161 goto nomem; 1162 1163 vm_flags_set(target, sticky_flags); 1164 return 0; 1165 1166 nomem: 1167 if (anon_dup) 1168 unlink_anon_vmas(anon_dup); 1169 /* 1170 * If the user requests that we just give upon OOM, we are safe to do so 1171 * here, as commit merge provides this contract to us. Nothing has been 1172 * changed - no harm no foul, just don't report it. 1173 */ 1174 if (!vmg->give_up_on_oom) 1175 vmg->state = VMA_MERGE_ERROR_NOMEM; 1176 return -ENOMEM; 1177 } 1178 1179 /* 1180 * vma_shrink() - Reduce an existing VMAs memory area 1181 * @vmi: The vma iterator 1182 * @vma: The VMA to modify 1183 * @start: The new start 1184 * @end: The new end 1185 * 1186 * Returns: 0 on success, -ENOMEM otherwise 1187 */ 1188 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1189 unsigned long start, unsigned long end, pgoff_t pgoff) 1190 { 1191 struct vma_prepare vp; 1192 1193 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1194 1195 if (vma->vm_start < start) 1196 vma_iter_config(vmi, vma->vm_start, start); 1197 else 1198 vma_iter_config(vmi, end, vma->vm_end); 1199 1200 if (vma_iter_prealloc(vmi, NULL)) 1201 return -ENOMEM; 1202 1203 vma_start_write(vma); 1204 1205 init_vma_prep(&vp, vma); 1206 vma_prepare(&vp); 1207 vma_adjust_trans_huge(vma, start, end, NULL); 1208 1209 vma_iter_clear(vmi); 1210 vma_set_range(vma, start, end, pgoff); 1211 vma_complete(&vp, vmi, vma->vm_mm); 1212 validate_mm(vma->vm_mm); 1213 return 0; 1214 } 1215 1216 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1217 struct ma_state *mas_detach, bool mm_wr_locked) 1218 { 1219 struct mmu_gather tlb; 1220 1221 if (!vms->clear_ptes) /* Nothing to do */ 1222 return; 1223 1224 /* 1225 * We can free page tables without write-locking mmap_lock because VMAs 1226 * were isolated before we downgraded mmap_lock. 1227 */ 1228 mas_set(mas_detach, 1); 1229 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1230 update_hiwater_rss(vms->vma->vm_mm); 1231 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1232 vms->vma_count); 1233 1234 mas_set(mas_detach, 1); 1235 /* start and end may be different if there is no prev or next vma. */ 1236 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1237 vms->unmap_end, mm_wr_locked); 1238 tlb_finish_mmu(&tlb); 1239 vms->clear_ptes = false; 1240 } 1241 1242 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1243 struct ma_state *mas_detach) 1244 { 1245 struct vm_area_struct *vma; 1246 1247 if (!vms->nr_pages) 1248 return; 1249 1250 vms_clear_ptes(vms, mas_detach, true); 1251 mas_set(mas_detach, 0); 1252 mas_for_each(mas_detach, vma, ULONG_MAX) 1253 vma_close(vma); 1254 } 1255 1256 /* 1257 * vms_complete_munmap_vmas() - Finish the munmap() operation 1258 * @vms: The vma munmap struct 1259 * @mas_detach: The maple state of the detached vmas 1260 * 1261 * This updates the mm_struct, unmaps the region, frees the resources 1262 * used for the munmap() and may downgrade the lock - if requested. Everything 1263 * needed to be done once the vma maple tree is updated. 1264 */ 1265 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1266 struct ma_state *mas_detach) 1267 { 1268 struct vm_area_struct *vma; 1269 struct mm_struct *mm; 1270 1271 mm = current->mm; 1272 mm->map_count -= vms->vma_count; 1273 mm->locked_vm -= vms->locked_vm; 1274 if (vms->unlock) 1275 mmap_write_downgrade(mm); 1276 1277 if (!vms->nr_pages) 1278 return; 1279 1280 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1281 /* Update high watermark before we lower total_vm */ 1282 update_hiwater_vm(mm); 1283 /* Stat accounting */ 1284 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1285 /* Paranoid bookkeeping */ 1286 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1287 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1288 VM_WARN_ON(vms->data_vm > mm->data_vm); 1289 mm->exec_vm -= vms->exec_vm; 1290 mm->stack_vm -= vms->stack_vm; 1291 mm->data_vm -= vms->data_vm; 1292 1293 /* Remove and clean up vmas */ 1294 mas_set(mas_detach, 0); 1295 mas_for_each(mas_detach, vma, ULONG_MAX) 1296 remove_vma(vma); 1297 1298 vm_unacct_memory(vms->nr_accounted); 1299 validate_mm(mm); 1300 if (vms->unlock) 1301 mmap_read_unlock(mm); 1302 1303 __mt_destroy(mas_detach->tree); 1304 } 1305 1306 /* 1307 * reattach_vmas() - Undo any munmap work and free resources 1308 * @mas_detach: The maple state with the detached maple tree 1309 * 1310 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1311 */ 1312 static void reattach_vmas(struct ma_state *mas_detach) 1313 { 1314 struct vm_area_struct *vma; 1315 1316 mas_set(mas_detach, 0); 1317 mas_for_each(mas_detach, vma, ULONG_MAX) 1318 vma_mark_attached(vma); 1319 1320 __mt_destroy(mas_detach->tree); 1321 } 1322 1323 /* 1324 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1325 * for removal at a later date. Handles splitting first and last if necessary 1326 * and marking the vmas as isolated. 1327 * 1328 * @vms: The vma munmap struct 1329 * @mas_detach: The maple state tracking the detached tree 1330 * 1331 * Return: 0 on success, error otherwise 1332 */ 1333 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1334 struct ma_state *mas_detach) 1335 { 1336 struct vm_area_struct *next = NULL; 1337 int error; 1338 1339 /* 1340 * If we need to split any vma, do it now to save pain later. 1341 * Does it split the first one? 1342 */ 1343 if (vms->start > vms->vma->vm_start) { 1344 1345 /* 1346 * Make sure that map_count on return from munmap() will 1347 * not exceed its limit; but let map_count go just above 1348 * its limit temporarily, to help free resources as expected. 1349 */ 1350 if (vms->end < vms->vma->vm_end && 1351 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1352 error = -ENOMEM; 1353 goto map_count_exceeded; 1354 } 1355 1356 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1357 if (vma_is_sealed(vms->vma)) { 1358 error = -EPERM; 1359 goto start_split_failed; 1360 } 1361 1362 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1363 if (error) 1364 goto start_split_failed; 1365 } 1366 vms->prev = vma_prev(vms->vmi); 1367 if (vms->prev) 1368 vms->unmap_start = vms->prev->vm_end; 1369 1370 /* 1371 * Detach a range of VMAs from the mm. Using next as a temp variable as 1372 * it is always overwritten. 1373 */ 1374 for_each_vma_range(*(vms->vmi), next, vms->end) { 1375 long nrpages; 1376 1377 if (vma_is_sealed(next)) { 1378 error = -EPERM; 1379 goto modify_vma_failed; 1380 } 1381 /* Does it split the end? */ 1382 if (next->vm_end > vms->end) { 1383 error = __split_vma(vms->vmi, next, vms->end, 0); 1384 if (error) 1385 goto end_split_failed; 1386 } 1387 vma_start_write(next); 1388 mas_set(mas_detach, vms->vma_count++); 1389 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1390 if (error) 1391 goto munmap_gather_failed; 1392 1393 vma_mark_detached(next); 1394 nrpages = vma_pages(next); 1395 1396 vms->nr_pages += nrpages; 1397 if (next->vm_flags & VM_LOCKED) 1398 vms->locked_vm += nrpages; 1399 1400 if (next->vm_flags & VM_ACCOUNT) 1401 vms->nr_accounted += nrpages; 1402 1403 if (is_exec_mapping(next->vm_flags)) 1404 vms->exec_vm += nrpages; 1405 else if (is_stack_mapping(next->vm_flags)) 1406 vms->stack_vm += nrpages; 1407 else if (is_data_mapping(next->vm_flags)) 1408 vms->data_vm += nrpages; 1409 1410 if (vms->uf) { 1411 /* 1412 * If userfaultfd_unmap_prep returns an error the vmas 1413 * will remain split, but userland will get a 1414 * highly unexpected error anyway. This is no 1415 * different than the case where the first of the two 1416 * __split_vma fails, but we don't undo the first 1417 * split, despite we could. This is unlikely enough 1418 * failure that it's not worth optimizing it for. 1419 */ 1420 error = userfaultfd_unmap_prep(next, vms->start, 1421 vms->end, vms->uf); 1422 if (error) 1423 goto userfaultfd_error; 1424 } 1425 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1426 BUG_ON(next->vm_start < vms->start); 1427 BUG_ON(next->vm_start > vms->end); 1428 #endif 1429 } 1430 1431 vms->next = vma_next(vms->vmi); 1432 if (vms->next) 1433 vms->unmap_end = vms->next->vm_start; 1434 1435 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1436 /* Make sure no VMAs are about to be lost. */ 1437 { 1438 MA_STATE(test, mas_detach->tree, 0, 0); 1439 struct vm_area_struct *vma_mas, *vma_test; 1440 int test_count = 0; 1441 1442 vma_iter_set(vms->vmi, vms->start); 1443 rcu_read_lock(); 1444 vma_test = mas_find(&test, vms->vma_count - 1); 1445 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1446 BUG_ON(vma_mas != vma_test); 1447 test_count++; 1448 vma_test = mas_next(&test, vms->vma_count - 1); 1449 } 1450 rcu_read_unlock(); 1451 BUG_ON(vms->vma_count != test_count); 1452 } 1453 #endif 1454 1455 while (vma_iter_addr(vms->vmi) > vms->start) 1456 vma_iter_prev_range(vms->vmi); 1457 1458 vms->clear_ptes = true; 1459 return 0; 1460 1461 userfaultfd_error: 1462 munmap_gather_failed: 1463 end_split_failed: 1464 modify_vma_failed: 1465 reattach_vmas(mas_detach); 1466 start_split_failed: 1467 map_count_exceeded: 1468 return error; 1469 } 1470 1471 /* 1472 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1473 * @vms: The vma munmap struct 1474 * @vmi: The vma iterator 1475 * @vma: The first vm_area_struct to munmap 1476 * @start: The aligned start address to munmap 1477 * @end: The aligned end address to munmap 1478 * @uf: The userfaultfd list_head 1479 * @unlock: Unlock after the operation. Only unlocked on success 1480 */ 1481 static void init_vma_munmap(struct vma_munmap_struct *vms, 1482 struct vma_iterator *vmi, struct vm_area_struct *vma, 1483 unsigned long start, unsigned long end, struct list_head *uf, 1484 bool unlock) 1485 { 1486 vms->vmi = vmi; 1487 vms->vma = vma; 1488 if (vma) { 1489 vms->start = start; 1490 vms->end = end; 1491 } else { 1492 vms->start = vms->end = 0; 1493 } 1494 vms->unlock = unlock; 1495 vms->uf = uf; 1496 vms->vma_count = 0; 1497 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1498 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1499 vms->unmap_start = FIRST_USER_ADDRESS; 1500 vms->unmap_end = USER_PGTABLES_CEILING; 1501 vms->clear_ptes = false; 1502 } 1503 1504 /* 1505 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1506 * @vmi: The vma iterator 1507 * @vma: The starting vm_area_struct 1508 * @mm: The mm_struct 1509 * @start: The aligned start address to munmap. 1510 * @end: The aligned end address to munmap. 1511 * @uf: The userfaultfd list_head 1512 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1513 * success. 1514 * 1515 * Return: 0 on success and drops the lock if so directed, error and leaves the 1516 * lock held otherwise. 1517 */ 1518 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1519 struct mm_struct *mm, unsigned long start, unsigned long end, 1520 struct list_head *uf, bool unlock) 1521 { 1522 struct maple_tree mt_detach; 1523 MA_STATE(mas_detach, &mt_detach, 0, 0); 1524 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1525 mt_on_stack(mt_detach); 1526 struct vma_munmap_struct vms; 1527 int error; 1528 1529 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1530 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1531 if (error) 1532 goto gather_failed; 1533 1534 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1535 if (error) 1536 goto clear_tree_failed; 1537 1538 /* Point of no return */ 1539 vms_complete_munmap_vmas(&vms, &mas_detach); 1540 return 0; 1541 1542 clear_tree_failed: 1543 reattach_vmas(&mas_detach); 1544 gather_failed: 1545 validate_mm(mm); 1546 return error; 1547 } 1548 1549 /* 1550 * do_vmi_munmap() - munmap a given range. 1551 * @vmi: The vma iterator 1552 * @mm: The mm_struct 1553 * @start: The start address to munmap 1554 * @len: The length of the range to munmap 1555 * @uf: The userfaultfd list_head 1556 * @unlock: set to true if the user wants to drop the mmap_lock on success 1557 * 1558 * This function takes a @mas that is either pointing to the previous VMA or set 1559 * to MA_START and sets it up to remove the mapping(s). The @len will be 1560 * aligned. 1561 * 1562 * Return: 0 on success and drops the lock if so directed, error and leaves the 1563 * lock held otherwise. 1564 */ 1565 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1566 unsigned long start, size_t len, struct list_head *uf, 1567 bool unlock) 1568 { 1569 unsigned long end; 1570 struct vm_area_struct *vma; 1571 1572 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1573 return -EINVAL; 1574 1575 end = start + PAGE_ALIGN(len); 1576 if (end == start) 1577 return -EINVAL; 1578 1579 /* Find the first overlapping VMA */ 1580 vma = vma_find(vmi, end); 1581 if (!vma) { 1582 if (unlock) 1583 mmap_write_unlock(mm); 1584 return 0; 1585 } 1586 1587 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1588 } 1589 1590 /* 1591 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1592 * context and anonymous VMA name within the range [start, end). 1593 * 1594 * As a result, we might be able to merge the newly modified VMA range with an 1595 * adjacent VMA with identical properties. 1596 * 1597 * If no merge is possible and the range does not span the entirety of the VMA, 1598 * we then need to split the VMA to accommodate the change. 1599 * 1600 * The function returns either the merged VMA, the original VMA if a split was 1601 * required instead, or an error if the split failed. 1602 */ 1603 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1604 { 1605 struct vm_area_struct *vma = vmg->middle; 1606 unsigned long start = vmg->start; 1607 unsigned long end = vmg->end; 1608 struct vm_area_struct *merged; 1609 1610 /* First, try to merge. */ 1611 merged = vma_merge_existing_range(vmg); 1612 if (merged) 1613 return merged; 1614 if (vmg_nomem(vmg)) 1615 return ERR_PTR(-ENOMEM); 1616 1617 /* 1618 * Split can fail for reasons other than OOM, so if the user requests 1619 * this it's probably a mistake. 1620 */ 1621 VM_WARN_ON(vmg->give_up_on_oom && 1622 (vma->vm_start != start || vma->vm_end != end)); 1623 1624 /* Split any preceding portion of the VMA. */ 1625 if (vma->vm_start < start) { 1626 int err = split_vma(vmg->vmi, vma, start, 1); 1627 1628 if (err) 1629 return ERR_PTR(err); 1630 } 1631 1632 /* Split any trailing portion of the VMA. */ 1633 if (vma->vm_end > end) { 1634 int err = split_vma(vmg->vmi, vma, end, 0); 1635 1636 if (err) 1637 return ERR_PTR(err); 1638 } 1639 1640 return vma; 1641 } 1642 1643 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, 1644 struct vm_area_struct *prev, struct vm_area_struct *vma, 1645 unsigned long start, unsigned long end, 1646 vm_flags_t *vm_flags_ptr) 1647 { 1648 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1649 const vm_flags_t vm_flags = *vm_flags_ptr; 1650 struct vm_area_struct *ret; 1651 1652 vmg.vm_flags = vm_flags; 1653 1654 ret = vma_modify(&vmg); 1655 if (IS_ERR(ret)) 1656 return ret; 1657 1658 /* 1659 * For a merge to succeed, the flags must match those 1660 * requested. However, sticky flags may have been retained, so propagate 1661 * them to the caller. 1662 */ 1663 if (vmg.state == VMA_MERGE_SUCCESS) 1664 *vm_flags_ptr = ret->vm_flags; 1665 return ret; 1666 } 1667 1668 struct vm_area_struct *vma_modify_name(struct vma_iterator *vmi, 1669 struct vm_area_struct *prev, struct vm_area_struct *vma, 1670 unsigned long start, unsigned long end, 1671 struct anon_vma_name *new_name) 1672 { 1673 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1674 1675 vmg.anon_name = new_name; 1676 1677 return vma_modify(&vmg); 1678 } 1679 1680 struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi, 1681 struct vm_area_struct *prev, struct vm_area_struct *vma, 1682 unsigned long start, unsigned long end, 1683 struct mempolicy *new_pol) 1684 { 1685 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1686 1687 vmg.policy = new_pol; 1688 1689 return vma_modify(&vmg); 1690 } 1691 1692 struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi, 1693 struct vm_area_struct *prev, struct vm_area_struct *vma, 1694 unsigned long start, unsigned long end, vm_flags_t vm_flags, 1695 struct vm_userfaultfd_ctx new_ctx, bool give_up_on_oom) 1696 { 1697 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1698 1699 vmg.vm_flags = vm_flags; 1700 vmg.uffd_ctx = new_ctx; 1701 if (give_up_on_oom) 1702 vmg.give_up_on_oom = true; 1703 1704 return vma_modify(&vmg); 1705 } 1706 1707 /* 1708 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1709 * VMA with identical properties. 1710 */ 1711 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1712 struct vm_area_struct *vma, 1713 unsigned long delta) 1714 { 1715 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1716 1717 vmg.next = vma_iter_next_rewind(vmi, NULL); 1718 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1719 1720 return vma_merge_new_range(&vmg); 1721 } 1722 1723 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1724 { 1725 vb->count = 0; 1726 } 1727 1728 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1729 { 1730 struct address_space *mapping; 1731 int i; 1732 1733 mapping = vb->vmas[0]->vm_file->f_mapping; 1734 i_mmap_lock_write(mapping); 1735 for (i = 0; i < vb->count; i++) { 1736 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1737 __remove_shared_vm_struct(vb->vmas[i], mapping); 1738 } 1739 i_mmap_unlock_write(mapping); 1740 1741 unlink_file_vma_batch_init(vb); 1742 } 1743 1744 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1745 struct vm_area_struct *vma) 1746 { 1747 if (vma->vm_file == NULL) 1748 return; 1749 1750 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1751 vb->count == ARRAY_SIZE(vb->vmas)) 1752 unlink_file_vma_batch_process(vb); 1753 1754 vb->vmas[vb->count] = vma; 1755 vb->count++; 1756 } 1757 1758 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1759 { 1760 if (vb->count > 0) 1761 unlink_file_vma_batch_process(vb); 1762 } 1763 1764 static void vma_link_file(struct vm_area_struct *vma, bool hold_rmap_lock) 1765 { 1766 struct file *file = vma->vm_file; 1767 struct address_space *mapping; 1768 1769 if (file) { 1770 mapping = file->f_mapping; 1771 i_mmap_lock_write(mapping); 1772 __vma_link_file(vma, mapping); 1773 if (!hold_rmap_lock) 1774 i_mmap_unlock_write(mapping); 1775 } 1776 } 1777 1778 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1779 { 1780 VMA_ITERATOR(vmi, mm, 0); 1781 1782 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1783 if (vma_iter_prealloc(&vmi, vma)) 1784 return -ENOMEM; 1785 1786 vma_start_write(vma); 1787 vma_iter_store_new(&vmi, vma); 1788 vma_link_file(vma, /* hold_rmap_lock= */false); 1789 mm->map_count++; 1790 validate_mm(mm); 1791 return 0; 1792 } 1793 1794 /* 1795 * Copy the vma structure to a new location in the same mm, 1796 * prior to moving page table entries, to effect an mremap move. 1797 */ 1798 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1799 unsigned long addr, unsigned long len, pgoff_t pgoff, 1800 bool *need_rmap_locks) 1801 { 1802 struct vm_area_struct *vma = *vmap; 1803 unsigned long vma_start = vma->vm_start; 1804 struct mm_struct *mm = vma->vm_mm; 1805 struct vm_area_struct *new_vma; 1806 bool faulted_in_anon_vma = true; 1807 VMA_ITERATOR(vmi, mm, addr); 1808 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1809 1810 /* 1811 * If anonymous vma has not yet been faulted, update new pgoff 1812 * to match new location, to increase its chance of merging. 1813 */ 1814 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1815 pgoff = addr >> PAGE_SHIFT; 1816 faulted_in_anon_vma = false; 1817 } 1818 1819 /* 1820 * If the VMA we are copying might contain a uprobe PTE, ensure 1821 * that we do not establish one upon merge. Otherwise, when mremap() 1822 * moves page tables, it will orphan the newly created PTE. 1823 */ 1824 if (vma->vm_file) 1825 vmg.skip_vma_uprobe = true; 1826 1827 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1828 if (new_vma && new_vma->vm_start < addr + len) 1829 return NULL; /* should never get here */ 1830 1831 vmg.middle = NULL; /* New VMA range. */ 1832 vmg.pgoff = pgoff; 1833 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1834 new_vma = vma_merge_new_range(&vmg); 1835 1836 if (new_vma) { 1837 /* 1838 * Source vma may have been merged into new_vma 1839 */ 1840 if (unlikely(vma_start >= new_vma->vm_start && 1841 vma_start < new_vma->vm_end)) { 1842 /* 1843 * The only way we can get a vma_merge with 1844 * self during an mremap is if the vma hasn't 1845 * been faulted in yet and we were allowed to 1846 * reset the dst vma->vm_pgoff to the 1847 * destination address of the mremap to allow 1848 * the merge to happen. mremap must change the 1849 * vm_pgoff linearity between src and dst vmas 1850 * (in turn preventing a vma_merge) to be 1851 * safe. It is only safe to keep the vm_pgoff 1852 * linear if there are no pages mapped yet. 1853 */ 1854 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1855 *vmap = vma = new_vma; 1856 } 1857 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1858 } else { 1859 new_vma = vm_area_dup(vma); 1860 if (!new_vma) 1861 goto out; 1862 vma_set_range(new_vma, addr, addr + len, pgoff); 1863 if (vma_dup_policy(vma, new_vma)) 1864 goto out_free_vma; 1865 if (anon_vma_clone(new_vma, vma)) 1866 goto out_free_mempol; 1867 if (new_vma->vm_file) 1868 get_file(new_vma->vm_file); 1869 if (new_vma->vm_ops && new_vma->vm_ops->open) 1870 new_vma->vm_ops->open(new_vma); 1871 if (vma_link(mm, new_vma)) 1872 goto out_vma_link; 1873 *need_rmap_locks = false; 1874 } 1875 return new_vma; 1876 1877 out_vma_link: 1878 fixup_hugetlb_reservations(new_vma); 1879 vma_close(new_vma); 1880 1881 if (new_vma->vm_file) 1882 fput(new_vma->vm_file); 1883 1884 unlink_anon_vmas(new_vma); 1885 out_free_mempol: 1886 mpol_put(vma_policy(new_vma)); 1887 out_free_vma: 1888 vm_area_free(new_vma); 1889 out: 1890 return NULL; 1891 } 1892 1893 /* 1894 * Rough compatibility check to quickly see if it's even worth looking 1895 * at sharing an anon_vma. 1896 * 1897 * They need to have the same vm_file, and the flags can only differ 1898 * in things that mprotect may change. 1899 * 1900 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1901 * we can merge the two vma's. For example, we refuse to merge a vma if 1902 * there is a vm_ops->close() function, because that indicates that the 1903 * driver is doing some kind of reference counting. But that doesn't 1904 * really matter for the anon_vma sharing case. 1905 */ 1906 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1907 { 1908 return a->vm_end == b->vm_start && 1909 mpol_equal(vma_policy(a), vma_policy(b)) && 1910 a->vm_file == b->vm_file && 1911 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_IGNORE_MERGE)) && 1912 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1913 } 1914 1915 /* 1916 * Do some basic sanity checking to see if we can re-use the anon_vma 1917 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1918 * the same as 'old', the other will be the new one that is trying 1919 * to share the anon_vma. 1920 * 1921 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1922 * the anon_vma of 'old' is concurrently in the process of being set up 1923 * by another page fault trying to merge _that_. But that's ok: if it 1924 * is being set up, that automatically means that it will be a singleton 1925 * acceptable for merging, so we can do all of this optimistically. But 1926 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1927 * 1928 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1929 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1930 * is to return an anon_vma that is "complex" due to having gone through 1931 * a fork). 1932 * 1933 * We also make sure that the two vma's are compatible (adjacent, 1934 * and with the same memory policies). That's all stable, even with just 1935 * a read lock on the mmap_lock. 1936 */ 1937 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1938 struct vm_area_struct *a, 1939 struct vm_area_struct *b) 1940 { 1941 if (anon_vma_compatible(a, b)) { 1942 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1943 1944 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1945 return anon_vma; 1946 } 1947 return NULL; 1948 } 1949 1950 /* 1951 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1952 * neighbouring vmas for a suitable anon_vma, before it goes off 1953 * to allocate a new anon_vma. It checks because a repetitive 1954 * sequence of mprotects and faults may otherwise lead to distinct 1955 * anon_vmas being allocated, preventing vma merge in subsequent 1956 * mprotect. 1957 */ 1958 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1959 { 1960 struct anon_vma *anon_vma = NULL; 1961 struct vm_area_struct *prev, *next; 1962 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1963 1964 /* Try next first. */ 1965 next = vma_iter_load(&vmi); 1966 if (next) { 1967 anon_vma = reusable_anon_vma(next, vma, next); 1968 if (anon_vma) 1969 return anon_vma; 1970 } 1971 1972 prev = vma_prev(&vmi); 1973 VM_BUG_ON_VMA(prev != vma, vma); 1974 prev = vma_prev(&vmi); 1975 /* Try prev next. */ 1976 if (prev) 1977 anon_vma = reusable_anon_vma(prev, prev, vma); 1978 1979 /* 1980 * We might reach here with anon_vma == NULL if we can't find 1981 * any reusable anon_vma. 1982 * There's no absolute need to look only at touching neighbours: 1983 * we could search further afield for "compatible" anon_vmas. 1984 * But it would probably just be a waste of time searching, 1985 * or lead to too many vmas hanging off the same anon_vma. 1986 * We're trying to allow mprotect remerging later on, 1987 * not trying to minimize memory used for anon_vmas. 1988 */ 1989 return anon_vma; 1990 } 1991 1992 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1993 { 1994 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1995 } 1996 1997 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1998 { 1999 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 2000 (VM_WRITE | VM_SHARED); 2001 } 2002 2003 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 2004 { 2005 /* No managed pages to writeback. */ 2006 if (vma->vm_flags & VM_PFNMAP) 2007 return false; 2008 2009 return vma->vm_file && vma->vm_file->f_mapping && 2010 mapping_can_writeback(vma->vm_file->f_mapping); 2011 } 2012 2013 /* 2014 * Does this VMA require the underlying folios to have their dirty state 2015 * tracked? 2016 */ 2017 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 2018 { 2019 /* Only shared, writable VMAs require dirty tracking. */ 2020 if (!vma_is_shared_writable(vma)) 2021 return false; 2022 2023 /* Does the filesystem need to be notified? */ 2024 if (vm_ops_needs_writenotify(vma->vm_ops)) 2025 return true; 2026 2027 /* 2028 * Even if the filesystem doesn't indicate a need for writenotify, if it 2029 * can writeback, dirty tracking is still required. 2030 */ 2031 return vma_fs_can_writeback(vma); 2032 } 2033 2034 /* 2035 * Some shared mappings will want the pages marked read-only 2036 * to track write events. If so, we'll downgrade vm_page_prot 2037 * to the private version (using protection_map[] without the 2038 * VM_SHARED bit). 2039 */ 2040 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 2041 { 2042 /* If it was private or non-writable, the write bit is already clear */ 2043 if (!vma_is_shared_writable(vma)) 2044 return false; 2045 2046 /* The backer wishes to know when pages are first written to? */ 2047 if (vm_ops_needs_writenotify(vma->vm_ops)) 2048 return true; 2049 2050 /* The open routine did something to the protections that pgprot_modify 2051 * won't preserve? */ 2052 if (pgprot_val(vm_page_prot) != 2053 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 2054 return false; 2055 2056 /* 2057 * Do we need to track softdirty? hugetlb does not support softdirty 2058 * tracking yet. 2059 */ 2060 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 2061 return true; 2062 2063 /* Do we need write faults for uffd-wp tracking? */ 2064 if (userfaultfd_wp(vma)) 2065 return true; 2066 2067 /* Can the mapping track the dirty pages? */ 2068 return vma_fs_can_writeback(vma); 2069 } 2070 2071 static DEFINE_MUTEX(mm_all_locks_mutex); 2072 2073 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2074 { 2075 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2076 /* 2077 * The LSB of head.next can't change from under us 2078 * because we hold the mm_all_locks_mutex. 2079 */ 2080 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 2081 /* 2082 * We can safely modify head.next after taking the 2083 * anon_vma->root->rwsem. If some other vma in this mm shares 2084 * the same anon_vma we won't take it again. 2085 * 2086 * No need of atomic instructions here, head.next 2087 * can't change from under us thanks to the 2088 * anon_vma->root->rwsem. 2089 */ 2090 if (__test_and_set_bit(0, (unsigned long *) 2091 &anon_vma->root->rb_root.rb_root.rb_node)) 2092 BUG(); 2093 } 2094 } 2095 2096 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2097 { 2098 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2099 /* 2100 * AS_MM_ALL_LOCKS can't change from under us because 2101 * we hold the mm_all_locks_mutex. 2102 * 2103 * Operations on ->flags have to be atomic because 2104 * even if AS_MM_ALL_LOCKS is stable thanks to the 2105 * mm_all_locks_mutex, there may be other cpus 2106 * changing other bitflags in parallel to us. 2107 */ 2108 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2109 BUG(); 2110 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2111 } 2112 } 2113 2114 /* 2115 * This operation locks against the VM for all pte/vma/mm related 2116 * operations that could ever happen on a certain mm. This includes 2117 * vmtruncate, try_to_unmap, and all page faults. 2118 * 2119 * The caller must take the mmap_lock in write mode before calling 2120 * mm_take_all_locks(). The caller isn't allowed to release the 2121 * mmap_lock until mm_drop_all_locks() returns. 2122 * 2123 * mmap_lock in write mode is required in order to block all operations 2124 * that could modify pagetables and free pages without need of 2125 * altering the vma layout. It's also needed in write mode to avoid new 2126 * anon_vmas to be associated with existing vmas. 2127 * 2128 * A single task can't take more than one mm_take_all_locks() in a row 2129 * or it would deadlock. 2130 * 2131 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2132 * mapping->flags avoid to take the same lock twice, if more than one 2133 * vma in this mm is backed by the same anon_vma or address_space. 2134 * 2135 * We take locks in following order, accordingly to comment at beginning 2136 * of mm/rmap.c: 2137 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2138 * hugetlb mapping); 2139 * - all vmas marked locked 2140 * - all i_mmap_rwsem locks; 2141 * - all anon_vma->rwseml 2142 * 2143 * We can take all locks within these types randomly because the VM code 2144 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2145 * mm_all_locks_mutex. 2146 * 2147 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2148 * that may have to take thousand of locks. 2149 * 2150 * mm_take_all_locks() can fail if it's interrupted by signals. 2151 */ 2152 int mm_take_all_locks(struct mm_struct *mm) 2153 { 2154 struct vm_area_struct *vma; 2155 struct anon_vma_chain *avc; 2156 VMA_ITERATOR(vmi, mm, 0); 2157 2158 mmap_assert_write_locked(mm); 2159 2160 mutex_lock(&mm_all_locks_mutex); 2161 2162 /* 2163 * vma_start_write() does not have a complement in mm_drop_all_locks() 2164 * because vma_start_write() is always asymmetrical; it marks a VMA as 2165 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2166 * is reached. 2167 */ 2168 for_each_vma(vmi, vma) { 2169 if (signal_pending(current)) 2170 goto out_unlock; 2171 vma_start_write(vma); 2172 } 2173 2174 vma_iter_init(&vmi, mm, 0); 2175 for_each_vma(vmi, vma) { 2176 if (signal_pending(current)) 2177 goto out_unlock; 2178 if (vma->vm_file && vma->vm_file->f_mapping && 2179 is_vm_hugetlb_page(vma)) 2180 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2181 } 2182 2183 vma_iter_init(&vmi, mm, 0); 2184 for_each_vma(vmi, vma) { 2185 if (signal_pending(current)) 2186 goto out_unlock; 2187 if (vma->vm_file && vma->vm_file->f_mapping && 2188 !is_vm_hugetlb_page(vma)) 2189 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2190 } 2191 2192 vma_iter_init(&vmi, mm, 0); 2193 for_each_vma(vmi, vma) { 2194 if (signal_pending(current)) 2195 goto out_unlock; 2196 if (vma->anon_vma) 2197 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2198 vm_lock_anon_vma(mm, avc->anon_vma); 2199 } 2200 2201 return 0; 2202 2203 out_unlock: 2204 mm_drop_all_locks(mm); 2205 return -EINTR; 2206 } 2207 2208 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2209 { 2210 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2211 /* 2212 * The LSB of head.next can't change to 0 from under 2213 * us because we hold the mm_all_locks_mutex. 2214 * 2215 * We must however clear the bitflag before unlocking 2216 * the vma so the users using the anon_vma->rb_root will 2217 * never see our bitflag. 2218 * 2219 * No need of atomic instructions here, head.next 2220 * can't change from under us until we release the 2221 * anon_vma->root->rwsem. 2222 */ 2223 if (!__test_and_clear_bit(0, (unsigned long *) 2224 &anon_vma->root->rb_root.rb_root.rb_node)) 2225 BUG(); 2226 anon_vma_unlock_write(anon_vma); 2227 } 2228 } 2229 2230 static void vm_unlock_mapping(struct address_space *mapping) 2231 { 2232 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2233 /* 2234 * AS_MM_ALL_LOCKS can't change to 0 from under us 2235 * because we hold the mm_all_locks_mutex. 2236 */ 2237 i_mmap_unlock_write(mapping); 2238 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2239 &mapping->flags)) 2240 BUG(); 2241 } 2242 } 2243 2244 /* 2245 * The mmap_lock cannot be released by the caller until 2246 * mm_drop_all_locks() returns. 2247 */ 2248 void mm_drop_all_locks(struct mm_struct *mm) 2249 { 2250 struct vm_area_struct *vma; 2251 struct anon_vma_chain *avc; 2252 VMA_ITERATOR(vmi, mm, 0); 2253 2254 mmap_assert_write_locked(mm); 2255 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2256 2257 for_each_vma(vmi, vma) { 2258 if (vma->anon_vma) 2259 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2260 vm_unlock_anon_vma(avc->anon_vma); 2261 if (vma->vm_file && vma->vm_file->f_mapping) 2262 vm_unlock_mapping(vma->vm_file->f_mapping); 2263 } 2264 2265 mutex_unlock(&mm_all_locks_mutex); 2266 } 2267 2268 /* 2269 * We account for memory if it's a private writeable mapping, 2270 * not hugepages and VM_NORESERVE wasn't set. 2271 */ 2272 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2273 { 2274 /* 2275 * hugetlb has its own accounting separate from the core VM 2276 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2277 */ 2278 if (file && is_file_hugepages(file)) 2279 return false; 2280 2281 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2282 } 2283 2284 /* 2285 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2286 * operation. 2287 * @vms: The vma unmap structure 2288 * @mas_detach: The maple state with the detached maple tree 2289 * 2290 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2291 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2292 * have been called), then a NULL is written over the vmas and the vmas are 2293 * removed (munmap() completed). 2294 */ 2295 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2296 struct ma_state *mas_detach) 2297 { 2298 struct ma_state *mas = &vms->vmi->mas; 2299 2300 if (!vms->nr_pages) 2301 return; 2302 2303 if (vms->clear_ptes) 2304 return reattach_vmas(mas_detach); 2305 2306 /* 2307 * Aborting cannot just call the vm_ops open() because they are often 2308 * not symmetrical and state data has been lost. Resort to the old 2309 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2310 */ 2311 mas_set_range(mas, vms->start, vms->end - 1); 2312 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2313 /* Clean up the insertion of the unfortunate gap */ 2314 vms_complete_munmap_vmas(vms, mas_detach); 2315 } 2316 2317 static void update_ksm_flags(struct mmap_state *map) 2318 { 2319 map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags); 2320 } 2321 2322 static void set_desc_from_map(struct vm_area_desc *desc, 2323 const struct mmap_state *map) 2324 { 2325 desc->start = map->addr; 2326 desc->end = map->end; 2327 2328 desc->pgoff = map->pgoff; 2329 desc->vm_file = map->file; 2330 desc->vm_flags = map->vm_flags; 2331 desc->page_prot = map->page_prot; 2332 } 2333 2334 /* 2335 * __mmap_setup() - Prepare to gather any overlapping VMAs that need to be 2336 * unmapped once the map operation is completed, check limits, account mapping 2337 * and clean up any pre-existing VMAs. 2338 * 2339 * As a result it sets up the @map and @desc objects. 2340 * 2341 * @map: Mapping state. 2342 * @desc: VMA descriptor 2343 * @uf: Userfaultfd context list. 2344 * 2345 * Returns: 0 on success, error code otherwise. 2346 */ 2347 static int __mmap_setup(struct mmap_state *map, struct vm_area_desc *desc, 2348 struct list_head *uf) 2349 { 2350 int error; 2351 struct vma_iterator *vmi = map->vmi; 2352 struct vma_munmap_struct *vms = &map->vms; 2353 2354 /* Find the first overlapping VMA and initialise unmap state. */ 2355 vms->vma = vma_find(vmi, map->end); 2356 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2357 /* unlock = */ false); 2358 2359 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2360 if (vms->vma) { 2361 mt_init_flags(&map->mt_detach, 2362 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2363 mt_on_stack(map->mt_detach); 2364 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2365 /* Prepare to unmap any existing mapping in the area */ 2366 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2367 if (error) { 2368 /* On error VMAs will already have been reattached. */ 2369 vms->nr_pages = 0; 2370 return error; 2371 } 2372 2373 map->next = vms->next; 2374 map->prev = vms->prev; 2375 } else { 2376 map->next = vma_iter_next_rewind(vmi, &map->prev); 2377 } 2378 2379 /* Check against address space limit. */ 2380 if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages)) 2381 return -ENOMEM; 2382 2383 /* Private writable mapping: check memory availability. */ 2384 if (accountable_mapping(map->file, map->vm_flags)) { 2385 map->charged = map->pglen; 2386 map->charged -= vms->nr_accounted; 2387 if (map->charged) { 2388 error = security_vm_enough_memory_mm(map->mm, map->charged); 2389 if (error) 2390 return error; 2391 } 2392 2393 vms->nr_accounted = 0; 2394 map->vm_flags |= VM_ACCOUNT; 2395 } 2396 2397 /* 2398 * Clear PTEs while the vma is still in the tree so that rmap 2399 * cannot race with the freeing later in the truncate scenario. 2400 * This is also needed for mmap_file(), which is why vm_ops 2401 * close function is called. 2402 */ 2403 vms_clean_up_area(vms, &map->mas_detach); 2404 2405 set_desc_from_map(desc, map); 2406 return 0; 2407 } 2408 2409 2410 static int __mmap_new_file_vma(struct mmap_state *map, 2411 struct vm_area_struct *vma) 2412 { 2413 struct vma_iterator *vmi = map->vmi; 2414 int error; 2415 2416 vma->vm_file = get_file(map->file); 2417 2418 if (!map->file->f_op->mmap) 2419 return 0; 2420 2421 error = mmap_file(vma->vm_file, vma); 2422 if (error) { 2423 fput(vma->vm_file); 2424 vma->vm_file = NULL; 2425 2426 vma_iter_set(vmi, vma->vm_end); 2427 /* Undo any partial mapping done by a device driver. */ 2428 unmap_region(&vmi->mas, vma, map->prev, map->next); 2429 2430 return error; 2431 } 2432 2433 /* Drivers cannot alter the address of the VMA. */ 2434 WARN_ON_ONCE(map->addr != vma->vm_start); 2435 /* 2436 * Drivers should not permit writability when previously it was 2437 * disallowed. 2438 */ 2439 VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags && 2440 !(map->vm_flags & VM_MAYWRITE) && 2441 (vma->vm_flags & VM_MAYWRITE)); 2442 2443 map->file = vma->vm_file; 2444 map->vm_flags = vma->vm_flags; 2445 2446 return 0; 2447 } 2448 2449 /* 2450 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2451 * possible. 2452 * 2453 * @map: Mapping state. 2454 * @vmap: Output pointer for the new VMA. 2455 * 2456 * Returns: Zero on success, or an error. 2457 */ 2458 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2459 { 2460 struct vma_iterator *vmi = map->vmi; 2461 int error = 0; 2462 struct vm_area_struct *vma; 2463 2464 /* 2465 * Determine the object being mapped and call the appropriate 2466 * specific mapper. the address has already been validated, but 2467 * not unmapped, but the maps are removed from the list. 2468 */ 2469 vma = vm_area_alloc(map->mm); 2470 if (!vma) 2471 return -ENOMEM; 2472 2473 vma_iter_config(vmi, map->addr, map->end); 2474 vma_set_range(vma, map->addr, map->end, map->pgoff); 2475 vm_flags_init(vma, map->vm_flags); 2476 vma->vm_page_prot = map->page_prot; 2477 2478 if (vma_iter_prealloc(vmi, vma)) { 2479 error = -ENOMEM; 2480 goto free_vma; 2481 } 2482 2483 if (map->file) 2484 error = __mmap_new_file_vma(map, vma); 2485 else if (map->vm_flags & VM_SHARED) 2486 error = shmem_zero_setup(vma); 2487 else 2488 vma_set_anonymous(vma); 2489 2490 if (error) 2491 goto free_iter_vma; 2492 2493 if (!map->check_ksm_early) { 2494 update_ksm_flags(map); 2495 vm_flags_init(vma, map->vm_flags); 2496 } 2497 2498 #ifdef CONFIG_SPARC64 2499 /* TODO: Fix SPARC ADI! */ 2500 WARN_ON_ONCE(!arch_validate_flags(map->vm_flags)); 2501 #endif 2502 2503 /* Lock the VMA since it is modified after insertion into VMA tree */ 2504 vma_start_write(vma); 2505 vma_iter_store_new(vmi, vma); 2506 map->mm->map_count++; 2507 vma_link_file(vma, map->hold_file_rmap_lock); 2508 2509 /* 2510 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2511 * call covers the non-merge case. 2512 */ 2513 if (!vma_is_anonymous(vma)) 2514 khugepaged_enter_vma(vma, map->vm_flags); 2515 *vmap = vma; 2516 return 0; 2517 2518 free_iter_vma: 2519 vma_iter_free(vmi); 2520 free_vma: 2521 vm_area_free(vma); 2522 return error; 2523 } 2524 2525 /* 2526 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2527 * statistics, handle locking and finalise the VMA. 2528 * 2529 * @map: Mapping state. 2530 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2531 */ 2532 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2533 { 2534 struct mm_struct *mm = map->mm; 2535 vm_flags_t vm_flags = vma->vm_flags; 2536 2537 perf_event_mmap(vma); 2538 2539 /* Unmap any existing mapping in the area. */ 2540 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2541 2542 vm_stat_account(mm, vma->vm_flags, map->pglen); 2543 if (vm_flags & VM_LOCKED) { 2544 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2545 is_vm_hugetlb_page(vma) || 2546 vma == get_gate_vma(mm)) 2547 vm_flags_clear(vma, VM_LOCKED_MASK); 2548 else 2549 mm->locked_vm += map->pglen; 2550 } 2551 2552 if (vma->vm_file) 2553 uprobe_mmap(vma); 2554 2555 /* 2556 * New (or expanded) vma always get soft dirty status. 2557 * Otherwise user-space soft-dirty page tracker won't 2558 * be able to distinguish situation when vma area unmapped, 2559 * then new mapped in-place (which must be aimed as 2560 * a completely new data area). 2561 */ 2562 if (pgtable_supports_soft_dirty()) 2563 vm_flags_set(vma, VM_SOFTDIRTY); 2564 2565 vma_set_page_prot(vma); 2566 } 2567 2568 static void call_action_prepare(struct mmap_state *map, 2569 struct vm_area_desc *desc) 2570 { 2571 struct mmap_action *action = &desc->action; 2572 2573 mmap_action_prepare(action, desc); 2574 2575 if (action->hide_from_rmap_until_complete) 2576 map->hold_file_rmap_lock = true; 2577 } 2578 2579 /* 2580 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that 2581 * specifies it. 2582 * 2583 * This is called prior to any merge attempt, and updates whitelisted fields 2584 * that are permitted to be updated by the caller. 2585 * 2586 * All but user-defined fields will be pre-populated with original values. 2587 * 2588 * Returns 0 on success, or an error code otherwise. 2589 */ 2590 static int call_mmap_prepare(struct mmap_state *map, 2591 struct vm_area_desc *desc) 2592 { 2593 int err; 2594 2595 /* Invoke the hook. */ 2596 err = vfs_mmap_prepare(map->file, desc); 2597 if (err) 2598 return err; 2599 2600 call_action_prepare(map, desc); 2601 2602 /* Update fields permitted to be changed. */ 2603 map->pgoff = desc->pgoff; 2604 map->file = desc->vm_file; 2605 map->vm_flags = desc->vm_flags; 2606 map->page_prot = desc->page_prot; 2607 /* User-defined fields. */ 2608 map->vm_ops = desc->vm_ops; 2609 map->vm_private_data = desc->private_data; 2610 2611 return 0; 2612 } 2613 2614 static void set_vma_user_defined_fields(struct vm_area_struct *vma, 2615 struct mmap_state *map) 2616 { 2617 if (map->vm_ops) 2618 vma->vm_ops = map->vm_ops; 2619 vma->vm_private_data = map->vm_private_data; 2620 } 2621 2622 /* 2623 * Are we guaranteed no driver can change state such as to preclude KSM merging? 2624 * If so, let's set the KSM mergeable flag early so we don't break VMA merging. 2625 */ 2626 static bool can_set_ksm_flags_early(struct mmap_state *map) 2627 { 2628 struct file *file = map->file; 2629 2630 /* Anonymous mappings have no driver which can change them. */ 2631 if (!file) 2632 return true; 2633 2634 /* 2635 * If .mmap_prepare() is specified, then the driver will have already 2636 * manipulated state prior to updating KSM flags. So no need to worry 2637 * about mmap callbacks modifying VMA flags after the KSM flag has been 2638 * updated here, which could otherwise affect KSM eligibility. 2639 */ 2640 if (file->f_op->mmap_prepare) 2641 return true; 2642 2643 /* shmem is safe. */ 2644 if (shmem_file(file)) 2645 return true; 2646 2647 /* Any other .mmap callback is not safe. */ 2648 return false; 2649 } 2650 2651 static int call_action_complete(struct mmap_state *map, 2652 struct vm_area_desc *desc, 2653 struct vm_area_struct *vma) 2654 { 2655 struct mmap_action *action = &desc->action; 2656 int ret; 2657 2658 ret = mmap_action_complete(action, vma); 2659 2660 /* If we held the file rmap we need to release it. */ 2661 if (map->hold_file_rmap_lock) { 2662 struct file *file = vma->vm_file; 2663 2664 i_mmap_unlock_write(file->f_mapping); 2665 } 2666 return ret; 2667 } 2668 2669 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2670 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2671 struct list_head *uf) 2672 { 2673 struct mm_struct *mm = current->mm; 2674 struct vm_area_struct *vma = NULL; 2675 bool have_mmap_prepare = file && file->f_op->mmap_prepare; 2676 VMA_ITERATOR(vmi, mm, addr); 2677 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2678 struct vm_area_desc desc = { 2679 .mm = mm, 2680 .file = file, 2681 .action = { 2682 .type = MMAP_NOTHING, /* Default to no further action. */ 2683 }, 2684 }; 2685 bool allocated_new = false; 2686 int error; 2687 2688 map.check_ksm_early = can_set_ksm_flags_early(&map); 2689 2690 error = __mmap_setup(&map, &desc, uf); 2691 if (!error && have_mmap_prepare) 2692 error = call_mmap_prepare(&map, &desc); 2693 if (error) 2694 goto abort_munmap; 2695 2696 if (map.check_ksm_early) 2697 update_ksm_flags(&map); 2698 2699 /* Attempt to merge with adjacent VMAs... */ 2700 if (map.prev || map.next) { 2701 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2702 2703 vma = vma_merge_new_range(&vmg); 2704 } 2705 2706 /* ...but if we can't, allocate a new VMA. */ 2707 if (!vma) { 2708 error = __mmap_new_vma(&map, &vma); 2709 if (error) 2710 goto unacct_error; 2711 allocated_new = true; 2712 } 2713 2714 if (have_mmap_prepare) 2715 set_vma_user_defined_fields(vma, &map); 2716 2717 __mmap_complete(&map, vma); 2718 2719 if (have_mmap_prepare && allocated_new) { 2720 error = call_action_complete(&map, &desc, vma); 2721 2722 if (error) 2723 return error; 2724 } 2725 2726 return addr; 2727 2728 /* Accounting was done by __mmap_setup(). */ 2729 unacct_error: 2730 if (map.charged) 2731 vm_unacct_memory(map.charged); 2732 abort_munmap: 2733 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2734 return error; 2735 } 2736 2737 /** 2738 * mmap_region() - Actually perform the userland mapping of a VMA into 2739 * current->mm with known, aligned and overflow-checked @addr and @len, and 2740 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2741 * 2742 * This is an internal memory management function, and should not be used 2743 * directly. 2744 * 2745 * The caller must write-lock current->mm->mmap_lock. 2746 * 2747 * @file: If a file-backed mapping, a pointer to the struct file describing the 2748 * file to be mapped, otherwise NULL. 2749 * @addr: The page-aligned address at which to perform the mapping. 2750 * @len: The page-aligned, non-zero, length of the mapping. 2751 * @vm_flags: The VMA flags which should be applied to the mapping. 2752 * @pgoff: If @file is specified, the page offset into the file, if not then 2753 * the virtual page offset in memory of the anonymous mapping. 2754 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2755 * events. 2756 * 2757 * Returns: Either an error, or the address at which the requested mapping has 2758 * been performed. 2759 */ 2760 unsigned long mmap_region(struct file *file, unsigned long addr, 2761 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2762 struct list_head *uf) 2763 { 2764 unsigned long ret; 2765 bool writable_file_mapping = false; 2766 2767 mmap_assert_write_locked(current->mm); 2768 2769 /* Check to see if MDWE is applicable. */ 2770 if (map_deny_write_exec(vm_flags, vm_flags)) 2771 return -EACCES; 2772 2773 /* Allow architectures to sanity-check the vm_flags. */ 2774 if (!arch_validate_flags(vm_flags)) 2775 return -EINVAL; 2776 2777 /* Map writable and ensure this isn't a sealed memfd. */ 2778 if (file && is_shared_maywrite(vm_flags)) { 2779 int error = mapping_map_writable(file->f_mapping); 2780 2781 if (error) 2782 return error; 2783 writable_file_mapping = true; 2784 } 2785 2786 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2787 2788 /* Clear our write mapping regardless of error. */ 2789 if (writable_file_mapping) 2790 mapping_unmap_writable(file->f_mapping); 2791 2792 validate_mm(current->mm); 2793 return ret; 2794 } 2795 2796 /* 2797 * do_brk_flags() - Increase the brk vma if the flags match. 2798 * @vmi: The vma iterator 2799 * @addr: The start address 2800 * @len: The length of the increase 2801 * @vma: The vma, 2802 * @vm_flags: The VMA Flags 2803 * 2804 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2805 * do not match then create a new anonymous VMA. Eventually we may be able to 2806 * do some brk-specific accounting here. 2807 */ 2808 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2809 unsigned long addr, unsigned long len, vm_flags_t vm_flags) 2810 { 2811 struct mm_struct *mm = current->mm; 2812 2813 /* 2814 * Check against address space limits by the changed size 2815 * Note: This happens *after* clearing old mappings in some code paths. 2816 */ 2817 vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2818 vm_flags = ksm_vma_flags(mm, NULL, vm_flags); 2819 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) 2820 return -ENOMEM; 2821 2822 if (mm->map_count > sysctl_max_map_count) 2823 return -ENOMEM; 2824 2825 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2826 return -ENOMEM; 2827 2828 /* 2829 * Expand the existing vma if possible; Note that singular lists do not 2830 * occur after forking, so the expand will only happen on new VMAs. 2831 */ 2832 if (vma && vma->vm_end == addr) { 2833 VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr)); 2834 2835 vmg.prev = vma; 2836 /* vmi is positioned at prev, which this mode expects. */ 2837 vmg.just_expand = true; 2838 2839 if (vma_merge_new_range(&vmg)) 2840 goto out; 2841 else if (vmg_nomem(&vmg)) 2842 goto unacct_fail; 2843 } 2844 2845 if (vma) 2846 vma_iter_next_range(vmi); 2847 /* create a vma struct for an anonymous mapping */ 2848 vma = vm_area_alloc(mm); 2849 if (!vma) 2850 goto unacct_fail; 2851 2852 vma_set_anonymous(vma); 2853 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2854 vm_flags_init(vma, vm_flags); 2855 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2856 vma_start_write(vma); 2857 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2858 goto mas_store_fail; 2859 2860 mm->map_count++; 2861 validate_mm(mm); 2862 out: 2863 perf_event_mmap(vma); 2864 mm->total_vm += len >> PAGE_SHIFT; 2865 mm->data_vm += len >> PAGE_SHIFT; 2866 if (vm_flags & VM_LOCKED) 2867 mm->locked_vm += (len >> PAGE_SHIFT); 2868 if (pgtable_supports_soft_dirty()) 2869 vm_flags_set(vma, VM_SOFTDIRTY); 2870 return 0; 2871 2872 mas_store_fail: 2873 vm_area_free(vma); 2874 unacct_fail: 2875 vm_unacct_memory(len >> PAGE_SHIFT); 2876 return -ENOMEM; 2877 } 2878 2879 /** 2880 * unmapped_area() - Find an area between the low_limit and the high_limit with 2881 * the correct alignment and offset, all from @info. Note: current->mm is used 2882 * for the search. 2883 * 2884 * @info: The unmapped area information including the range [low_limit - 2885 * high_limit), the alignment offset and mask. 2886 * 2887 * Return: A memory address or -ENOMEM. 2888 */ 2889 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2890 { 2891 unsigned long length, gap; 2892 unsigned long low_limit, high_limit; 2893 struct vm_area_struct *tmp; 2894 VMA_ITERATOR(vmi, current->mm, 0); 2895 2896 /* Adjust search length to account for worst case alignment overhead */ 2897 length = info->length + info->align_mask + info->start_gap; 2898 if (length < info->length) 2899 return -ENOMEM; 2900 2901 low_limit = info->low_limit; 2902 if (low_limit < mmap_min_addr) 2903 low_limit = mmap_min_addr; 2904 high_limit = info->high_limit; 2905 retry: 2906 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2907 return -ENOMEM; 2908 2909 /* 2910 * Adjust for the gap first so it doesn't interfere with the 2911 * later alignment. The first step is the minimum needed to 2912 * fulill the start gap, the next steps is the minimum to align 2913 * that. It is the minimum needed to fulill both. 2914 */ 2915 gap = vma_iter_addr(&vmi) + info->start_gap; 2916 gap += (info->align_offset - gap) & info->align_mask; 2917 tmp = vma_next(&vmi); 2918 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2919 if (vm_start_gap(tmp) < gap + length - 1) { 2920 low_limit = tmp->vm_end; 2921 vma_iter_reset(&vmi); 2922 goto retry; 2923 } 2924 } else { 2925 tmp = vma_prev(&vmi); 2926 if (tmp && vm_end_gap(tmp) > gap) { 2927 low_limit = vm_end_gap(tmp); 2928 vma_iter_reset(&vmi); 2929 goto retry; 2930 } 2931 } 2932 2933 return gap; 2934 } 2935 2936 /** 2937 * unmapped_area_topdown() - Find an area between the low_limit and the 2938 * high_limit with the correct alignment and offset at the highest available 2939 * address, all from @info. Note: current->mm is used for the search. 2940 * 2941 * @info: The unmapped area information including the range [low_limit - 2942 * high_limit), the alignment offset and mask. 2943 * 2944 * Return: A memory address or -ENOMEM. 2945 */ 2946 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2947 { 2948 unsigned long length, gap, gap_end; 2949 unsigned long low_limit, high_limit; 2950 struct vm_area_struct *tmp; 2951 VMA_ITERATOR(vmi, current->mm, 0); 2952 2953 /* Adjust search length to account for worst case alignment overhead */ 2954 length = info->length + info->align_mask + info->start_gap; 2955 if (length < info->length) 2956 return -ENOMEM; 2957 2958 low_limit = info->low_limit; 2959 if (low_limit < mmap_min_addr) 2960 low_limit = mmap_min_addr; 2961 high_limit = info->high_limit; 2962 retry: 2963 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2964 return -ENOMEM; 2965 2966 gap = vma_iter_end(&vmi) - info->length; 2967 gap -= (gap - info->align_offset) & info->align_mask; 2968 gap_end = vma_iter_end(&vmi); 2969 tmp = vma_next(&vmi); 2970 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2971 if (vm_start_gap(tmp) < gap_end) { 2972 high_limit = vm_start_gap(tmp); 2973 vma_iter_reset(&vmi); 2974 goto retry; 2975 } 2976 } else { 2977 tmp = vma_prev(&vmi); 2978 if (tmp && vm_end_gap(tmp) > gap) { 2979 high_limit = tmp->vm_start; 2980 vma_iter_reset(&vmi); 2981 goto retry; 2982 } 2983 } 2984 2985 return gap; 2986 } 2987 2988 /* 2989 * Verify that the stack growth is acceptable and 2990 * update accounting. This is shared with both the 2991 * grow-up and grow-down cases. 2992 */ 2993 static int acct_stack_growth(struct vm_area_struct *vma, 2994 unsigned long size, unsigned long grow) 2995 { 2996 struct mm_struct *mm = vma->vm_mm; 2997 unsigned long new_start; 2998 2999 /* address space limit tests */ 3000 if (!may_expand_vm(mm, vma->vm_flags, grow)) 3001 return -ENOMEM; 3002 3003 /* Stack limit test */ 3004 if (size > rlimit(RLIMIT_STACK)) 3005 return -ENOMEM; 3006 3007 /* mlock limit tests */ 3008 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 3009 return -ENOMEM; 3010 3011 /* Check to ensure the stack will not grow into a hugetlb-only region */ 3012 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 3013 vma->vm_end - size; 3014 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 3015 return -EFAULT; 3016 3017 /* 3018 * Overcommit.. This must be the final test, as it will 3019 * update security statistics. 3020 */ 3021 if (security_vm_enough_memory_mm(mm, grow)) 3022 return -ENOMEM; 3023 3024 return 0; 3025 } 3026 3027 #if defined(CONFIG_STACK_GROWSUP) 3028 /* 3029 * PA-RISC uses this for its stack. 3030 * vma is the last one with address > vma->vm_end. Have to extend vma. 3031 */ 3032 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 3033 { 3034 struct mm_struct *mm = vma->vm_mm; 3035 struct vm_area_struct *next; 3036 unsigned long gap_addr; 3037 int error = 0; 3038 VMA_ITERATOR(vmi, mm, vma->vm_start); 3039 3040 if (!(vma->vm_flags & VM_GROWSUP)) 3041 return -EFAULT; 3042 3043 mmap_assert_write_locked(mm); 3044 3045 /* Guard against exceeding limits of the address space. */ 3046 address &= PAGE_MASK; 3047 if (address >= (TASK_SIZE & PAGE_MASK)) 3048 return -ENOMEM; 3049 address += PAGE_SIZE; 3050 3051 /* Enforce stack_guard_gap */ 3052 gap_addr = address + stack_guard_gap; 3053 3054 /* Guard against overflow */ 3055 if (gap_addr < address || gap_addr > TASK_SIZE) 3056 gap_addr = TASK_SIZE; 3057 3058 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 3059 if (next && vma_is_accessible(next)) { 3060 if (!(next->vm_flags & VM_GROWSUP)) 3061 return -ENOMEM; 3062 /* Check that both stack segments have the same anon_vma? */ 3063 } 3064 3065 if (next) 3066 vma_iter_prev_range_limit(&vmi, address); 3067 3068 vma_iter_config(&vmi, vma->vm_start, address); 3069 if (vma_iter_prealloc(&vmi, vma)) 3070 return -ENOMEM; 3071 3072 /* We must make sure the anon_vma is allocated. */ 3073 if (unlikely(anon_vma_prepare(vma))) { 3074 vma_iter_free(&vmi); 3075 return -ENOMEM; 3076 } 3077 3078 /* Lock the VMA before expanding to prevent concurrent page faults */ 3079 vma_start_write(vma); 3080 /* We update the anon VMA tree. */ 3081 anon_vma_lock_write(vma->anon_vma); 3082 3083 /* Somebody else might have raced and expanded it already */ 3084 if (address > vma->vm_end) { 3085 unsigned long size, grow; 3086 3087 size = address - vma->vm_start; 3088 grow = (address - vma->vm_end) >> PAGE_SHIFT; 3089 3090 error = -ENOMEM; 3091 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 3092 error = acct_stack_growth(vma, size, grow); 3093 if (!error) { 3094 if (vma->vm_flags & VM_LOCKED) 3095 mm->locked_vm += grow; 3096 vm_stat_account(mm, vma->vm_flags, grow); 3097 anon_vma_interval_tree_pre_update_vma(vma); 3098 vma->vm_end = address; 3099 /* Overwrite old entry in mtree. */ 3100 vma_iter_store_overwrite(&vmi, vma); 3101 anon_vma_interval_tree_post_update_vma(vma); 3102 3103 perf_event_mmap(vma); 3104 } 3105 } 3106 } 3107 anon_vma_unlock_write(vma->anon_vma); 3108 vma_iter_free(&vmi); 3109 validate_mm(mm); 3110 return error; 3111 } 3112 #endif /* CONFIG_STACK_GROWSUP */ 3113 3114 /* 3115 * vma is the first one with address < vma->vm_start. Have to extend vma. 3116 * mmap_lock held for writing. 3117 */ 3118 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 3119 { 3120 struct mm_struct *mm = vma->vm_mm; 3121 struct vm_area_struct *prev; 3122 int error = 0; 3123 VMA_ITERATOR(vmi, mm, vma->vm_start); 3124 3125 if (!(vma->vm_flags & VM_GROWSDOWN)) 3126 return -EFAULT; 3127 3128 mmap_assert_write_locked(mm); 3129 3130 address &= PAGE_MASK; 3131 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 3132 return -EPERM; 3133 3134 /* Enforce stack_guard_gap */ 3135 prev = vma_prev(&vmi); 3136 /* Check that both stack segments have the same anon_vma? */ 3137 if (prev) { 3138 if (!(prev->vm_flags & VM_GROWSDOWN) && 3139 vma_is_accessible(prev) && 3140 (address - prev->vm_end < stack_guard_gap)) 3141 return -ENOMEM; 3142 } 3143 3144 if (prev) 3145 vma_iter_next_range_limit(&vmi, vma->vm_start); 3146 3147 vma_iter_config(&vmi, address, vma->vm_end); 3148 if (vma_iter_prealloc(&vmi, vma)) 3149 return -ENOMEM; 3150 3151 /* We must make sure the anon_vma is allocated. */ 3152 if (unlikely(anon_vma_prepare(vma))) { 3153 vma_iter_free(&vmi); 3154 return -ENOMEM; 3155 } 3156 3157 /* Lock the VMA before expanding to prevent concurrent page faults */ 3158 vma_start_write(vma); 3159 /* We update the anon VMA tree. */ 3160 anon_vma_lock_write(vma->anon_vma); 3161 3162 /* Somebody else might have raced and expanded it already */ 3163 if (address < vma->vm_start) { 3164 unsigned long size, grow; 3165 3166 size = vma->vm_end - address; 3167 grow = (vma->vm_start - address) >> PAGE_SHIFT; 3168 3169 error = -ENOMEM; 3170 if (grow <= vma->vm_pgoff) { 3171 error = acct_stack_growth(vma, size, grow); 3172 if (!error) { 3173 if (vma->vm_flags & VM_LOCKED) 3174 mm->locked_vm += grow; 3175 vm_stat_account(mm, vma->vm_flags, grow); 3176 anon_vma_interval_tree_pre_update_vma(vma); 3177 vma->vm_start = address; 3178 vma->vm_pgoff -= grow; 3179 /* Overwrite old entry in mtree. */ 3180 vma_iter_store_overwrite(&vmi, vma); 3181 anon_vma_interval_tree_post_update_vma(vma); 3182 3183 perf_event_mmap(vma); 3184 } 3185 } 3186 } 3187 anon_vma_unlock_write(vma->anon_vma); 3188 vma_iter_free(&vmi); 3189 validate_mm(mm); 3190 return error; 3191 } 3192 3193 int __vm_munmap(unsigned long start, size_t len, bool unlock) 3194 { 3195 int ret; 3196 struct mm_struct *mm = current->mm; 3197 LIST_HEAD(uf); 3198 VMA_ITERATOR(vmi, mm, start); 3199 3200 if (mmap_write_lock_killable(mm)) 3201 return -EINTR; 3202 3203 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3204 if (ret || !unlock) 3205 mmap_write_unlock(mm); 3206 3207 userfaultfd_unmap_complete(mm, &uf); 3208 return ret; 3209 } 3210 3211 /* Insert vm structure into process list sorted by address 3212 * and into the inode's i_mmap tree. If vm_file is non-NULL 3213 * then i_mmap_rwsem is taken here. 3214 */ 3215 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3216 { 3217 unsigned long charged = vma_pages(vma); 3218 3219 3220 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3221 return -ENOMEM; 3222 3223 if ((vma->vm_flags & VM_ACCOUNT) && 3224 security_vm_enough_memory_mm(mm, charged)) 3225 return -ENOMEM; 3226 3227 /* 3228 * The vm_pgoff of a purely anonymous vma should be irrelevant 3229 * until its first write fault, when page's anon_vma and index 3230 * are set. But now set the vm_pgoff it will almost certainly 3231 * end up with (unless mremap moves it elsewhere before that 3232 * first wfault), so /proc/pid/maps tells a consistent story. 3233 * 3234 * By setting it to reflect the virtual start address of the 3235 * vma, merges and splits can happen in a seamless way, just 3236 * using the existing file pgoff checks and manipulations. 3237 * Similarly in do_mmap and in do_brk_flags. 3238 */ 3239 if (vma_is_anonymous(vma)) { 3240 BUG_ON(vma->anon_vma); 3241 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3242 } 3243 3244 if (vma_link(mm, vma)) { 3245 if (vma->vm_flags & VM_ACCOUNT) 3246 vm_unacct_memory(charged); 3247 return -ENOMEM; 3248 } 3249 3250 return 0; 3251 } 3252