1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 11 { 12 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 13 /* 14 * If the vma has a ->close operation then the driver probably needs to 15 * release per-vma resources, so we don't attempt to merge those if the 16 * caller indicates the current vma may be removed as part of the merge, 17 * which is the case if we are attempting to merge the next VMA into 18 * this one. 19 */ 20 bool may_remove_vma = merge_next; 21 22 if (!mpol_equal(vmg->policy, vma_policy(vma))) 23 return false; 24 /* 25 * VM_SOFTDIRTY should not prevent from VMA merging, if we 26 * match the flags but dirty bit -- the caller should mark 27 * merged VMA as dirty. If dirty bit won't be excluded from 28 * comparison, we increase pressure on the memory system forcing 29 * the kernel to generate new VMAs when old one could be 30 * extended instead. 31 */ 32 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 33 return false; 34 if (vma->vm_file != vmg->file) 35 return false; 36 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 37 return false; 38 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 39 return false; 40 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 41 return false; 42 return true; 43 } 44 45 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 46 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 47 { 48 /* 49 * The list_is_singular() test is to avoid merging VMA cloned from 50 * parents. This can improve scalability caused by anon_vma lock. 51 */ 52 if ((!anon_vma1 || !anon_vma2) && (!vma || 53 list_is_singular(&vma->anon_vma_chain))) 54 return true; 55 return anon_vma1 == anon_vma2; 56 } 57 58 /* 59 * init_multi_vma_prep() - Initializer for struct vma_prepare 60 * @vp: The vma_prepare struct 61 * @vma: The vma that will be altered once locked 62 * @next: The next vma if it is to be adjusted 63 * @remove: The first vma to be removed 64 * @remove2: The second vma to be removed 65 */ 66 static void init_multi_vma_prep(struct vma_prepare *vp, 67 struct vm_area_struct *vma, 68 struct vm_area_struct *next, 69 struct vm_area_struct *remove, 70 struct vm_area_struct *remove2) 71 { 72 memset(vp, 0, sizeof(struct vma_prepare)); 73 vp->vma = vma; 74 vp->anon_vma = vma->anon_vma; 75 vp->remove = remove; 76 vp->remove2 = remove2; 77 vp->adj_next = next; 78 if (!vp->anon_vma && next) 79 vp->anon_vma = next->anon_vma; 80 81 vp->file = vma->vm_file; 82 if (vp->file) 83 vp->mapping = vma->vm_file->f_mapping; 84 85 } 86 87 /* 88 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 89 * in front of (at a lower virtual address and file offset than) the vma. 90 * 91 * We cannot merge two vmas if they have differently assigned (non-NULL) 92 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 93 * 94 * We don't check here for the merged mmap wrapping around the end of pagecache 95 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 96 * wrap, nor mmaps which cover the final page at index -1UL. 97 * 98 * We assume the vma may be removed as part of the merge. 99 */ 100 bool 101 can_vma_merge_before(struct vma_merge_struct *vmg) 102 { 103 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 104 105 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 106 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 107 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 108 return true; 109 } 110 111 return false; 112 } 113 114 /* 115 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 116 * beyond (at a higher virtual address and file offset than) the vma. 117 * 118 * We cannot merge two vmas if they have differently assigned (non-NULL) 119 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 120 * 121 * We assume that vma is not removed as part of the merge. 122 */ 123 bool can_vma_merge_after(struct vma_merge_struct *vmg) 124 { 125 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 126 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 127 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 128 return true; 129 } 130 return false; 131 } 132 133 /* 134 * Close a vm structure and free it. 135 */ 136 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed) 137 { 138 might_sleep(); 139 if (!closed && vma->vm_ops && vma->vm_ops->close) 140 vma->vm_ops->close(vma); 141 if (vma->vm_file) 142 fput(vma->vm_file); 143 mpol_put(vma_policy(vma)); 144 if (unreachable) 145 __vm_area_free(vma); 146 else 147 vm_area_free(vma); 148 } 149 150 /* 151 * Get rid of page table information in the indicated region. 152 * 153 * Called with the mm semaphore held. 154 */ 155 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 156 struct vm_area_struct *prev, struct vm_area_struct *next) 157 { 158 struct mm_struct *mm = vma->vm_mm; 159 struct mmu_gather tlb; 160 161 lru_add_drain(); 162 tlb_gather_mmu(&tlb, mm); 163 update_hiwater_rss(mm); 164 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 165 /* mm_wr_locked = */ true); 166 mas_set(mas, vma->vm_end); 167 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 168 next ? next->vm_start : USER_PGTABLES_CEILING, 169 /* mm_wr_locked = */ true); 170 tlb_finish_mmu(&tlb); 171 } 172 173 /* 174 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 175 * has already been checked or doesn't make sense to fail. 176 * VMA Iterator will point to the original VMA. 177 */ 178 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 179 unsigned long addr, int new_below) 180 { 181 struct vma_prepare vp; 182 struct vm_area_struct *new; 183 int err; 184 185 WARN_ON(vma->vm_start >= addr); 186 WARN_ON(vma->vm_end <= addr); 187 188 if (vma->vm_ops && vma->vm_ops->may_split) { 189 err = vma->vm_ops->may_split(vma, addr); 190 if (err) 191 return err; 192 } 193 194 new = vm_area_dup(vma); 195 if (!new) 196 return -ENOMEM; 197 198 if (new_below) { 199 new->vm_end = addr; 200 } else { 201 new->vm_start = addr; 202 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 203 } 204 205 err = -ENOMEM; 206 vma_iter_config(vmi, new->vm_start, new->vm_end); 207 if (vma_iter_prealloc(vmi, new)) 208 goto out_free_vma; 209 210 err = vma_dup_policy(vma, new); 211 if (err) 212 goto out_free_vmi; 213 214 err = anon_vma_clone(new, vma); 215 if (err) 216 goto out_free_mpol; 217 218 if (new->vm_file) 219 get_file(new->vm_file); 220 221 if (new->vm_ops && new->vm_ops->open) 222 new->vm_ops->open(new); 223 224 vma_start_write(vma); 225 vma_start_write(new); 226 227 init_vma_prep(&vp, vma); 228 vp.insert = new; 229 vma_prepare(&vp); 230 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 231 232 if (new_below) { 233 vma->vm_start = addr; 234 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 235 } else { 236 vma->vm_end = addr; 237 } 238 239 /* vma_complete stores the new vma */ 240 vma_complete(&vp, vmi, vma->vm_mm); 241 validate_mm(vma->vm_mm); 242 243 /* Success. */ 244 if (new_below) 245 vma_next(vmi); 246 else 247 vma_prev(vmi); 248 249 return 0; 250 251 out_free_mpol: 252 mpol_put(vma_policy(new)); 253 out_free_vmi: 254 vma_iter_free(vmi); 255 out_free_vma: 256 vm_area_free(new); 257 return err; 258 } 259 260 /* 261 * Split a vma into two pieces at address 'addr', a new vma is allocated 262 * either for the first part or the tail. 263 */ 264 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 265 unsigned long addr, int new_below) 266 { 267 if (vma->vm_mm->map_count >= sysctl_max_map_count) 268 return -ENOMEM; 269 270 return __split_vma(vmi, vma, addr, new_below); 271 } 272 273 /* 274 * init_vma_prep() - Initializer wrapper for vma_prepare struct 275 * @vp: The vma_prepare struct 276 * @vma: The vma that will be altered once locked 277 */ 278 void init_vma_prep(struct vma_prepare *vp, 279 struct vm_area_struct *vma) 280 { 281 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 282 } 283 284 /* 285 * Requires inode->i_mapping->i_mmap_rwsem 286 */ 287 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 288 struct address_space *mapping) 289 { 290 if (vma_is_shared_maywrite(vma)) 291 mapping_unmap_writable(mapping); 292 293 flush_dcache_mmap_lock(mapping); 294 vma_interval_tree_remove(vma, &mapping->i_mmap); 295 flush_dcache_mmap_unlock(mapping); 296 } 297 298 /* 299 * vma has some anon_vma assigned, and is already inserted on that 300 * anon_vma's interval trees. 301 * 302 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 303 * vma must be removed from the anon_vma's interval trees using 304 * anon_vma_interval_tree_pre_update_vma(). 305 * 306 * After the update, the vma will be reinserted using 307 * anon_vma_interval_tree_post_update_vma(). 308 * 309 * The entire update must be protected by exclusive mmap_lock and by 310 * the root anon_vma's mutex. 311 */ 312 void 313 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 314 { 315 struct anon_vma_chain *avc; 316 317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 318 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 319 } 320 321 void 322 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 323 { 324 struct anon_vma_chain *avc; 325 326 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 327 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 328 } 329 330 static void __vma_link_file(struct vm_area_struct *vma, 331 struct address_space *mapping) 332 { 333 if (vma_is_shared_maywrite(vma)) 334 mapping_allow_writable(mapping); 335 336 flush_dcache_mmap_lock(mapping); 337 vma_interval_tree_insert(vma, &mapping->i_mmap); 338 flush_dcache_mmap_unlock(mapping); 339 } 340 341 /* 342 * vma_prepare() - Helper function for handling locking VMAs prior to altering 343 * @vp: The initialized vma_prepare struct 344 */ 345 void vma_prepare(struct vma_prepare *vp) 346 { 347 if (vp->file) { 348 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 349 350 if (vp->adj_next) 351 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 352 vp->adj_next->vm_end); 353 354 i_mmap_lock_write(vp->mapping); 355 if (vp->insert && vp->insert->vm_file) { 356 /* 357 * Put into interval tree now, so instantiated pages 358 * are visible to arm/parisc __flush_dcache_page 359 * throughout; but we cannot insert into address 360 * space until vma start or end is updated. 361 */ 362 __vma_link_file(vp->insert, 363 vp->insert->vm_file->f_mapping); 364 } 365 } 366 367 if (vp->anon_vma) { 368 anon_vma_lock_write(vp->anon_vma); 369 anon_vma_interval_tree_pre_update_vma(vp->vma); 370 if (vp->adj_next) 371 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 372 } 373 374 if (vp->file) { 375 flush_dcache_mmap_lock(vp->mapping); 376 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 377 if (vp->adj_next) 378 vma_interval_tree_remove(vp->adj_next, 379 &vp->mapping->i_mmap); 380 } 381 382 } 383 384 /* 385 * dup_anon_vma() - Helper function to duplicate anon_vma 386 * @dst: The destination VMA 387 * @src: The source VMA 388 * @dup: Pointer to the destination VMA when successful. 389 * 390 * Returns: 0 on success. 391 */ 392 static int dup_anon_vma(struct vm_area_struct *dst, 393 struct vm_area_struct *src, struct vm_area_struct **dup) 394 { 395 /* 396 * Easily overlooked: when mprotect shifts the boundary, make sure the 397 * expanding vma has anon_vma set if the shrinking vma had, to cover any 398 * anon pages imported. 399 */ 400 if (src->anon_vma && !dst->anon_vma) { 401 int ret; 402 403 vma_assert_write_locked(dst); 404 dst->anon_vma = src->anon_vma; 405 ret = anon_vma_clone(dst, src); 406 if (ret) 407 return ret; 408 409 *dup = dst; 410 } 411 412 return 0; 413 } 414 415 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 416 void validate_mm(struct mm_struct *mm) 417 { 418 int bug = 0; 419 int i = 0; 420 struct vm_area_struct *vma; 421 VMA_ITERATOR(vmi, mm, 0); 422 423 mt_validate(&mm->mm_mt); 424 for_each_vma(vmi, vma) { 425 #ifdef CONFIG_DEBUG_VM_RB 426 struct anon_vma *anon_vma = vma->anon_vma; 427 struct anon_vma_chain *avc; 428 #endif 429 unsigned long vmi_start, vmi_end; 430 bool warn = 0; 431 432 vmi_start = vma_iter_addr(&vmi); 433 vmi_end = vma_iter_end(&vmi); 434 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 435 warn = 1; 436 437 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 438 warn = 1; 439 440 if (warn) { 441 pr_emerg("issue in %s\n", current->comm); 442 dump_stack(); 443 dump_vma(vma); 444 pr_emerg("tree range: %px start %lx end %lx\n", vma, 445 vmi_start, vmi_end - 1); 446 vma_iter_dump_tree(&vmi); 447 } 448 449 #ifdef CONFIG_DEBUG_VM_RB 450 if (anon_vma) { 451 anon_vma_lock_read(anon_vma); 452 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 453 anon_vma_interval_tree_verify(avc); 454 anon_vma_unlock_read(anon_vma); 455 } 456 #endif 457 i++; 458 } 459 if (i != mm->map_count) { 460 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 461 bug = 1; 462 } 463 VM_BUG_ON_MM(bug, mm); 464 } 465 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 466 467 /* 468 * vma_expand - Expand an existing VMA 469 * 470 * @vmi: The vma iterator 471 * @vma: The vma to expand 472 * @start: The start of the vma 473 * @end: The exclusive end of the vma 474 * @pgoff: The page offset of vma 475 * @next: The current of next vma. 476 * 477 * Expand @vma to @start and @end. Can expand off the start and end. Will 478 * expand over @next if it's different from @vma and @end == @next->vm_end. 479 * Checking if the @vma can expand and merge with @next needs to be handled by 480 * the caller. 481 * 482 * Returns: 0 on success 483 */ 484 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 485 unsigned long start, unsigned long end, pgoff_t pgoff, 486 struct vm_area_struct *next) 487 { 488 struct vm_area_struct *anon_dup = NULL; 489 bool remove_next = false; 490 struct vma_prepare vp; 491 492 vma_start_write(vma); 493 if (next && (vma != next) && (end == next->vm_end)) { 494 int ret; 495 496 remove_next = true; 497 vma_start_write(next); 498 ret = dup_anon_vma(vma, next, &anon_dup); 499 if (ret) 500 return ret; 501 } 502 503 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 504 /* Not merging but overwriting any part of next is not handled. */ 505 VM_WARN_ON(next && !vp.remove && 506 next != vma && end > next->vm_start); 507 /* Only handles expanding */ 508 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 509 510 /* Note: vma iterator must be pointing to 'start' */ 511 vma_iter_config(vmi, start, end); 512 if (vma_iter_prealloc(vmi, vma)) 513 goto nomem; 514 515 vma_prepare(&vp); 516 vma_adjust_trans_huge(vma, start, end, 0); 517 vma_set_range(vma, start, end, pgoff); 518 vma_iter_store(vmi, vma); 519 520 vma_complete(&vp, vmi, vma->vm_mm); 521 return 0; 522 523 nomem: 524 if (anon_dup) 525 unlink_anon_vmas(anon_dup); 526 return -ENOMEM; 527 } 528 529 /* 530 * vma_shrink() - Reduce an existing VMAs memory area 531 * @vmi: The vma iterator 532 * @vma: The VMA to modify 533 * @start: The new start 534 * @end: The new end 535 * 536 * Returns: 0 on success, -ENOMEM otherwise 537 */ 538 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 539 unsigned long start, unsigned long end, pgoff_t pgoff) 540 { 541 struct vma_prepare vp; 542 543 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 544 545 if (vma->vm_start < start) 546 vma_iter_config(vmi, vma->vm_start, start); 547 else 548 vma_iter_config(vmi, end, vma->vm_end); 549 550 if (vma_iter_prealloc(vmi, NULL)) 551 return -ENOMEM; 552 553 vma_start_write(vma); 554 555 init_vma_prep(&vp, vma); 556 vma_prepare(&vp); 557 vma_adjust_trans_huge(vma, start, end, 0); 558 559 vma_iter_clear(vmi); 560 vma_set_range(vma, start, end, pgoff); 561 vma_complete(&vp, vmi, vma->vm_mm); 562 validate_mm(vma->vm_mm); 563 return 0; 564 } 565 566 /* 567 * vma_complete- Helper function for handling the unlocking after altering VMAs, 568 * or for inserting a VMA. 569 * 570 * @vp: The vma_prepare struct 571 * @vmi: The vma iterator 572 * @mm: The mm_struct 573 */ 574 void vma_complete(struct vma_prepare *vp, 575 struct vma_iterator *vmi, struct mm_struct *mm) 576 { 577 if (vp->file) { 578 if (vp->adj_next) 579 vma_interval_tree_insert(vp->adj_next, 580 &vp->mapping->i_mmap); 581 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 582 flush_dcache_mmap_unlock(vp->mapping); 583 } 584 585 if (vp->remove && vp->file) { 586 __remove_shared_vm_struct(vp->remove, vp->mapping); 587 if (vp->remove2) 588 __remove_shared_vm_struct(vp->remove2, vp->mapping); 589 } else if (vp->insert) { 590 /* 591 * split_vma has split insert from vma, and needs 592 * us to insert it before dropping the locks 593 * (it may either follow vma or precede it). 594 */ 595 vma_iter_store(vmi, vp->insert); 596 mm->map_count++; 597 } 598 599 if (vp->anon_vma) { 600 anon_vma_interval_tree_post_update_vma(vp->vma); 601 if (vp->adj_next) 602 anon_vma_interval_tree_post_update_vma(vp->adj_next); 603 anon_vma_unlock_write(vp->anon_vma); 604 } 605 606 if (vp->file) { 607 i_mmap_unlock_write(vp->mapping); 608 uprobe_mmap(vp->vma); 609 610 if (vp->adj_next) 611 uprobe_mmap(vp->adj_next); 612 } 613 614 if (vp->remove) { 615 again: 616 vma_mark_detached(vp->remove, true); 617 if (vp->file) { 618 uprobe_munmap(vp->remove, vp->remove->vm_start, 619 vp->remove->vm_end); 620 fput(vp->file); 621 } 622 if (vp->remove->anon_vma) 623 anon_vma_merge(vp->vma, vp->remove); 624 mm->map_count--; 625 mpol_put(vma_policy(vp->remove)); 626 if (!vp->remove2) 627 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 628 vm_area_free(vp->remove); 629 630 /* 631 * In mprotect's case 6 (see comments on vma_merge), 632 * we are removing both mid and next vmas 633 */ 634 if (vp->remove2) { 635 vp->remove = vp->remove2; 636 vp->remove2 = NULL; 637 goto again; 638 } 639 } 640 if (vp->insert && vp->file) 641 uprobe_mmap(vp->insert); 642 } 643 644 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 645 struct ma_state *mas_detach, bool mm_wr_locked) 646 { 647 struct mmu_gather tlb; 648 649 if (!vms->clear_ptes) /* Nothing to do */ 650 return; 651 652 /* 653 * We can free page tables without write-locking mmap_lock because VMAs 654 * were isolated before we downgraded mmap_lock. 655 */ 656 mas_set(mas_detach, 1); 657 lru_add_drain(); 658 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 659 update_hiwater_rss(vms->vma->vm_mm); 660 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 661 vms->vma_count, mm_wr_locked); 662 663 mas_set(mas_detach, 1); 664 /* start and end may be different if there is no prev or next vma. */ 665 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 666 vms->unmap_end, mm_wr_locked); 667 tlb_finish_mmu(&tlb); 668 vms->clear_ptes = false; 669 } 670 671 void vms_clean_up_area(struct vma_munmap_struct *vms, 672 struct ma_state *mas_detach) 673 { 674 struct vm_area_struct *vma; 675 676 if (!vms->nr_pages) 677 return; 678 679 vms_clear_ptes(vms, mas_detach, true); 680 mas_set(mas_detach, 0); 681 mas_for_each(mas_detach, vma, ULONG_MAX) 682 if (vma->vm_ops && vma->vm_ops->close) 683 vma->vm_ops->close(vma); 684 vms->closed_vm_ops = true; 685 } 686 687 /* 688 * vms_complete_munmap_vmas() - Finish the munmap() operation 689 * @vms: The vma munmap struct 690 * @mas_detach: The maple state of the detached vmas 691 * 692 * This updates the mm_struct, unmaps the region, frees the resources 693 * used for the munmap() and may downgrade the lock - if requested. Everything 694 * needed to be done once the vma maple tree is updated. 695 */ 696 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 697 struct ma_state *mas_detach) 698 { 699 struct vm_area_struct *vma; 700 struct mm_struct *mm; 701 702 mm = current->mm; 703 mm->map_count -= vms->vma_count; 704 mm->locked_vm -= vms->locked_vm; 705 if (vms->unlock) 706 mmap_write_downgrade(mm); 707 708 if (!vms->nr_pages) 709 return; 710 711 vms_clear_ptes(vms, mas_detach, !vms->unlock); 712 /* Update high watermark before we lower total_vm */ 713 update_hiwater_vm(mm); 714 /* Stat accounting */ 715 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 716 /* Paranoid bookkeeping */ 717 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 718 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 719 VM_WARN_ON(vms->data_vm > mm->data_vm); 720 mm->exec_vm -= vms->exec_vm; 721 mm->stack_vm -= vms->stack_vm; 722 mm->data_vm -= vms->data_vm; 723 724 /* Remove and clean up vmas */ 725 mas_set(mas_detach, 0); 726 mas_for_each(mas_detach, vma, ULONG_MAX) 727 remove_vma(vma, /* = */ false, vms->closed_vm_ops); 728 729 vm_unacct_memory(vms->nr_accounted); 730 validate_mm(mm); 731 if (vms->unlock) 732 mmap_read_unlock(mm); 733 734 __mt_destroy(mas_detach->tree); 735 } 736 737 /* 738 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 739 * for removal at a later date. Handles splitting first and last if necessary 740 * and marking the vmas as isolated. 741 * 742 * @vms: The vma munmap struct 743 * @mas_detach: The maple state tracking the detached tree 744 * 745 * Return: 0 on success, -EPERM on mseal vmas, -ENOMEM otherwise 746 */ 747 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 748 struct ma_state *mas_detach) 749 { 750 struct vm_area_struct *next = NULL; 751 int error = -ENOMEM; 752 753 /* 754 * If we need to split any vma, do it now to save pain later. 755 * Does it split the first one? 756 */ 757 if (vms->start > vms->vma->vm_start) { 758 759 /* 760 * Make sure that map_count on return from munmap() will 761 * not exceed its limit; but let map_count go just above 762 * its limit temporarily, to help free resources as expected. 763 */ 764 if (vms->end < vms->vma->vm_end && 765 vms->vma->vm_mm->map_count >= sysctl_max_map_count) 766 goto map_count_exceeded; 767 768 /* Don't bother splitting the VMA if we can't unmap it anyway */ 769 if (!can_modify_vma(vms->vma)) { 770 error = -EPERM; 771 goto start_split_failed; 772 } 773 774 if (__split_vma(vms->vmi, vms->vma, vms->start, 1)) 775 goto start_split_failed; 776 } 777 vms->prev = vma_prev(vms->vmi); 778 if (vms->prev) 779 vms->unmap_start = vms->prev->vm_end; 780 781 /* 782 * Detach a range of VMAs from the mm. Using next as a temp variable as 783 * it is always overwritten. 784 */ 785 for_each_vma_range(*(vms->vmi), next, vms->end) { 786 long nrpages; 787 788 if (!can_modify_vma(next)) { 789 error = -EPERM; 790 goto modify_vma_failed; 791 } 792 /* Does it split the end? */ 793 if (next->vm_end > vms->end) { 794 if (__split_vma(vms->vmi, next, vms->end, 0)) 795 goto end_split_failed; 796 } 797 vma_start_write(next); 798 mas_set(mas_detach, vms->vma_count++); 799 if (mas_store_gfp(mas_detach, next, GFP_KERNEL)) 800 goto munmap_gather_failed; 801 802 vma_mark_detached(next, true); 803 nrpages = vma_pages(next); 804 805 vms->nr_pages += nrpages; 806 if (next->vm_flags & VM_LOCKED) 807 vms->locked_vm += nrpages; 808 809 if (next->vm_flags & VM_ACCOUNT) 810 vms->nr_accounted += nrpages; 811 812 if (is_exec_mapping(next->vm_flags)) 813 vms->exec_vm += nrpages; 814 else if (is_stack_mapping(next->vm_flags)) 815 vms->stack_vm += nrpages; 816 else if (is_data_mapping(next->vm_flags)) 817 vms->data_vm += nrpages; 818 819 if (unlikely(vms->uf)) { 820 /* 821 * If userfaultfd_unmap_prep returns an error the vmas 822 * will remain split, but userland will get a 823 * highly unexpected error anyway. This is no 824 * different than the case where the first of the two 825 * __split_vma fails, but we don't undo the first 826 * split, despite we could. This is unlikely enough 827 * failure that it's not worth optimizing it for. 828 */ 829 if (userfaultfd_unmap_prep(next, vms->start, vms->end, 830 vms->uf)) 831 goto userfaultfd_error; 832 } 833 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 834 BUG_ON(next->vm_start < vms->start); 835 BUG_ON(next->vm_start > vms->end); 836 #endif 837 } 838 839 vms->next = vma_next(vms->vmi); 840 if (vms->next) 841 vms->unmap_end = vms->next->vm_start; 842 843 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 844 /* Make sure no VMAs are about to be lost. */ 845 { 846 MA_STATE(test, mas_detach->tree, 0, 0); 847 struct vm_area_struct *vma_mas, *vma_test; 848 int test_count = 0; 849 850 vma_iter_set(vms->vmi, vms->start); 851 rcu_read_lock(); 852 vma_test = mas_find(&test, vms->vma_count - 1); 853 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 854 BUG_ON(vma_mas != vma_test); 855 test_count++; 856 vma_test = mas_next(&test, vms->vma_count - 1); 857 } 858 rcu_read_unlock(); 859 BUG_ON(vms->vma_count != test_count); 860 } 861 #endif 862 863 while (vma_iter_addr(vms->vmi) > vms->start) 864 vma_iter_prev_range(vms->vmi); 865 866 vms->clear_ptes = true; 867 return 0; 868 869 userfaultfd_error: 870 munmap_gather_failed: 871 end_split_failed: 872 modify_vma_failed: 873 reattach_vmas(mas_detach); 874 start_split_failed: 875 map_count_exceeded: 876 return error; 877 } 878 879 /* 880 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 881 * @vmi: The vma iterator 882 * @vma: The starting vm_area_struct 883 * @mm: The mm_struct 884 * @start: The aligned start address to munmap. 885 * @end: The aligned end address to munmap. 886 * @uf: The userfaultfd list_head 887 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 888 * success. 889 * 890 * Return: 0 on success and drops the lock if so directed, error and leaves the 891 * lock held otherwise. 892 */ 893 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 894 struct mm_struct *mm, unsigned long start, unsigned long end, 895 struct list_head *uf, bool unlock) 896 { 897 struct maple_tree mt_detach; 898 MA_STATE(mas_detach, &mt_detach, 0, 0); 899 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 900 mt_on_stack(mt_detach); 901 struct vma_munmap_struct vms; 902 int error; 903 904 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 905 error = vms_gather_munmap_vmas(&vms, &mas_detach); 906 if (error) 907 goto gather_failed; 908 909 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 910 if (error) 911 goto clear_tree_failed; 912 913 /* Point of no return */ 914 vms_complete_munmap_vmas(&vms, &mas_detach); 915 return 0; 916 917 clear_tree_failed: 918 reattach_vmas(&mas_detach); 919 gather_failed: 920 validate_mm(mm); 921 return error; 922 } 923 924 /* 925 * do_vmi_munmap() - munmap a given range. 926 * @vmi: The vma iterator 927 * @mm: The mm_struct 928 * @start: The start address to munmap 929 * @len: The length of the range to munmap 930 * @uf: The userfaultfd list_head 931 * @unlock: set to true if the user wants to drop the mmap_lock on success 932 * 933 * This function takes a @mas that is either pointing to the previous VMA or set 934 * to MA_START and sets it up to remove the mapping(s). The @len will be 935 * aligned. 936 * 937 * Return: 0 on success and drops the lock if so directed, error and leaves the 938 * lock held otherwise. 939 */ 940 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 941 unsigned long start, size_t len, struct list_head *uf, 942 bool unlock) 943 { 944 unsigned long end; 945 struct vm_area_struct *vma; 946 947 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 948 return -EINVAL; 949 950 end = start + PAGE_ALIGN(len); 951 if (end == start) 952 return -EINVAL; 953 954 /* Find the first overlapping VMA */ 955 vma = vma_find(vmi, end); 956 if (!vma) { 957 if (unlock) 958 mmap_write_unlock(mm); 959 return 0; 960 } 961 962 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 963 } 964 965 /* 966 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 967 * figure out whether that can be merged with its predecessor or its 968 * successor. Or both (it neatly fills a hole). 969 * 970 * In most cases - when called for mmap, brk or mremap - [addr,end) is 971 * certain not to be mapped by the time vma_merge is called; but when 972 * called for mprotect, it is certain to be already mapped (either at 973 * an offset within prev, or at the start of next), and the flags of 974 * this area are about to be changed to vm_flags - and the no-change 975 * case has already been eliminated. 976 * 977 * The following mprotect cases have to be considered, where **** is 978 * the area passed down from mprotect_fixup, never extending beyond one 979 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 980 * at the same address as **** and is of the same or larger span, and 981 * NNNN the next vma after ****: 982 * 983 * **** **** **** 984 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 985 * cannot merge might become might become 986 * PPNNNNNNNNNN PPPPPPPPPPCC 987 * mmap, brk or case 4 below case 5 below 988 * mremap move: 989 * **** **** 990 * PPPP NNNN PPPPCCCCNNNN 991 * might become might become 992 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 993 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 994 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 995 * 996 * It is important for case 8 that the vma CCCC overlapping the 997 * region **** is never going to extended over NNNN. Instead NNNN must 998 * be extended in region **** and CCCC must be removed. This way in 999 * all cases where vma_merge succeeds, the moment vma_merge drops the 1000 * rmap_locks, the properties of the merged vma will be already 1001 * correct for the whole merged range. Some of those properties like 1002 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 1003 * be correct for the whole merged range immediately after the 1004 * rmap_locks are released. Otherwise if NNNN would be removed and 1005 * CCCC would be extended over the NNNN range, remove_migration_ptes 1006 * or other rmap walkers (if working on addresses beyond the "end" 1007 * parameter) may establish ptes with the wrong permissions of CCCC 1008 * instead of the right permissions of NNNN. 1009 * 1010 * In the code below: 1011 * PPPP is represented by *prev 1012 * CCCC is represented by *curr or not represented at all (NULL) 1013 * NNNN is represented by *next or not represented at all (NULL) 1014 * **** is not represented - it will be merged and the vma containing the 1015 * area is returned, or the function will return NULL 1016 */ 1017 static struct vm_area_struct *vma_merge(struct vma_merge_struct *vmg) 1018 { 1019 struct mm_struct *mm = vmg->mm; 1020 struct vm_area_struct *prev = vmg->prev; 1021 struct vm_area_struct *curr, *next, *res; 1022 struct vm_area_struct *vma, *adjust, *remove, *remove2; 1023 struct vm_area_struct *anon_dup = NULL; 1024 struct vma_prepare vp; 1025 pgoff_t vma_pgoff; 1026 int err = 0; 1027 bool merge_prev = false; 1028 bool merge_next = false; 1029 bool vma_expanded = false; 1030 unsigned long addr = vmg->start; 1031 unsigned long end = vmg->end; 1032 unsigned long vma_start = addr; 1033 unsigned long vma_end = end; 1034 pgoff_t pglen = PHYS_PFN(end - addr); 1035 long adj_start = 0; 1036 1037 /* 1038 * We later require that vma->vm_flags == vm_flags, 1039 * so this tests vma->vm_flags & VM_SPECIAL, too. 1040 */ 1041 if (vmg->flags & VM_SPECIAL) 1042 return NULL; 1043 1044 /* Does the input range span an existing VMA? (cases 5 - 8) */ 1045 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 1046 1047 if (!curr || /* cases 1 - 4 */ 1048 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 1049 next = vmg->next = vma_lookup(mm, end); 1050 else 1051 next = vmg->next = NULL; /* case 5 */ 1052 1053 if (prev) { 1054 vma_start = prev->vm_start; 1055 vma_pgoff = prev->vm_pgoff; 1056 1057 /* Can we merge the predecessor? */ 1058 if (addr == prev->vm_end && can_vma_merge_after(vmg)) { 1059 merge_prev = true; 1060 vma_prev(vmg->vmi); 1061 } 1062 } 1063 1064 /* Can we merge the successor? */ 1065 if (next && can_vma_merge_before(vmg)) { 1066 merge_next = true; 1067 } 1068 1069 /* Verify some invariant that must be enforced by the caller. */ 1070 VM_WARN_ON(prev && addr <= prev->vm_start); 1071 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 1072 VM_WARN_ON(addr >= end); 1073 1074 if (!merge_prev && !merge_next) 1075 return NULL; /* Not mergeable. */ 1076 1077 if (merge_prev) 1078 vma_start_write(prev); 1079 1080 res = vma = prev; 1081 remove = remove2 = adjust = NULL; 1082 1083 /* Can we merge both the predecessor and the successor? */ 1084 if (merge_prev && merge_next && 1085 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 1086 vma_start_write(next); 1087 remove = next; /* case 1 */ 1088 vma_end = next->vm_end; 1089 err = dup_anon_vma(prev, next, &anon_dup); 1090 if (curr) { /* case 6 */ 1091 vma_start_write(curr); 1092 remove = curr; 1093 remove2 = next; 1094 /* 1095 * Note that the dup_anon_vma below cannot overwrite err 1096 * since the first caller would do nothing unless next 1097 * has an anon_vma. 1098 */ 1099 if (!next->anon_vma) 1100 err = dup_anon_vma(prev, curr, &anon_dup); 1101 } 1102 } else if (merge_prev) { /* case 2 */ 1103 if (curr) { 1104 vma_start_write(curr); 1105 if (end == curr->vm_end) { /* case 7 */ 1106 /* 1107 * can_vma_merge_after() assumed we would not be 1108 * removing prev vma, so it skipped the check 1109 * for vm_ops->close, but we are removing curr 1110 */ 1111 if (curr->vm_ops && curr->vm_ops->close) 1112 err = -EINVAL; 1113 remove = curr; 1114 } else { /* case 5 */ 1115 adjust = curr; 1116 adj_start = (end - curr->vm_start); 1117 } 1118 if (!err) 1119 err = dup_anon_vma(prev, curr, &anon_dup); 1120 } 1121 } else { /* merge_next */ 1122 vma_start_write(next); 1123 res = next; 1124 if (prev && addr < prev->vm_end) { /* case 4 */ 1125 vma_start_write(prev); 1126 vma_end = addr; 1127 adjust = next; 1128 adj_start = -(prev->vm_end - addr); 1129 err = dup_anon_vma(next, prev, &anon_dup); 1130 } else { 1131 /* 1132 * Note that cases 3 and 8 are the ONLY ones where prev 1133 * is permitted to be (but is not necessarily) NULL. 1134 */ 1135 vma = next; /* case 3 */ 1136 vma_start = addr; 1137 vma_end = next->vm_end; 1138 vma_pgoff = next->vm_pgoff - pglen; 1139 if (curr) { /* case 8 */ 1140 vma_pgoff = curr->vm_pgoff; 1141 vma_start_write(curr); 1142 remove = curr; 1143 err = dup_anon_vma(next, curr, &anon_dup); 1144 } 1145 } 1146 } 1147 1148 /* Error in anon_vma clone. */ 1149 if (err) 1150 goto anon_vma_fail; 1151 1152 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1153 vma_expanded = true; 1154 1155 if (vma_expanded) { 1156 vma_iter_config(vmg->vmi, vma_start, vma_end); 1157 } else { 1158 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start, 1159 adjust->vm_end); 1160 } 1161 1162 if (vma_iter_prealloc(vmg->vmi, vma)) 1163 goto prealloc_fail; 1164 1165 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1166 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1167 vp.anon_vma != adjust->anon_vma); 1168 1169 vma_prepare(&vp); 1170 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1171 vma_set_range(vma, vma_start, vma_end, vma_pgoff); 1172 1173 if (vma_expanded) 1174 vma_iter_store(vmg->vmi, vma); 1175 1176 if (adj_start) { 1177 adjust->vm_start += adj_start; 1178 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1179 if (adj_start < 0) { 1180 WARN_ON(vma_expanded); 1181 vma_iter_store(vmg->vmi, next); 1182 } 1183 } 1184 1185 vma_complete(&vp, vmg->vmi, mm); 1186 validate_mm(mm); 1187 khugepaged_enter_vma(res, vmg->flags); 1188 return res; 1189 1190 prealloc_fail: 1191 if (anon_dup) 1192 unlink_anon_vmas(anon_dup); 1193 1194 anon_vma_fail: 1195 vma_iter_set(vmg->vmi, addr); 1196 vma_iter_load(vmg->vmi); 1197 return NULL; 1198 } 1199 1200 /* 1201 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1202 * context and anonymous VMA name within the range [start, end). 1203 * 1204 * As a result, we might be able to merge the newly modified VMA range with an 1205 * adjacent VMA with identical properties. 1206 * 1207 * If no merge is possible and the range does not span the entirety of the VMA, 1208 * we then need to split the VMA to accommodate the change. 1209 * 1210 * The function returns either the merged VMA, the original VMA if a split was 1211 * required instead, or an error if the split failed. 1212 */ 1213 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1214 { 1215 struct vm_area_struct *vma = vmg->vma; 1216 struct vm_area_struct *merged; 1217 1218 /* First, try to merge. */ 1219 merged = vma_merge(vmg); 1220 if (merged) 1221 return merged; 1222 1223 /* Split any preceding portion of the VMA. */ 1224 if (vma->vm_start < vmg->start) { 1225 int err = split_vma(vmg->vmi, vma, vmg->start, 1); 1226 1227 if (err) 1228 return ERR_PTR(err); 1229 } 1230 1231 /* Split any trailing portion of the VMA. */ 1232 if (vma->vm_end > vmg->end) { 1233 int err = split_vma(vmg->vmi, vma, vmg->end, 0); 1234 1235 if (err) 1236 return ERR_PTR(err); 1237 } 1238 1239 return vma; 1240 } 1241 1242 struct vm_area_struct *vma_modify_flags( 1243 struct vma_iterator *vmi, struct vm_area_struct *prev, 1244 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1245 unsigned long new_flags) 1246 { 1247 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1248 1249 vmg.flags = new_flags; 1250 1251 return vma_modify(&vmg); 1252 } 1253 1254 struct vm_area_struct 1255 *vma_modify_flags_name(struct vma_iterator *vmi, 1256 struct vm_area_struct *prev, 1257 struct vm_area_struct *vma, 1258 unsigned long start, 1259 unsigned long end, 1260 unsigned long new_flags, 1261 struct anon_vma_name *new_name) 1262 { 1263 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1264 1265 vmg.flags = new_flags; 1266 vmg.anon_name = new_name; 1267 1268 return vma_modify(&vmg); 1269 } 1270 1271 struct vm_area_struct 1272 *vma_modify_policy(struct vma_iterator *vmi, 1273 struct vm_area_struct *prev, 1274 struct vm_area_struct *vma, 1275 unsigned long start, unsigned long end, 1276 struct mempolicy *new_pol) 1277 { 1278 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1279 1280 vmg.policy = new_pol; 1281 1282 return vma_modify(&vmg); 1283 } 1284 1285 struct vm_area_struct 1286 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1287 struct vm_area_struct *prev, 1288 struct vm_area_struct *vma, 1289 unsigned long start, unsigned long end, 1290 unsigned long new_flags, 1291 struct vm_userfaultfd_ctx new_ctx) 1292 { 1293 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1294 1295 vmg.flags = new_flags; 1296 vmg.uffd_ctx = new_ctx; 1297 1298 return vma_modify(&vmg); 1299 } 1300 1301 /* 1302 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller 1303 * must ensure that [start, end) does not overlap any existing VMA. 1304 */ 1305 struct vm_area_struct 1306 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 1307 struct vm_area_struct *vma, unsigned long start, 1308 unsigned long end, pgoff_t pgoff) 1309 { 1310 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1311 1312 vmg.pgoff = pgoff; 1313 1314 return vma_merge(&vmg); 1315 } 1316 1317 /* 1318 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1319 * VMA with identical properties. 1320 */ 1321 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1322 struct vm_area_struct *vma, 1323 unsigned long delta) 1324 { 1325 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1326 1327 /* vma is specified as prev, so case 1 or 2 will apply. */ 1328 return vma_merge(&vmg); 1329 } 1330 1331 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1332 { 1333 vb->count = 0; 1334 } 1335 1336 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1337 { 1338 struct address_space *mapping; 1339 int i; 1340 1341 mapping = vb->vmas[0]->vm_file->f_mapping; 1342 i_mmap_lock_write(mapping); 1343 for (i = 0; i < vb->count; i++) { 1344 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1345 __remove_shared_vm_struct(vb->vmas[i], mapping); 1346 } 1347 i_mmap_unlock_write(mapping); 1348 1349 unlink_file_vma_batch_init(vb); 1350 } 1351 1352 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1353 struct vm_area_struct *vma) 1354 { 1355 if (vma->vm_file == NULL) 1356 return; 1357 1358 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1359 vb->count == ARRAY_SIZE(vb->vmas)) 1360 unlink_file_vma_batch_process(vb); 1361 1362 vb->vmas[vb->count] = vma; 1363 vb->count++; 1364 } 1365 1366 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1367 { 1368 if (vb->count > 0) 1369 unlink_file_vma_batch_process(vb); 1370 } 1371 1372 /* 1373 * Unlink a file-based vm structure from its interval tree, to hide 1374 * vma from rmap and vmtruncate before freeing its page tables. 1375 */ 1376 void unlink_file_vma(struct vm_area_struct *vma) 1377 { 1378 struct file *file = vma->vm_file; 1379 1380 if (file) { 1381 struct address_space *mapping = file->f_mapping; 1382 1383 i_mmap_lock_write(mapping); 1384 __remove_shared_vm_struct(vma, mapping); 1385 i_mmap_unlock_write(mapping); 1386 } 1387 } 1388 1389 void vma_link_file(struct vm_area_struct *vma) 1390 { 1391 struct file *file = vma->vm_file; 1392 struct address_space *mapping; 1393 1394 if (file) { 1395 mapping = file->f_mapping; 1396 i_mmap_lock_write(mapping); 1397 __vma_link_file(vma, mapping); 1398 i_mmap_unlock_write(mapping); 1399 } 1400 } 1401 1402 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1403 { 1404 VMA_ITERATOR(vmi, mm, 0); 1405 1406 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1407 if (vma_iter_prealloc(&vmi, vma)) 1408 return -ENOMEM; 1409 1410 vma_start_write(vma); 1411 vma_iter_store(&vmi, vma); 1412 vma_link_file(vma); 1413 mm->map_count++; 1414 validate_mm(mm); 1415 return 0; 1416 } 1417 1418 /* 1419 * Copy the vma structure to a new location in the same mm, 1420 * prior to moving page table entries, to effect an mremap move. 1421 */ 1422 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1423 unsigned long addr, unsigned long len, pgoff_t pgoff, 1424 bool *need_rmap_locks) 1425 { 1426 struct vm_area_struct *vma = *vmap; 1427 unsigned long vma_start = vma->vm_start; 1428 struct mm_struct *mm = vma->vm_mm; 1429 struct vm_area_struct *new_vma, *prev; 1430 bool faulted_in_anon_vma = true; 1431 VMA_ITERATOR(vmi, mm, addr); 1432 1433 /* 1434 * If anonymous vma has not yet been faulted, update new pgoff 1435 * to match new location, to increase its chance of merging. 1436 */ 1437 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1438 pgoff = addr >> PAGE_SHIFT; 1439 faulted_in_anon_vma = false; 1440 } 1441 1442 new_vma = find_vma_prev(mm, addr, &prev); 1443 if (new_vma && new_vma->vm_start < addr + len) 1444 return NULL; /* should never get here */ 1445 1446 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff); 1447 if (new_vma) { 1448 /* 1449 * Source vma may have been merged into new_vma 1450 */ 1451 if (unlikely(vma_start >= new_vma->vm_start && 1452 vma_start < new_vma->vm_end)) { 1453 /* 1454 * The only way we can get a vma_merge with 1455 * self during an mremap is if the vma hasn't 1456 * been faulted in yet and we were allowed to 1457 * reset the dst vma->vm_pgoff to the 1458 * destination address of the mremap to allow 1459 * the merge to happen. mremap must change the 1460 * vm_pgoff linearity between src and dst vmas 1461 * (in turn preventing a vma_merge) to be 1462 * safe. It is only safe to keep the vm_pgoff 1463 * linear if there are no pages mapped yet. 1464 */ 1465 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1466 *vmap = vma = new_vma; 1467 } 1468 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1469 } else { 1470 new_vma = vm_area_dup(vma); 1471 if (!new_vma) 1472 goto out; 1473 vma_set_range(new_vma, addr, addr + len, pgoff); 1474 if (vma_dup_policy(vma, new_vma)) 1475 goto out_free_vma; 1476 if (anon_vma_clone(new_vma, vma)) 1477 goto out_free_mempol; 1478 if (new_vma->vm_file) 1479 get_file(new_vma->vm_file); 1480 if (new_vma->vm_ops && new_vma->vm_ops->open) 1481 new_vma->vm_ops->open(new_vma); 1482 if (vma_link(mm, new_vma)) 1483 goto out_vma_link; 1484 *need_rmap_locks = false; 1485 } 1486 return new_vma; 1487 1488 out_vma_link: 1489 if (new_vma->vm_ops && new_vma->vm_ops->close) 1490 new_vma->vm_ops->close(new_vma); 1491 1492 if (new_vma->vm_file) 1493 fput(new_vma->vm_file); 1494 1495 unlink_anon_vmas(new_vma); 1496 out_free_mempol: 1497 mpol_put(vma_policy(new_vma)); 1498 out_free_vma: 1499 vm_area_free(new_vma); 1500 out: 1501 return NULL; 1502 } 1503 1504 /* 1505 * Rough compatibility check to quickly see if it's even worth looking 1506 * at sharing an anon_vma. 1507 * 1508 * They need to have the same vm_file, and the flags can only differ 1509 * in things that mprotect may change. 1510 * 1511 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1512 * we can merge the two vma's. For example, we refuse to merge a vma if 1513 * there is a vm_ops->close() function, because that indicates that the 1514 * driver is doing some kind of reference counting. But that doesn't 1515 * really matter for the anon_vma sharing case. 1516 */ 1517 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1518 { 1519 return a->vm_end == b->vm_start && 1520 mpol_equal(vma_policy(a), vma_policy(b)) && 1521 a->vm_file == b->vm_file && 1522 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1523 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1524 } 1525 1526 /* 1527 * Do some basic sanity checking to see if we can re-use the anon_vma 1528 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1529 * the same as 'old', the other will be the new one that is trying 1530 * to share the anon_vma. 1531 * 1532 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1533 * the anon_vma of 'old' is concurrently in the process of being set up 1534 * by another page fault trying to merge _that_. But that's ok: if it 1535 * is being set up, that automatically means that it will be a singleton 1536 * acceptable for merging, so we can do all of this optimistically. But 1537 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1538 * 1539 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1540 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1541 * is to return an anon_vma that is "complex" due to having gone through 1542 * a fork). 1543 * 1544 * We also make sure that the two vma's are compatible (adjacent, 1545 * and with the same memory policies). That's all stable, even with just 1546 * a read lock on the mmap_lock. 1547 */ 1548 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1549 struct vm_area_struct *a, 1550 struct vm_area_struct *b) 1551 { 1552 if (anon_vma_compatible(a, b)) { 1553 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1554 1555 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1556 return anon_vma; 1557 } 1558 return NULL; 1559 } 1560 1561 /* 1562 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1563 * neighbouring vmas for a suitable anon_vma, before it goes off 1564 * to allocate a new anon_vma. It checks because a repetitive 1565 * sequence of mprotects and faults may otherwise lead to distinct 1566 * anon_vmas being allocated, preventing vma merge in subsequent 1567 * mprotect. 1568 */ 1569 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1570 { 1571 struct anon_vma *anon_vma = NULL; 1572 struct vm_area_struct *prev, *next; 1573 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1574 1575 /* Try next first. */ 1576 next = vma_iter_load(&vmi); 1577 if (next) { 1578 anon_vma = reusable_anon_vma(next, vma, next); 1579 if (anon_vma) 1580 return anon_vma; 1581 } 1582 1583 prev = vma_prev(&vmi); 1584 VM_BUG_ON_VMA(prev != vma, vma); 1585 prev = vma_prev(&vmi); 1586 /* Try prev next. */ 1587 if (prev) 1588 anon_vma = reusable_anon_vma(prev, prev, vma); 1589 1590 /* 1591 * We might reach here with anon_vma == NULL if we can't find 1592 * any reusable anon_vma. 1593 * There's no absolute need to look only at touching neighbours: 1594 * we could search further afield for "compatible" anon_vmas. 1595 * But it would probably just be a waste of time searching, 1596 * or lead to too many vmas hanging off the same anon_vma. 1597 * We're trying to allow mprotect remerging later on, 1598 * not trying to minimize memory used for anon_vmas. 1599 */ 1600 return anon_vma; 1601 } 1602 1603 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1604 { 1605 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1606 } 1607 1608 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1609 { 1610 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1611 (VM_WRITE | VM_SHARED); 1612 } 1613 1614 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1615 { 1616 /* No managed pages to writeback. */ 1617 if (vma->vm_flags & VM_PFNMAP) 1618 return false; 1619 1620 return vma->vm_file && vma->vm_file->f_mapping && 1621 mapping_can_writeback(vma->vm_file->f_mapping); 1622 } 1623 1624 /* 1625 * Does this VMA require the underlying folios to have their dirty state 1626 * tracked? 1627 */ 1628 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1629 { 1630 /* Only shared, writable VMAs require dirty tracking. */ 1631 if (!vma_is_shared_writable(vma)) 1632 return false; 1633 1634 /* Does the filesystem need to be notified? */ 1635 if (vm_ops_needs_writenotify(vma->vm_ops)) 1636 return true; 1637 1638 /* 1639 * Even if the filesystem doesn't indicate a need for writenotify, if it 1640 * can writeback, dirty tracking is still required. 1641 */ 1642 return vma_fs_can_writeback(vma); 1643 } 1644 1645 /* 1646 * Some shared mappings will want the pages marked read-only 1647 * to track write events. If so, we'll downgrade vm_page_prot 1648 * to the private version (using protection_map[] without the 1649 * VM_SHARED bit). 1650 */ 1651 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1652 { 1653 /* If it was private or non-writable, the write bit is already clear */ 1654 if (!vma_is_shared_writable(vma)) 1655 return false; 1656 1657 /* The backer wishes to know when pages are first written to? */ 1658 if (vm_ops_needs_writenotify(vma->vm_ops)) 1659 return true; 1660 1661 /* The open routine did something to the protections that pgprot_modify 1662 * won't preserve? */ 1663 if (pgprot_val(vm_page_prot) != 1664 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1665 return false; 1666 1667 /* 1668 * Do we need to track softdirty? hugetlb does not support softdirty 1669 * tracking yet. 1670 */ 1671 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1672 return true; 1673 1674 /* Do we need write faults for uffd-wp tracking? */ 1675 if (userfaultfd_wp(vma)) 1676 return true; 1677 1678 /* Can the mapping track the dirty pages? */ 1679 return vma_fs_can_writeback(vma); 1680 } 1681 1682 static DEFINE_MUTEX(mm_all_locks_mutex); 1683 1684 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1685 { 1686 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1687 /* 1688 * The LSB of head.next can't change from under us 1689 * because we hold the mm_all_locks_mutex. 1690 */ 1691 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1692 /* 1693 * We can safely modify head.next after taking the 1694 * anon_vma->root->rwsem. If some other vma in this mm shares 1695 * the same anon_vma we won't take it again. 1696 * 1697 * No need of atomic instructions here, head.next 1698 * can't change from under us thanks to the 1699 * anon_vma->root->rwsem. 1700 */ 1701 if (__test_and_set_bit(0, (unsigned long *) 1702 &anon_vma->root->rb_root.rb_root.rb_node)) 1703 BUG(); 1704 } 1705 } 1706 1707 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 1708 { 1709 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1710 /* 1711 * AS_MM_ALL_LOCKS can't change from under us because 1712 * we hold the mm_all_locks_mutex. 1713 * 1714 * Operations on ->flags have to be atomic because 1715 * even if AS_MM_ALL_LOCKS is stable thanks to the 1716 * mm_all_locks_mutex, there may be other cpus 1717 * changing other bitflags in parallel to us. 1718 */ 1719 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 1720 BUG(); 1721 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 1722 } 1723 } 1724 1725 /* 1726 * This operation locks against the VM for all pte/vma/mm related 1727 * operations that could ever happen on a certain mm. This includes 1728 * vmtruncate, try_to_unmap, and all page faults. 1729 * 1730 * The caller must take the mmap_lock in write mode before calling 1731 * mm_take_all_locks(). The caller isn't allowed to release the 1732 * mmap_lock until mm_drop_all_locks() returns. 1733 * 1734 * mmap_lock in write mode is required in order to block all operations 1735 * that could modify pagetables and free pages without need of 1736 * altering the vma layout. It's also needed in write mode to avoid new 1737 * anon_vmas to be associated with existing vmas. 1738 * 1739 * A single task can't take more than one mm_take_all_locks() in a row 1740 * or it would deadlock. 1741 * 1742 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 1743 * mapping->flags avoid to take the same lock twice, if more than one 1744 * vma in this mm is backed by the same anon_vma or address_space. 1745 * 1746 * We take locks in following order, accordingly to comment at beginning 1747 * of mm/rmap.c: 1748 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 1749 * hugetlb mapping); 1750 * - all vmas marked locked 1751 * - all i_mmap_rwsem locks; 1752 * - all anon_vma->rwseml 1753 * 1754 * We can take all locks within these types randomly because the VM code 1755 * doesn't nest them and we protected from parallel mm_take_all_locks() by 1756 * mm_all_locks_mutex. 1757 * 1758 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 1759 * that may have to take thousand of locks. 1760 * 1761 * mm_take_all_locks() can fail if it's interrupted by signals. 1762 */ 1763 int mm_take_all_locks(struct mm_struct *mm) 1764 { 1765 struct vm_area_struct *vma; 1766 struct anon_vma_chain *avc; 1767 VMA_ITERATOR(vmi, mm, 0); 1768 1769 mmap_assert_write_locked(mm); 1770 1771 mutex_lock(&mm_all_locks_mutex); 1772 1773 /* 1774 * vma_start_write() does not have a complement in mm_drop_all_locks() 1775 * because vma_start_write() is always asymmetrical; it marks a VMA as 1776 * being written to until mmap_write_unlock() or mmap_write_downgrade() 1777 * is reached. 1778 */ 1779 for_each_vma(vmi, vma) { 1780 if (signal_pending(current)) 1781 goto out_unlock; 1782 vma_start_write(vma); 1783 } 1784 1785 vma_iter_init(&vmi, mm, 0); 1786 for_each_vma(vmi, vma) { 1787 if (signal_pending(current)) 1788 goto out_unlock; 1789 if (vma->vm_file && vma->vm_file->f_mapping && 1790 is_vm_hugetlb_page(vma)) 1791 vm_lock_mapping(mm, vma->vm_file->f_mapping); 1792 } 1793 1794 vma_iter_init(&vmi, mm, 0); 1795 for_each_vma(vmi, vma) { 1796 if (signal_pending(current)) 1797 goto out_unlock; 1798 if (vma->vm_file && vma->vm_file->f_mapping && 1799 !is_vm_hugetlb_page(vma)) 1800 vm_lock_mapping(mm, vma->vm_file->f_mapping); 1801 } 1802 1803 vma_iter_init(&vmi, mm, 0); 1804 for_each_vma(vmi, vma) { 1805 if (signal_pending(current)) 1806 goto out_unlock; 1807 if (vma->anon_vma) 1808 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 1809 vm_lock_anon_vma(mm, avc->anon_vma); 1810 } 1811 1812 return 0; 1813 1814 out_unlock: 1815 mm_drop_all_locks(mm); 1816 return -EINTR; 1817 } 1818 1819 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 1820 { 1821 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1822 /* 1823 * The LSB of head.next can't change to 0 from under 1824 * us because we hold the mm_all_locks_mutex. 1825 * 1826 * We must however clear the bitflag before unlocking 1827 * the vma so the users using the anon_vma->rb_root will 1828 * never see our bitflag. 1829 * 1830 * No need of atomic instructions here, head.next 1831 * can't change from under us until we release the 1832 * anon_vma->root->rwsem. 1833 */ 1834 if (!__test_and_clear_bit(0, (unsigned long *) 1835 &anon_vma->root->rb_root.rb_root.rb_node)) 1836 BUG(); 1837 anon_vma_unlock_write(anon_vma); 1838 } 1839 } 1840 1841 static void vm_unlock_mapping(struct address_space *mapping) 1842 { 1843 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1844 /* 1845 * AS_MM_ALL_LOCKS can't change to 0 from under us 1846 * because we hold the mm_all_locks_mutex. 1847 */ 1848 i_mmap_unlock_write(mapping); 1849 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 1850 &mapping->flags)) 1851 BUG(); 1852 } 1853 } 1854 1855 /* 1856 * The mmap_lock cannot be released by the caller until 1857 * mm_drop_all_locks() returns. 1858 */ 1859 void mm_drop_all_locks(struct mm_struct *mm) 1860 { 1861 struct vm_area_struct *vma; 1862 struct anon_vma_chain *avc; 1863 VMA_ITERATOR(vmi, mm, 0); 1864 1865 mmap_assert_write_locked(mm); 1866 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 1867 1868 for_each_vma(vmi, vma) { 1869 if (vma->anon_vma) 1870 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 1871 vm_unlock_anon_vma(avc->anon_vma); 1872 if (vma->vm_file && vma->vm_file->f_mapping) 1873 vm_unlock_mapping(vma->vm_file->f_mapping); 1874 } 1875 1876 mutex_unlock(&mm_all_locks_mutex); 1877 } 1878