1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 vm_flags_t vm_flags; 19 struct file *file; 20 pgprot_t page_prot; 21 22 /* User-defined fields, perhaps updated by .mmap_prepare(). */ 23 const struct vm_operations_struct *vm_ops; 24 void *vm_private_data; 25 26 unsigned long charged; 27 28 struct vm_area_struct *prev; 29 struct vm_area_struct *next; 30 31 /* Unmapping state. */ 32 struct vma_munmap_struct vms; 33 struct ma_state mas_detach; 34 struct maple_tree mt_detach; 35 36 /* Determine if we can check KSM flags early in mmap() logic. */ 37 bool check_ksm_early; 38 }; 39 40 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \ 41 struct mmap_state name = { \ 42 .mm = mm_, \ 43 .vmi = vmi_, \ 44 .addr = addr_, \ 45 .end = (addr_) + (len_), \ 46 .pgoff = pgoff_, \ 47 .pglen = PHYS_PFN(len_), \ 48 .vm_flags = vm_flags_, \ 49 .file = file_, \ 50 .page_prot = vm_get_page_prot(vm_flags_), \ 51 } 52 53 #define VMG_MMAP_STATE(name, map_, vma_) \ 54 struct vma_merge_struct name = { \ 55 .mm = (map_)->mm, \ 56 .vmi = (map_)->vmi, \ 57 .start = (map_)->addr, \ 58 .end = (map_)->end, \ 59 .vm_flags = (map_)->vm_flags, \ 60 .pgoff = (map_)->pgoff, \ 61 .file = (map_)->file, \ 62 .prev = (map_)->prev, \ 63 .middle = vma_, \ 64 .next = (vma_) ? NULL : (map_)->next, \ 65 .state = VMA_MERGE_START, \ 66 } 67 68 /* 69 * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain 70 * more than one anon_vma_chain connecting it to more than one anon_vma. A merge 71 * would mean a wider range of folios sharing the root anon_vma lock, and thus 72 * potential lock contention, we do not wish to encourage merging such that this 73 * scales to a problem. 74 */ 75 static bool vma_had_uncowed_parents(struct vm_area_struct *vma) 76 { 77 /* 78 * The list_is_singular() test is to avoid merging VMA cloned from 79 * parents. This can improve scalability caused by anon_vma lock. 80 */ 81 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain); 82 } 83 84 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 85 { 86 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 87 88 if (!mpol_equal(vmg->policy, vma_policy(vma))) 89 return false; 90 /* 91 * VM_SOFTDIRTY should not prevent from VMA merging, if we 92 * match the flags but dirty bit -- the caller should mark 93 * merged VMA as dirty. If dirty bit won't be excluded from 94 * comparison, we increase pressure on the memory system forcing 95 * the kernel to generate new VMAs when old one could be 96 * extended instead. 97 */ 98 if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_SOFTDIRTY) 99 return false; 100 if (vma->vm_file != vmg->file) 101 return false; 102 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 103 return false; 104 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 105 return false; 106 return true; 107 } 108 109 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) 110 { 111 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; 112 struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */ 113 struct anon_vma *tgt_anon = tgt->anon_vma; 114 struct anon_vma *src_anon = vmg->anon_vma; 115 116 /* 117 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we 118 * will remove the existing VMA's anon_vma's so there's no scalability 119 * concerns. 120 */ 121 VM_WARN_ON(src && src_anon != src->anon_vma); 122 123 /* Case 1 - we will dup_anon_vma() from src into tgt. */ 124 if (!tgt_anon && src_anon) 125 return !vma_had_uncowed_parents(src); 126 /* Case 2 - we will simply use tgt's anon_vma. */ 127 if (tgt_anon && !src_anon) 128 return !vma_had_uncowed_parents(tgt); 129 /* Case 3 - the anon_vma's are already shared. */ 130 return src_anon == tgt_anon; 131 } 132 133 /* 134 * init_multi_vma_prep() - Initializer for struct vma_prepare 135 * @vp: The vma_prepare struct 136 * @vma: The vma that will be altered once locked 137 * @vmg: The merge state that will be used to determine adjustment and VMA 138 * removal. 139 */ 140 static void init_multi_vma_prep(struct vma_prepare *vp, 141 struct vm_area_struct *vma, 142 struct vma_merge_struct *vmg) 143 { 144 struct vm_area_struct *adjust; 145 struct vm_area_struct **remove = &vp->remove; 146 147 memset(vp, 0, sizeof(struct vma_prepare)); 148 vp->vma = vma; 149 vp->anon_vma = vma->anon_vma; 150 151 if (vmg && vmg->__remove_middle) { 152 *remove = vmg->middle; 153 remove = &vp->remove2; 154 } 155 if (vmg && vmg->__remove_next) 156 *remove = vmg->next; 157 158 if (vmg && vmg->__adjust_middle_start) 159 adjust = vmg->middle; 160 else if (vmg && vmg->__adjust_next_start) 161 adjust = vmg->next; 162 else 163 adjust = NULL; 164 165 vp->adj_next = adjust; 166 if (!vp->anon_vma && adjust) 167 vp->anon_vma = adjust->anon_vma; 168 169 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 170 vp->anon_vma != adjust->anon_vma); 171 172 vp->file = vma->vm_file; 173 if (vp->file) 174 vp->mapping = vma->vm_file->f_mapping; 175 176 if (vmg && vmg->skip_vma_uprobe) 177 vp->skip_vma_uprobe = true; 178 } 179 180 /* 181 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 182 * in front of (at a lower virtual address and file offset than) the vma. 183 * 184 * We cannot merge two vmas if they have differently assigned (non-NULL) 185 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 186 * 187 * We don't check here for the merged mmap wrapping around the end of pagecache 188 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 189 * wrap, nor mmaps which cover the final page at index -1UL. 190 * 191 * We assume the vma may be removed as part of the merge. 192 */ 193 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 194 { 195 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 196 197 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 198 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { 199 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 200 return true; 201 } 202 203 return false; 204 } 205 206 /* 207 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 208 * beyond (at a higher virtual address and file offset than) the vma. 209 * 210 * We cannot merge two vmas if they have differently assigned (non-NULL) 211 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 212 * 213 * We assume that vma is not removed as part of the merge. 214 */ 215 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 216 { 217 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 218 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { 219 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 220 return true; 221 } 222 return false; 223 } 224 225 static void __vma_link_file(struct vm_area_struct *vma, 226 struct address_space *mapping) 227 { 228 if (vma_is_shared_maywrite(vma)) 229 mapping_allow_writable(mapping); 230 231 flush_dcache_mmap_lock(mapping); 232 vma_interval_tree_insert(vma, &mapping->i_mmap); 233 flush_dcache_mmap_unlock(mapping); 234 } 235 236 /* 237 * Requires inode->i_mapping->i_mmap_rwsem 238 */ 239 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 240 struct address_space *mapping) 241 { 242 if (vma_is_shared_maywrite(vma)) 243 mapping_unmap_writable(mapping); 244 245 flush_dcache_mmap_lock(mapping); 246 vma_interval_tree_remove(vma, &mapping->i_mmap); 247 flush_dcache_mmap_unlock(mapping); 248 } 249 250 /* 251 * vma has some anon_vma assigned, and is already inserted on that 252 * anon_vma's interval trees. 253 * 254 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 255 * vma must be removed from the anon_vma's interval trees using 256 * anon_vma_interval_tree_pre_update_vma(). 257 * 258 * After the update, the vma will be reinserted using 259 * anon_vma_interval_tree_post_update_vma(). 260 * 261 * The entire update must be protected by exclusive mmap_lock and by 262 * the root anon_vma's mutex. 263 */ 264 static void 265 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 266 { 267 struct anon_vma_chain *avc; 268 269 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 270 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 271 } 272 273 static void 274 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 275 { 276 struct anon_vma_chain *avc; 277 278 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 279 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 280 } 281 282 /* 283 * vma_prepare() - Helper function for handling locking VMAs prior to altering 284 * @vp: The initialized vma_prepare struct 285 */ 286 static void vma_prepare(struct vma_prepare *vp) 287 { 288 if (vp->file) { 289 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 290 291 if (vp->adj_next) 292 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 293 vp->adj_next->vm_end); 294 295 i_mmap_lock_write(vp->mapping); 296 if (vp->insert && vp->insert->vm_file) { 297 /* 298 * Put into interval tree now, so instantiated pages 299 * are visible to arm/parisc __flush_dcache_page 300 * throughout; but we cannot insert into address 301 * space until vma start or end is updated. 302 */ 303 __vma_link_file(vp->insert, 304 vp->insert->vm_file->f_mapping); 305 } 306 } 307 308 if (vp->anon_vma) { 309 anon_vma_lock_write(vp->anon_vma); 310 anon_vma_interval_tree_pre_update_vma(vp->vma); 311 if (vp->adj_next) 312 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 313 } 314 315 if (vp->file) { 316 flush_dcache_mmap_lock(vp->mapping); 317 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 318 if (vp->adj_next) 319 vma_interval_tree_remove(vp->adj_next, 320 &vp->mapping->i_mmap); 321 } 322 323 } 324 325 /* 326 * vma_complete- Helper function for handling the unlocking after altering VMAs, 327 * or for inserting a VMA. 328 * 329 * @vp: The vma_prepare struct 330 * @vmi: The vma iterator 331 * @mm: The mm_struct 332 */ 333 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 334 struct mm_struct *mm) 335 { 336 if (vp->file) { 337 if (vp->adj_next) 338 vma_interval_tree_insert(vp->adj_next, 339 &vp->mapping->i_mmap); 340 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 341 flush_dcache_mmap_unlock(vp->mapping); 342 } 343 344 if (vp->remove && vp->file) { 345 __remove_shared_vm_struct(vp->remove, vp->mapping); 346 if (vp->remove2) 347 __remove_shared_vm_struct(vp->remove2, vp->mapping); 348 } else if (vp->insert) { 349 /* 350 * split_vma has split insert from vma, and needs 351 * us to insert it before dropping the locks 352 * (it may either follow vma or precede it). 353 */ 354 vma_iter_store_new(vmi, vp->insert); 355 mm->map_count++; 356 } 357 358 if (vp->anon_vma) { 359 anon_vma_interval_tree_post_update_vma(vp->vma); 360 if (vp->adj_next) 361 anon_vma_interval_tree_post_update_vma(vp->adj_next); 362 anon_vma_unlock_write(vp->anon_vma); 363 } 364 365 if (vp->file) { 366 i_mmap_unlock_write(vp->mapping); 367 368 if (!vp->skip_vma_uprobe) { 369 uprobe_mmap(vp->vma); 370 371 if (vp->adj_next) 372 uprobe_mmap(vp->adj_next); 373 } 374 } 375 376 if (vp->remove) { 377 again: 378 vma_mark_detached(vp->remove); 379 if (vp->file) { 380 uprobe_munmap(vp->remove, vp->remove->vm_start, 381 vp->remove->vm_end); 382 fput(vp->file); 383 } 384 if (vp->remove->anon_vma) 385 anon_vma_merge(vp->vma, vp->remove); 386 mm->map_count--; 387 mpol_put(vma_policy(vp->remove)); 388 if (!vp->remove2) 389 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 390 vm_area_free(vp->remove); 391 392 /* 393 * In mprotect's case 6 (see comments on vma_merge), 394 * we are removing both mid and next vmas 395 */ 396 if (vp->remove2) { 397 vp->remove = vp->remove2; 398 vp->remove2 = NULL; 399 goto again; 400 } 401 } 402 if (vp->insert && vp->file) 403 uprobe_mmap(vp->insert); 404 } 405 406 /* 407 * init_vma_prep() - Initializer wrapper for vma_prepare struct 408 * @vp: The vma_prepare struct 409 * @vma: The vma that will be altered once locked 410 */ 411 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 412 { 413 init_multi_vma_prep(vp, vma, NULL); 414 } 415 416 /* 417 * Can the proposed VMA be merged with the left (previous) VMA taking into 418 * account the start position of the proposed range. 419 */ 420 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 421 422 { 423 return vmg->prev && vmg->prev->vm_end == vmg->start && 424 can_vma_merge_after(vmg); 425 } 426 427 /* 428 * Can the proposed VMA be merged with the right (next) VMA taking into 429 * account the end position of the proposed range. 430 * 431 * In addition, if we can merge with the left VMA, ensure that left and right 432 * anon_vma's are also compatible. 433 */ 434 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 435 bool can_merge_left) 436 { 437 struct vm_area_struct *next = vmg->next; 438 struct vm_area_struct *prev; 439 440 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) 441 return false; 442 443 if (!can_merge_left) 444 return true; 445 446 /* 447 * If we can merge with prev (left) and next (right), indicating that 448 * each VMA's anon_vma is compatible with the proposed anon_vma, this 449 * does not mean prev and next are compatible with EACH OTHER. 450 * 451 * We therefore check this in addition to mergeability to either side. 452 */ 453 prev = vmg->prev; 454 return !prev->anon_vma || !next->anon_vma || 455 prev->anon_vma == next->anon_vma; 456 } 457 458 /* 459 * Close a vm structure and free it. 460 */ 461 void remove_vma(struct vm_area_struct *vma) 462 { 463 might_sleep(); 464 vma_close(vma); 465 if (vma->vm_file) 466 fput(vma->vm_file); 467 mpol_put(vma_policy(vma)); 468 vm_area_free(vma); 469 } 470 471 /* 472 * Get rid of page table information in the indicated region. 473 * 474 * Called with the mm semaphore held. 475 */ 476 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 477 struct vm_area_struct *prev, struct vm_area_struct *next) 478 { 479 struct mm_struct *mm = vma->vm_mm; 480 struct mmu_gather tlb; 481 482 tlb_gather_mmu(&tlb, mm); 483 update_hiwater_rss(mm); 484 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 485 /* mm_wr_locked = */ true); 486 mas_set(mas, vma->vm_end); 487 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 488 next ? next->vm_start : USER_PGTABLES_CEILING, 489 /* mm_wr_locked = */ true); 490 tlb_finish_mmu(&tlb); 491 } 492 493 /* 494 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 495 * has already been checked or doesn't make sense to fail. 496 * VMA Iterator will point to the original VMA. 497 */ 498 static __must_check int 499 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 500 unsigned long addr, int new_below) 501 { 502 struct vma_prepare vp; 503 struct vm_area_struct *new; 504 int err; 505 506 WARN_ON(vma->vm_start >= addr); 507 WARN_ON(vma->vm_end <= addr); 508 509 if (vma->vm_ops && vma->vm_ops->may_split) { 510 err = vma->vm_ops->may_split(vma, addr); 511 if (err) 512 return err; 513 } 514 515 new = vm_area_dup(vma); 516 if (!new) 517 return -ENOMEM; 518 519 if (new_below) { 520 new->vm_end = addr; 521 } else { 522 new->vm_start = addr; 523 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 524 } 525 526 err = -ENOMEM; 527 vma_iter_config(vmi, new->vm_start, new->vm_end); 528 if (vma_iter_prealloc(vmi, new)) 529 goto out_free_vma; 530 531 err = vma_dup_policy(vma, new); 532 if (err) 533 goto out_free_vmi; 534 535 err = anon_vma_clone(new, vma); 536 if (err) 537 goto out_free_mpol; 538 539 if (new->vm_file) 540 get_file(new->vm_file); 541 542 if (new->vm_ops && new->vm_ops->open) 543 new->vm_ops->open(new); 544 545 vma_start_write(vma); 546 vma_start_write(new); 547 548 init_vma_prep(&vp, vma); 549 vp.insert = new; 550 vma_prepare(&vp); 551 552 /* 553 * Get rid of huge pages and shared page tables straddling the split 554 * boundary. 555 */ 556 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 557 if (is_vm_hugetlb_page(vma)) 558 hugetlb_split(vma, addr); 559 560 if (new_below) { 561 vma->vm_start = addr; 562 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 563 } else { 564 vma->vm_end = addr; 565 } 566 567 /* vma_complete stores the new vma */ 568 vma_complete(&vp, vmi, vma->vm_mm); 569 validate_mm(vma->vm_mm); 570 571 /* Success. */ 572 if (new_below) 573 vma_next(vmi); 574 else 575 vma_prev(vmi); 576 577 return 0; 578 579 out_free_mpol: 580 mpol_put(vma_policy(new)); 581 out_free_vmi: 582 vma_iter_free(vmi); 583 out_free_vma: 584 vm_area_free(new); 585 return err; 586 } 587 588 /* 589 * Split a vma into two pieces at address 'addr', a new vma is allocated 590 * either for the first part or the tail. 591 */ 592 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 593 unsigned long addr, int new_below) 594 { 595 if (vma->vm_mm->map_count >= sysctl_max_map_count) 596 return -ENOMEM; 597 598 return __split_vma(vmi, vma, addr, new_below); 599 } 600 601 /* 602 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the 603 * instance that the destination VMA has no anon_vma but the source does. 604 * 605 * @dst: The destination VMA 606 * @src: The source VMA 607 * @dup: Pointer to the destination VMA when successful. 608 * 609 * Returns: 0 on success. 610 */ 611 static int dup_anon_vma(struct vm_area_struct *dst, 612 struct vm_area_struct *src, struct vm_area_struct **dup) 613 { 614 /* 615 * There are three cases to consider for correctly propagating 616 * anon_vma's on merge. 617 * 618 * The first is trivial - neither VMA has anon_vma, we need not do 619 * anything. 620 * 621 * The second where both have anon_vma is also a no-op, as they must 622 * then be the same, so there is simply nothing to copy. 623 * 624 * Here we cover the third - if the destination VMA has no anon_vma, 625 * that is it is unfaulted, we need to ensure that the newly merged 626 * range is referenced by the anon_vma's of the source. 627 */ 628 if (src->anon_vma && !dst->anon_vma) { 629 int ret; 630 631 vma_assert_write_locked(dst); 632 dst->anon_vma = src->anon_vma; 633 ret = anon_vma_clone(dst, src); 634 if (ret) 635 return ret; 636 637 *dup = dst; 638 } 639 640 return 0; 641 } 642 643 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 644 void validate_mm(struct mm_struct *mm) 645 { 646 int bug = 0; 647 int i = 0; 648 struct vm_area_struct *vma; 649 VMA_ITERATOR(vmi, mm, 0); 650 651 mt_validate(&mm->mm_mt); 652 for_each_vma(vmi, vma) { 653 #ifdef CONFIG_DEBUG_VM_RB 654 struct anon_vma *anon_vma = vma->anon_vma; 655 struct anon_vma_chain *avc; 656 #endif 657 unsigned long vmi_start, vmi_end; 658 bool warn = 0; 659 660 vmi_start = vma_iter_addr(&vmi); 661 vmi_end = vma_iter_end(&vmi); 662 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 663 warn = 1; 664 665 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 666 warn = 1; 667 668 if (warn) { 669 pr_emerg("issue in %s\n", current->comm); 670 dump_stack(); 671 dump_vma(vma); 672 pr_emerg("tree range: %px start %lx end %lx\n", vma, 673 vmi_start, vmi_end - 1); 674 vma_iter_dump_tree(&vmi); 675 } 676 677 #ifdef CONFIG_DEBUG_VM_RB 678 if (anon_vma) { 679 anon_vma_lock_read(anon_vma); 680 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 681 anon_vma_interval_tree_verify(avc); 682 anon_vma_unlock_read(anon_vma); 683 } 684 #endif 685 /* Check for a infinite loop */ 686 if (++i > mm->map_count + 10) { 687 i = -1; 688 break; 689 } 690 } 691 if (i != mm->map_count) { 692 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 693 bug = 1; 694 } 695 VM_BUG_ON_MM(bug, mm); 696 } 697 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 698 699 /* 700 * Based on the vmg flag indicating whether we need to adjust the vm_start field 701 * for the middle or next VMA, we calculate what the range of the newly adjusted 702 * VMA ought to be, and set the VMA's range accordingly. 703 */ 704 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 705 { 706 struct vm_area_struct *adjust; 707 pgoff_t pgoff; 708 709 if (vmg->__adjust_middle_start) { 710 adjust = vmg->middle; 711 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 712 } else if (vmg->__adjust_next_start) { 713 adjust = vmg->next; 714 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 715 } else { 716 return; 717 } 718 719 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 720 } 721 722 /* 723 * Actually perform the VMA merge operation. 724 * 725 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not 726 * modify any VMAs or cause inconsistent state should an OOM condition arise. 727 * 728 * Returns 0 on success, or an error value on failure. 729 */ 730 static int commit_merge(struct vma_merge_struct *vmg) 731 { 732 struct vm_area_struct *vma; 733 struct vma_prepare vp; 734 735 if (vmg->__adjust_next_start) { 736 /* We manipulate middle and adjust next, which is the target. */ 737 vma = vmg->middle; 738 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 739 } else { 740 vma = vmg->target; 741 /* Note: vma iterator must be pointing to 'start'. */ 742 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 743 } 744 745 init_multi_vma_prep(&vp, vma, vmg); 746 747 /* 748 * If vmg->give_up_on_oom is set, we're safe, because we don't actually 749 * manipulate any VMAs until we succeed at preallocation. 750 * 751 * Past this point, we will not return an error. 752 */ 753 if (vma_iter_prealloc(vmg->vmi, vma)) 754 return -ENOMEM; 755 756 vma_prepare(&vp); 757 /* 758 * THP pages may need to do additional splits if we increase 759 * middle->vm_start. 760 */ 761 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 762 vmg->__adjust_middle_start ? vmg->middle : NULL); 763 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 764 vmg_adjust_set_range(vmg); 765 vma_iter_store_overwrite(vmg->vmi, vmg->target); 766 767 vma_complete(&vp, vmg->vmi, vma->vm_mm); 768 769 return 0; 770 } 771 772 /* We can only remove VMAs when merging if they do not have a close hook. */ 773 static bool can_merge_remove_vma(struct vm_area_struct *vma) 774 { 775 return !vma->vm_ops || !vma->vm_ops->close; 776 } 777 778 /* 779 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 780 * attributes modified. 781 * 782 * @vmg: Describes the modifications being made to a VMA and associated 783 * metadata. 784 * 785 * When the attributes of a range within a VMA change, then it might be possible 786 * for immediately adjacent VMAs to be merged into that VMA due to having 787 * identical properties. 788 * 789 * This function checks for the existence of any such mergeable VMAs and updates 790 * the maple tree describing the @vmg->middle->vm_mm address space to account 791 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 792 * merge. 793 * 794 * As part of this operation, if a merge occurs, the @vmg object will have its 795 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 796 * calls to this function should reset these fields. 797 * 798 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 799 * 800 * ASSUMPTIONS: 801 * - The caller must assign the VMA to be modifed to @vmg->middle. 802 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 803 * - The caller must not set @vmg->next, as we determine this. 804 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 805 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 806 */ 807 static __must_check struct vm_area_struct *vma_merge_existing_range( 808 struct vma_merge_struct *vmg) 809 { 810 struct vm_area_struct *middle = vmg->middle; 811 struct vm_area_struct *prev = vmg->prev; 812 struct vm_area_struct *next; 813 struct vm_area_struct *anon_dup = NULL; 814 unsigned long start = vmg->start; 815 unsigned long end = vmg->end; 816 bool left_side = middle && start == middle->vm_start; 817 bool right_side = middle && end == middle->vm_end; 818 int err = 0; 819 bool merge_left, merge_right, merge_both; 820 821 mmap_assert_write_locked(vmg->mm); 822 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 823 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 824 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 825 VM_WARN_ON_VMG(start >= end, vmg); 826 827 /* 828 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 829 * not, we must span a portion of the VMA. 830 */ 831 VM_WARN_ON_VMG(middle && 832 ((middle != prev && vmg->start != middle->vm_start) || 833 vmg->end > middle->vm_end), vmg); 834 /* The vmi must be positioned within vmg->middle. */ 835 VM_WARN_ON_VMG(middle && 836 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 837 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 838 839 vmg->state = VMA_MERGE_NOMERGE; 840 841 /* 842 * If a special mapping or if the range being modified is neither at the 843 * furthermost left or right side of the VMA, then we have no chance of 844 * merging and should abort. 845 */ 846 if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side)) 847 return NULL; 848 849 if (left_side) 850 merge_left = can_vma_merge_left(vmg); 851 else 852 merge_left = false; 853 854 if (right_side) { 855 next = vmg->next = vma_iter_next_range(vmg->vmi); 856 vma_iter_prev_range(vmg->vmi); 857 858 merge_right = can_vma_merge_right(vmg, merge_left); 859 } else { 860 merge_right = false; 861 next = NULL; 862 } 863 864 if (merge_left) /* If merging prev, position iterator there. */ 865 vma_prev(vmg->vmi); 866 else if (!merge_right) /* If we have nothing to merge, abort. */ 867 return NULL; 868 869 merge_both = merge_left && merge_right; 870 /* If we span the entire VMA, a merge implies it will be deleted. */ 871 vmg->__remove_middle = left_side && right_side; 872 873 /* 874 * If we need to remove middle in its entirety but are unable to do so, 875 * we have no sensible recourse but to abort the merge. 876 */ 877 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 878 return NULL; 879 880 /* 881 * If we merge both VMAs, then next is also deleted. This implies 882 * merge_will_delete_vma also. 883 */ 884 vmg->__remove_next = merge_both; 885 886 /* 887 * If we cannot delete next, then we can reduce the operation to merging 888 * prev and middle (thereby deleting middle). 889 */ 890 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 891 vmg->__remove_next = false; 892 merge_right = false; 893 merge_both = false; 894 } 895 896 /* No matter what happens, we will be adjusting middle. */ 897 vma_start_write(middle); 898 899 if (merge_right) { 900 vma_start_write(next); 901 vmg->target = next; 902 } 903 904 if (merge_left) { 905 vma_start_write(prev); 906 vmg->target = prev; 907 } 908 909 if (merge_both) { 910 /* 911 * |<-------------------->| 912 * |-------********-------| 913 * prev middle next 914 * extend delete delete 915 */ 916 917 vmg->start = prev->vm_start; 918 vmg->end = next->vm_end; 919 vmg->pgoff = prev->vm_pgoff; 920 921 /* 922 * We already ensured anon_vma compatibility above, so now it's 923 * simply a case of, if prev has no anon_vma object, which of 924 * next or middle contains the anon_vma we must duplicate. 925 */ 926 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 927 &anon_dup); 928 } else if (merge_left) { 929 /* 930 * |<------------>| OR 931 * |<----------------->| 932 * |-------************* 933 * prev middle 934 * extend shrink/delete 935 */ 936 937 vmg->start = prev->vm_start; 938 vmg->pgoff = prev->vm_pgoff; 939 940 if (!vmg->__remove_middle) 941 vmg->__adjust_middle_start = true; 942 943 err = dup_anon_vma(prev, middle, &anon_dup); 944 } else { /* merge_right */ 945 /* 946 * |<------------->| OR 947 * |<----------------->| 948 * *************-------| 949 * middle next 950 * shrink/delete extend 951 */ 952 953 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 954 955 VM_WARN_ON_VMG(!merge_right, vmg); 956 /* If we are offset into a VMA, then prev must be middle. */ 957 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 958 959 if (vmg->__remove_middle) { 960 vmg->end = next->vm_end; 961 vmg->pgoff = next->vm_pgoff - pglen; 962 } else { 963 /* We shrink middle and expand next. */ 964 vmg->__adjust_next_start = true; 965 vmg->start = middle->vm_start; 966 vmg->end = start; 967 vmg->pgoff = middle->vm_pgoff; 968 } 969 970 err = dup_anon_vma(next, middle, &anon_dup); 971 } 972 973 if (err || commit_merge(vmg)) 974 goto abort; 975 976 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 977 vmg->state = VMA_MERGE_SUCCESS; 978 return vmg->target; 979 980 abort: 981 vma_iter_set(vmg->vmi, start); 982 vma_iter_load(vmg->vmi); 983 984 if (anon_dup) 985 unlink_anon_vmas(anon_dup); 986 987 /* 988 * This means we have failed to clone anon_vma's correctly, but no 989 * actual changes to VMAs have occurred, so no harm no foul - if the 990 * user doesn't want this reported and instead just wants to give up on 991 * the merge, allow it. 992 */ 993 if (!vmg->give_up_on_oom) 994 vmg->state = VMA_MERGE_ERROR_NOMEM; 995 return NULL; 996 } 997 998 /* 999 * vma_merge_new_range - Attempt to merge a new VMA into address space 1000 * 1001 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 1002 * (exclusive), which we try to merge with any adjacent VMAs if possible. 1003 * 1004 * We are about to add a VMA to the address space starting at @vmg->start and 1005 * ending at @vmg->end. There are three different possible scenarios: 1006 * 1007 * 1. There is a VMA with identical properties immediately adjacent to the 1008 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 1009 * EXPAND that VMA: 1010 * 1011 * Proposed: |-----| or |-----| 1012 * Existing: |----| |----| 1013 * 1014 * 2. There are VMAs with identical properties immediately adjacent to the 1015 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 1016 * EXPAND the former and REMOVE the latter: 1017 * 1018 * Proposed: |-----| 1019 * Existing: |----| |----| 1020 * 1021 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 1022 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 1023 * 1024 * In instances where we can merge, this function returns the expanded VMA which 1025 * will have its range adjusted accordingly and the underlying maple tree also 1026 * adjusted. 1027 * 1028 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1029 * to the VMA we expanded. 1030 * 1031 * This function adjusts @vmg to provide @vmg->next if not already specified, 1032 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 1033 * 1034 * ASSUMPTIONS: 1035 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1036 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 1037 other than VMAs that will be unmapped should the operation succeed. 1038 * - The caller must have specified the previous vma in @vmg->prev. 1039 * - The caller must have specified the next vma in @vmg->next. 1040 * - The caller must have positioned the vmi at or before the gap. 1041 */ 1042 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 1043 { 1044 struct vm_area_struct *prev = vmg->prev; 1045 struct vm_area_struct *next = vmg->next; 1046 unsigned long end = vmg->end; 1047 bool can_merge_left, can_merge_right; 1048 1049 mmap_assert_write_locked(vmg->mm); 1050 VM_WARN_ON_VMG(vmg->middle, vmg); 1051 VM_WARN_ON_VMG(vmg->target, vmg); 1052 /* vmi must point at or before the gap. */ 1053 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 1054 1055 vmg->state = VMA_MERGE_NOMERGE; 1056 1057 /* Special VMAs are unmergeable, also if no prev/next. */ 1058 if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next)) 1059 return NULL; 1060 1061 can_merge_left = can_vma_merge_left(vmg); 1062 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1063 1064 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1065 if (can_merge_right) { 1066 vmg->end = next->vm_end; 1067 vmg->target = next; 1068 } 1069 1070 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1071 if (can_merge_left) { 1072 vmg->start = prev->vm_start; 1073 vmg->target = prev; 1074 vmg->pgoff = prev->vm_pgoff; 1075 1076 /* 1077 * If this merge would result in removal of the next VMA but we 1078 * are not permitted to do so, reduce the operation to merging 1079 * prev and vma. 1080 */ 1081 if (can_merge_right && !can_merge_remove_vma(next)) 1082 vmg->end = end; 1083 1084 /* In expand-only case we are already positioned at prev. */ 1085 if (!vmg->just_expand) { 1086 /* Equivalent to going to the previous range. */ 1087 vma_prev(vmg->vmi); 1088 } 1089 } 1090 1091 /* 1092 * Now try to expand adjacent VMA(s). This takes care of removing the 1093 * following VMA if we have VMAs on both sides. 1094 */ 1095 if (vmg->target && !vma_expand(vmg)) { 1096 khugepaged_enter_vma(vmg->target, vmg->vm_flags); 1097 vmg->state = VMA_MERGE_SUCCESS; 1098 return vmg->target; 1099 } 1100 1101 return NULL; 1102 } 1103 1104 /* 1105 * vma_expand - Expand an existing VMA 1106 * 1107 * @vmg: Describes a VMA expansion operation. 1108 * 1109 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1110 * Will expand over vmg->next if it's different from vmg->target and vmg->end == 1111 * vmg->next->vm_end. Checking if the vmg->target can expand and merge with 1112 * vmg->next needs to be handled by the caller. 1113 * 1114 * Returns: 0 on success. 1115 * 1116 * ASSUMPTIONS: 1117 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1118 * - The caller must have set @vmg->target and @vmg->next. 1119 */ 1120 int vma_expand(struct vma_merge_struct *vmg) 1121 { 1122 struct vm_area_struct *anon_dup = NULL; 1123 bool remove_next = false; 1124 struct vm_area_struct *target = vmg->target; 1125 struct vm_area_struct *next = vmg->next; 1126 1127 VM_WARN_ON_VMG(!target, vmg); 1128 1129 mmap_assert_write_locked(vmg->mm); 1130 1131 vma_start_write(target); 1132 if (next && (target != next) && (vmg->end == next->vm_end)) { 1133 int ret; 1134 1135 remove_next = true; 1136 /* This should already have been checked by this point. */ 1137 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1138 vma_start_write(next); 1139 /* 1140 * In this case we don't report OOM, so vmg->give_up_on_mm is 1141 * safe. 1142 */ 1143 ret = dup_anon_vma(target, next, &anon_dup); 1144 if (ret) 1145 return ret; 1146 } 1147 1148 /* Not merging but overwriting any part of next is not handled. */ 1149 VM_WARN_ON_VMG(next && !remove_next && 1150 next != target && vmg->end > next->vm_start, vmg); 1151 /* Only handles expanding */ 1152 VM_WARN_ON_VMG(target->vm_start < vmg->start || 1153 target->vm_end > vmg->end, vmg); 1154 1155 if (remove_next) 1156 vmg->__remove_next = true; 1157 1158 if (commit_merge(vmg)) 1159 goto nomem; 1160 1161 return 0; 1162 1163 nomem: 1164 if (anon_dup) 1165 unlink_anon_vmas(anon_dup); 1166 /* 1167 * If the user requests that we just give upon OOM, we are safe to do so 1168 * here, as commit merge provides this contract to us. Nothing has been 1169 * changed - no harm no foul, just don't report it. 1170 */ 1171 if (!vmg->give_up_on_oom) 1172 vmg->state = VMA_MERGE_ERROR_NOMEM; 1173 return -ENOMEM; 1174 } 1175 1176 /* 1177 * vma_shrink() - Reduce an existing VMAs memory area 1178 * @vmi: The vma iterator 1179 * @vma: The VMA to modify 1180 * @start: The new start 1181 * @end: The new end 1182 * 1183 * Returns: 0 on success, -ENOMEM otherwise 1184 */ 1185 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1186 unsigned long start, unsigned long end, pgoff_t pgoff) 1187 { 1188 struct vma_prepare vp; 1189 1190 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1191 1192 if (vma->vm_start < start) 1193 vma_iter_config(vmi, vma->vm_start, start); 1194 else 1195 vma_iter_config(vmi, end, vma->vm_end); 1196 1197 if (vma_iter_prealloc(vmi, NULL)) 1198 return -ENOMEM; 1199 1200 vma_start_write(vma); 1201 1202 init_vma_prep(&vp, vma); 1203 vma_prepare(&vp); 1204 vma_adjust_trans_huge(vma, start, end, NULL); 1205 1206 vma_iter_clear(vmi); 1207 vma_set_range(vma, start, end, pgoff); 1208 vma_complete(&vp, vmi, vma->vm_mm); 1209 validate_mm(vma->vm_mm); 1210 return 0; 1211 } 1212 1213 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1214 struct ma_state *mas_detach, bool mm_wr_locked) 1215 { 1216 struct mmu_gather tlb; 1217 1218 if (!vms->clear_ptes) /* Nothing to do */ 1219 return; 1220 1221 /* 1222 * We can free page tables without write-locking mmap_lock because VMAs 1223 * were isolated before we downgraded mmap_lock. 1224 */ 1225 mas_set(mas_detach, 1); 1226 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1227 update_hiwater_rss(vms->vma->vm_mm); 1228 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1229 vms->vma_count, mm_wr_locked); 1230 1231 mas_set(mas_detach, 1); 1232 /* start and end may be different if there is no prev or next vma. */ 1233 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1234 vms->unmap_end, mm_wr_locked); 1235 tlb_finish_mmu(&tlb); 1236 vms->clear_ptes = false; 1237 } 1238 1239 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1240 struct ma_state *mas_detach) 1241 { 1242 struct vm_area_struct *vma; 1243 1244 if (!vms->nr_pages) 1245 return; 1246 1247 vms_clear_ptes(vms, mas_detach, true); 1248 mas_set(mas_detach, 0); 1249 mas_for_each(mas_detach, vma, ULONG_MAX) 1250 vma_close(vma); 1251 } 1252 1253 /* 1254 * vms_complete_munmap_vmas() - Finish the munmap() operation 1255 * @vms: The vma munmap struct 1256 * @mas_detach: The maple state of the detached vmas 1257 * 1258 * This updates the mm_struct, unmaps the region, frees the resources 1259 * used for the munmap() and may downgrade the lock - if requested. Everything 1260 * needed to be done once the vma maple tree is updated. 1261 */ 1262 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1263 struct ma_state *mas_detach) 1264 { 1265 struct vm_area_struct *vma; 1266 struct mm_struct *mm; 1267 1268 mm = current->mm; 1269 mm->map_count -= vms->vma_count; 1270 mm->locked_vm -= vms->locked_vm; 1271 if (vms->unlock) 1272 mmap_write_downgrade(mm); 1273 1274 if (!vms->nr_pages) 1275 return; 1276 1277 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1278 /* Update high watermark before we lower total_vm */ 1279 update_hiwater_vm(mm); 1280 /* Stat accounting */ 1281 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1282 /* Paranoid bookkeeping */ 1283 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1284 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1285 VM_WARN_ON(vms->data_vm > mm->data_vm); 1286 mm->exec_vm -= vms->exec_vm; 1287 mm->stack_vm -= vms->stack_vm; 1288 mm->data_vm -= vms->data_vm; 1289 1290 /* Remove and clean up vmas */ 1291 mas_set(mas_detach, 0); 1292 mas_for_each(mas_detach, vma, ULONG_MAX) 1293 remove_vma(vma); 1294 1295 vm_unacct_memory(vms->nr_accounted); 1296 validate_mm(mm); 1297 if (vms->unlock) 1298 mmap_read_unlock(mm); 1299 1300 __mt_destroy(mas_detach->tree); 1301 } 1302 1303 /* 1304 * reattach_vmas() - Undo any munmap work and free resources 1305 * @mas_detach: The maple state with the detached maple tree 1306 * 1307 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1308 */ 1309 static void reattach_vmas(struct ma_state *mas_detach) 1310 { 1311 struct vm_area_struct *vma; 1312 1313 mas_set(mas_detach, 0); 1314 mas_for_each(mas_detach, vma, ULONG_MAX) 1315 vma_mark_attached(vma); 1316 1317 __mt_destroy(mas_detach->tree); 1318 } 1319 1320 /* 1321 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1322 * for removal at a later date. Handles splitting first and last if necessary 1323 * and marking the vmas as isolated. 1324 * 1325 * @vms: The vma munmap struct 1326 * @mas_detach: The maple state tracking the detached tree 1327 * 1328 * Return: 0 on success, error otherwise 1329 */ 1330 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1331 struct ma_state *mas_detach) 1332 { 1333 struct vm_area_struct *next = NULL; 1334 int error; 1335 1336 /* 1337 * If we need to split any vma, do it now to save pain later. 1338 * Does it split the first one? 1339 */ 1340 if (vms->start > vms->vma->vm_start) { 1341 1342 /* 1343 * Make sure that map_count on return from munmap() will 1344 * not exceed its limit; but let map_count go just above 1345 * its limit temporarily, to help free resources as expected. 1346 */ 1347 if (vms->end < vms->vma->vm_end && 1348 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1349 error = -ENOMEM; 1350 goto map_count_exceeded; 1351 } 1352 1353 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1354 if (vma_is_sealed(vms->vma)) { 1355 error = -EPERM; 1356 goto start_split_failed; 1357 } 1358 1359 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1360 if (error) 1361 goto start_split_failed; 1362 } 1363 vms->prev = vma_prev(vms->vmi); 1364 if (vms->prev) 1365 vms->unmap_start = vms->prev->vm_end; 1366 1367 /* 1368 * Detach a range of VMAs from the mm. Using next as a temp variable as 1369 * it is always overwritten. 1370 */ 1371 for_each_vma_range(*(vms->vmi), next, vms->end) { 1372 long nrpages; 1373 1374 if (vma_is_sealed(next)) { 1375 error = -EPERM; 1376 goto modify_vma_failed; 1377 } 1378 /* Does it split the end? */ 1379 if (next->vm_end > vms->end) { 1380 error = __split_vma(vms->vmi, next, vms->end, 0); 1381 if (error) 1382 goto end_split_failed; 1383 } 1384 vma_start_write(next); 1385 mas_set(mas_detach, vms->vma_count++); 1386 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1387 if (error) 1388 goto munmap_gather_failed; 1389 1390 vma_mark_detached(next); 1391 nrpages = vma_pages(next); 1392 1393 vms->nr_pages += nrpages; 1394 if (next->vm_flags & VM_LOCKED) 1395 vms->locked_vm += nrpages; 1396 1397 if (next->vm_flags & VM_ACCOUNT) 1398 vms->nr_accounted += nrpages; 1399 1400 if (is_exec_mapping(next->vm_flags)) 1401 vms->exec_vm += nrpages; 1402 else if (is_stack_mapping(next->vm_flags)) 1403 vms->stack_vm += nrpages; 1404 else if (is_data_mapping(next->vm_flags)) 1405 vms->data_vm += nrpages; 1406 1407 if (vms->uf) { 1408 /* 1409 * If userfaultfd_unmap_prep returns an error the vmas 1410 * will remain split, but userland will get a 1411 * highly unexpected error anyway. This is no 1412 * different than the case where the first of the two 1413 * __split_vma fails, but we don't undo the first 1414 * split, despite we could. This is unlikely enough 1415 * failure that it's not worth optimizing it for. 1416 */ 1417 error = userfaultfd_unmap_prep(next, vms->start, 1418 vms->end, vms->uf); 1419 if (error) 1420 goto userfaultfd_error; 1421 } 1422 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1423 BUG_ON(next->vm_start < vms->start); 1424 BUG_ON(next->vm_start > vms->end); 1425 #endif 1426 } 1427 1428 vms->next = vma_next(vms->vmi); 1429 if (vms->next) 1430 vms->unmap_end = vms->next->vm_start; 1431 1432 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1433 /* Make sure no VMAs are about to be lost. */ 1434 { 1435 MA_STATE(test, mas_detach->tree, 0, 0); 1436 struct vm_area_struct *vma_mas, *vma_test; 1437 int test_count = 0; 1438 1439 vma_iter_set(vms->vmi, vms->start); 1440 rcu_read_lock(); 1441 vma_test = mas_find(&test, vms->vma_count - 1); 1442 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1443 BUG_ON(vma_mas != vma_test); 1444 test_count++; 1445 vma_test = mas_next(&test, vms->vma_count - 1); 1446 } 1447 rcu_read_unlock(); 1448 BUG_ON(vms->vma_count != test_count); 1449 } 1450 #endif 1451 1452 while (vma_iter_addr(vms->vmi) > vms->start) 1453 vma_iter_prev_range(vms->vmi); 1454 1455 vms->clear_ptes = true; 1456 return 0; 1457 1458 userfaultfd_error: 1459 munmap_gather_failed: 1460 end_split_failed: 1461 modify_vma_failed: 1462 reattach_vmas(mas_detach); 1463 start_split_failed: 1464 map_count_exceeded: 1465 return error; 1466 } 1467 1468 /* 1469 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1470 * @vms: The vma munmap struct 1471 * @vmi: The vma iterator 1472 * @vma: The first vm_area_struct to munmap 1473 * @start: The aligned start address to munmap 1474 * @end: The aligned end address to munmap 1475 * @uf: The userfaultfd list_head 1476 * @unlock: Unlock after the operation. Only unlocked on success 1477 */ 1478 static void init_vma_munmap(struct vma_munmap_struct *vms, 1479 struct vma_iterator *vmi, struct vm_area_struct *vma, 1480 unsigned long start, unsigned long end, struct list_head *uf, 1481 bool unlock) 1482 { 1483 vms->vmi = vmi; 1484 vms->vma = vma; 1485 if (vma) { 1486 vms->start = start; 1487 vms->end = end; 1488 } else { 1489 vms->start = vms->end = 0; 1490 } 1491 vms->unlock = unlock; 1492 vms->uf = uf; 1493 vms->vma_count = 0; 1494 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1495 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1496 vms->unmap_start = FIRST_USER_ADDRESS; 1497 vms->unmap_end = USER_PGTABLES_CEILING; 1498 vms->clear_ptes = false; 1499 } 1500 1501 /* 1502 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1503 * @vmi: The vma iterator 1504 * @vma: The starting vm_area_struct 1505 * @mm: The mm_struct 1506 * @start: The aligned start address to munmap. 1507 * @end: The aligned end address to munmap. 1508 * @uf: The userfaultfd list_head 1509 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1510 * success. 1511 * 1512 * Return: 0 on success and drops the lock if so directed, error and leaves the 1513 * lock held otherwise. 1514 */ 1515 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1516 struct mm_struct *mm, unsigned long start, unsigned long end, 1517 struct list_head *uf, bool unlock) 1518 { 1519 struct maple_tree mt_detach; 1520 MA_STATE(mas_detach, &mt_detach, 0, 0); 1521 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1522 mt_on_stack(mt_detach); 1523 struct vma_munmap_struct vms; 1524 int error; 1525 1526 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1527 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1528 if (error) 1529 goto gather_failed; 1530 1531 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1532 if (error) 1533 goto clear_tree_failed; 1534 1535 /* Point of no return */ 1536 vms_complete_munmap_vmas(&vms, &mas_detach); 1537 return 0; 1538 1539 clear_tree_failed: 1540 reattach_vmas(&mas_detach); 1541 gather_failed: 1542 validate_mm(mm); 1543 return error; 1544 } 1545 1546 /* 1547 * do_vmi_munmap() - munmap a given range. 1548 * @vmi: The vma iterator 1549 * @mm: The mm_struct 1550 * @start: The start address to munmap 1551 * @len: The length of the range to munmap 1552 * @uf: The userfaultfd list_head 1553 * @unlock: set to true if the user wants to drop the mmap_lock on success 1554 * 1555 * This function takes a @mas that is either pointing to the previous VMA or set 1556 * to MA_START and sets it up to remove the mapping(s). The @len will be 1557 * aligned. 1558 * 1559 * Return: 0 on success and drops the lock if so directed, error and leaves the 1560 * lock held otherwise. 1561 */ 1562 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1563 unsigned long start, size_t len, struct list_head *uf, 1564 bool unlock) 1565 { 1566 unsigned long end; 1567 struct vm_area_struct *vma; 1568 1569 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1570 return -EINVAL; 1571 1572 end = start + PAGE_ALIGN(len); 1573 if (end == start) 1574 return -EINVAL; 1575 1576 /* Find the first overlapping VMA */ 1577 vma = vma_find(vmi, end); 1578 if (!vma) { 1579 if (unlock) 1580 mmap_write_unlock(mm); 1581 return 0; 1582 } 1583 1584 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1585 } 1586 1587 /* 1588 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1589 * context and anonymous VMA name within the range [start, end). 1590 * 1591 * As a result, we might be able to merge the newly modified VMA range with an 1592 * adjacent VMA with identical properties. 1593 * 1594 * If no merge is possible and the range does not span the entirety of the VMA, 1595 * we then need to split the VMA to accommodate the change. 1596 * 1597 * The function returns either the merged VMA, the original VMA if a split was 1598 * required instead, or an error if the split failed. 1599 */ 1600 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1601 { 1602 struct vm_area_struct *vma = vmg->middle; 1603 unsigned long start = vmg->start; 1604 unsigned long end = vmg->end; 1605 struct vm_area_struct *merged; 1606 1607 /* First, try to merge. */ 1608 merged = vma_merge_existing_range(vmg); 1609 if (merged) 1610 return merged; 1611 if (vmg_nomem(vmg)) 1612 return ERR_PTR(-ENOMEM); 1613 1614 /* 1615 * Split can fail for reasons other than OOM, so if the user requests 1616 * this it's probably a mistake. 1617 */ 1618 VM_WARN_ON(vmg->give_up_on_oom && 1619 (vma->vm_start != start || vma->vm_end != end)); 1620 1621 /* Split any preceding portion of the VMA. */ 1622 if (vma->vm_start < start) { 1623 int err = split_vma(vmg->vmi, vma, start, 1); 1624 1625 if (err) 1626 return ERR_PTR(err); 1627 } 1628 1629 /* Split any trailing portion of the VMA. */ 1630 if (vma->vm_end > end) { 1631 int err = split_vma(vmg->vmi, vma, end, 0); 1632 1633 if (err) 1634 return ERR_PTR(err); 1635 } 1636 1637 return vma; 1638 } 1639 1640 struct vm_area_struct *vma_modify_flags( 1641 struct vma_iterator *vmi, struct vm_area_struct *prev, 1642 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1643 vm_flags_t vm_flags) 1644 { 1645 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1646 1647 vmg.vm_flags = vm_flags; 1648 1649 return vma_modify(&vmg); 1650 } 1651 1652 struct vm_area_struct 1653 *vma_modify_name(struct vma_iterator *vmi, 1654 struct vm_area_struct *prev, 1655 struct vm_area_struct *vma, 1656 unsigned long start, 1657 unsigned long end, 1658 struct anon_vma_name *new_name) 1659 { 1660 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1661 1662 vmg.anon_name = new_name; 1663 1664 return vma_modify(&vmg); 1665 } 1666 1667 struct vm_area_struct 1668 *vma_modify_policy(struct vma_iterator *vmi, 1669 struct vm_area_struct *prev, 1670 struct vm_area_struct *vma, 1671 unsigned long start, unsigned long end, 1672 struct mempolicy *new_pol) 1673 { 1674 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1675 1676 vmg.policy = new_pol; 1677 1678 return vma_modify(&vmg); 1679 } 1680 1681 struct vm_area_struct 1682 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1683 struct vm_area_struct *prev, 1684 struct vm_area_struct *vma, 1685 unsigned long start, unsigned long end, 1686 vm_flags_t vm_flags, 1687 struct vm_userfaultfd_ctx new_ctx, 1688 bool give_up_on_oom) 1689 { 1690 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1691 1692 vmg.vm_flags = vm_flags; 1693 vmg.uffd_ctx = new_ctx; 1694 if (give_up_on_oom) 1695 vmg.give_up_on_oom = true; 1696 1697 return vma_modify(&vmg); 1698 } 1699 1700 /* 1701 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1702 * VMA with identical properties. 1703 */ 1704 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1705 struct vm_area_struct *vma, 1706 unsigned long delta) 1707 { 1708 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1709 1710 vmg.next = vma_iter_next_rewind(vmi, NULL); 1711 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1712 1713 return vma_merge_new_range(&vmg); 1714 } 1715 1716 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1717 { 1718 vb->count = 0; 1719 } 1720 1721 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1722 { 1723 struct address_space *mapping; 1724 int i; 1725 1726 mapping = vb->vmas[0]->vm_file->f_mapping; 1727 i_mmap_lock_write(mapping); 1728 for (i = 0; i < vb->count; i++) { 1729 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1730 __remove_shared_vm_struct(vb->vmas[i], mapping); 1731 } 1732 i_mmap_unlock_write(mapping); 1733 1734 unlink_file_vma_batch_init(vb); 1735 } 1736 1737 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1738 struct vm_area_struct *vma) 1739 { 1740 if (vma->vm_file == NULL) 1741 return; 1742 1743 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1744 vb->count == ARRAY_SIZE(vb->vmas)) 1745 unlink_file_vma_batch_process(vb); 1746 1747 vb->vmas[vb->count] = vma; 1748 vb->count++; 1749 } 1750 1751 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1752 { 1753 if (vb->count > 0) 1754 unlink_file_vma_batch_process(vb); 1755 } 1756 1757 /* 1758 * Unlink a file-based vm structure from its interval tree, to hide 1759 * vma from rmap and vmtruncate before freeing its page tables. 1760 */ 1761 void unlink_file_vma(struct vm_area_struct *vma) 1762 { 1763 struct file *file = vma->vm_file; 1764 1765 if (file) { 1766 struct address_space *mapping = file->f_mapping; 1767 1768 i_mmap_lock_write(mapping); 1769 __remove_shared_vm_struct(vma, mapping); 1770 i_mmap_unlock_write(mapping); 1771 } 1772 } 1773 1774 void vma_link_file(struct vm_area_struct *vma) 1775 { 1776 struct file *file = vma->vm_file; 1777 struct address_space *mapping; 1778 1779 if (file) { 1780 mapping = file->f_mapping; 1781 i_mmap_lock_write(mapping); 1782 __vma_link_file(vma, mapping); 1783 i_mmap_unlock_write(mapping); 1784 } 1785 } 1786 1787 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1788 { 1789 VMA_ITERATOR(vmi, mm, 0); 1790 1791 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1792 if (vma_iter_prealloc(&vmi, vma)) 1793 return -ENOMEM; 1794 1795 vma_start_write(vma); 1796 vma_iter_store_new(&vmi, vma); 1797 vma_link_file(vma); 1798 mm->map_count++; 1799 validate_mm(mm); 1800 return 0; 1801 } 1802 1803 /* 1804 * Copy the vma structure to a new location in the same mm, 1805 * prior to moving page table entries, to effect an mremap move. 1806 */ 1807 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1808 unsigned long addr, unsigned long len, pgoff_t pgoff, 1809 bool *need_rmap_locks) 1810 { 1811 struct vm_area_struct *vma = *vmap; 1812 unsigned long vma_start = vma->vm_start; 1813 struct mm_struct *mm = vma->vm_mm; 1814 struct vm_area_struct *new_vma; 1815 bool faulted_in_anon_vma = true; 1816 VMA_ITERATOR(vmi, mm, addr); 1817 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1818 1819 /* 1820 * If anonymous vma has not yet been faulted, update new pgoff 1821 * to match new location, to increase its chance of merging. 1822 */ 1823 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1824 pgoff = addr >> PAGE_SHIFT; 1825 faulted_in_anon_vma = false; 1826 } 1827 1828 /* 1829 * If the VMA we are copying might contain a uprobe PTE, ensure 1830 * that we do not establish one upon merge. Otherwise, when mremap() 1831 * moves page tables, it will orphan the newly created PTE. 1832 */ 1833 if (vma->vm_file) 1834 vmg.skip_vma_uprobe = true; 1835 1836 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1837 if (new_vma && new_vma->vm_start < addr + len) 1838 return NULL; /* should never get here */ 1839 1840 vmg.middle = NULL; /* New VMA range. */ 1841 vmg.pgoff = pgoff; 1842 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1843 new_vma = vma_merge_new_range(&vmg); 1844 1845 if (new_vma) { 1846 /* 1847 * Source vma may have been merged into new_vma 1848 */ 1849 if (unlikely(vma_start >= new_vma->vm_start && 1850 vma_start < new_vma->vm_end)) { 1851 /* 1852 * The only way we can get a vma_merge with 1853 * self during an mremap is if the vma hasn't 1854 * been faulted in yet and we were allowed to 1855 * reset the dst vma->vm_pgoff to the 1856 * destination address of the mremap to allow 1857 * the merge to happen. mremap must change the 1858 * vm_pgoff linearity between src and dst vmas 1859 * (in turn preventing a vma_merge) to be 1860 * safe. It is only safe to keep the vm_pgoff 1861 * linear if there are no pages mapped yet. 1862 */ 1863 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1864 *vmap = vma = new_vma; 1865 } 1866 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1867 } else { 1868 new_vma = vm_area_dup(vma); 1869 if (!new_vma) 1870 goto out; 1871 vma_set_range(new_vma, addr, addr + len, pgoff); 1872 if (vma_dup_policy(vma, new_vma)) 1873 goto out_free_vma; 1874 if (anon_vma_clone(new_vma, vma)) 1875 goto out_free_mempol; 1876 if (new_vma->vm_file) 1877 get_file(new_vma->vm_file); 1878 if (new_vma->vm_ops && new_vma->vm_ops->open) 1879 new_vma->vm_ops->open(new_vma); 1880 if (vma_link(mm, new_vma)) 1881 goto out_vma_link; 1882 *need_rmap_locks = false; 1883 } 1884 return new_vma; 1885 1886 out_vma_link: 1887 fixup_hugetlb_reservations(new_vma); 1888 vma_close(new_vma); 1889 1890 if (new_vma->vm_file) 1891 fput(new_vma->vm_file); 1892 1893 unlink_anon_vmas(new_vma); 1894 out_free_mempol: 1895 mpol_put(vma_policy(new_vma)); 1896 out_free_vma: 1897 vm_area_free(new_vma); 1898 out: 1899 return NULL; 1900 } 1901 1902 /* 1903 * Rough compatibility check to quickly see if it's even worth looking 1904 * at sharing an anon_vma. 1905 * 1906 * They need to have the same vm_file, and the flags can only differ 1907 * in things that mprotect may change. 1908 * 1909 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1910 * we can merge the two vma's. For example, we refuse to merge a vma if 1911 * there is a vm_ops->close() function, because that indicates that the 1912 * driver is doing some kind of reference counting. But that doesn't 1913 * really matter for the anon_vma sharing case. 1914 */ 1915 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1916 { 1917 return a->vm_end == b->vm_start && 1918 mpol_equal(vma_policy(a), vma_policy(b)) && 1919 a->vm_file == b->vm_file && 1920 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1921 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1922 } 1923 1924 /* 1925 * Do some basic sanity checking to see if we can re-use the anon_vma 1926 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1927 * the same as 'old', the other will be the new one that is trying 1928 * to share the anon_vma. 1929 * 1930 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1931 * the anon_vma of 'old' is concurrently in the process of being set up 1932 * by another page fault trying to merge _that_. But that's ok: if it 1933 * is being set up, that automatically means that it will be a singleton 1934 * acceptable for merging, so we can do all of this optimistically. But 1935 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1936 * 1937 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1938 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1939 * is to return an anon_vma that is "complex" due to having gone through 1940 * a fork). 1941 * 1942 * We also make sure that the two vma's are compatible (adjacent, 1943 * and with the same memory policies). That's all stable, even with just 1944 * a read lock on the mmap_lock. 1945 */ 1946 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1947 struct vm_area_struct *a, 1948 struct vm_area_struct *b) 1949 { 1950 if (anon_vma_compatible(a, b)) { 1951 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1952 1953 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1954 return anon_vma; 1955 } 1956 return NULL; 1957 } 1958 1959 /* 1960 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1961 * neighbouring vmas for a suitable anon_vma, before it goes off 1962 * to allocate a new anon_vma. It checks because a repetitive 1963 * sequence of mprotects and faults may otherwise lead to distinct 1964 * anon_vmas being allocated, preventing vma merge in subsequent 1965 * mprotect. 1966 */ 1967 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1968 { 1969 struct anon_vma *anon_vma = NULL; 1970 struct vm_area_struct *prev, *next; 1971 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1972 1973 /* Try next first. */ 1974 next = vma_iter_load(&vmi); 1975 if (next) { 1976 anon_vma = reusable_anon_vma(next, vma, next); 1977 if (anon_vma) 1978 return anon_vma; 1979 } 1980 1981 prev = vma_prev(&vmi); 1982 VM_BUG_ON_VMA(prev != vma, vma); 1983 prev = vma_prev(&vmi); 1984 /* Try prev next. */ 1985 if (prev) 1986 anon_vma = reusable_anon_vma(prev, prev, vma); 1987 1988 /* 1989 * We might reach here with anon_vma == NULL if we can't find 1990 * any reusable anon_vma. 1991 * There's no absolute need to look only at touching neighbours: 1992 * we could search further afield for "compatible" anon_vmas. 1993 * But it would probably just be a waste of time searching, 1994 * or lead to too many vmas hanging off the same anon_vma. 1995 * We're trying to allow mprotect remerging later on, 1996 * not trying to minimize memory used for anon_vmas. 1997 */ 1998 return anon_vma; 1999 } 2000 2001 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 2002 { 2003 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 2004 } 2005 2006 static bool vma_is_shared_writable(struct vm_area_struct *vma) 2007 { 2008 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 2009 (VM_WRITE | VM_SHARED); 2010 } 2011 2012 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 2013 { 2014 /* No managed pages to writeback. */ 2015 if (vma->vm_flags & VM_PFNMAP) 2016 return false; 2017 2018 return vma->vm_file && vma->vm_file->f_mapping && 2019 mapping_can_writeback(vma->vm_file->f_mapping); 2020 } 2021 2022 /* 2023 * Does this VMA require the underlying folios to have their dirty state 2024 * tracked? 2025 */ 2026 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 2027 { 2028 /* Only shared, writable VMAs require dirty tracking. */ 2029 if (!vma_is_shared_writable(vma)) 2030 return false; 2031 2032 /* Does the filesystem need to be notified? */ 2033 if (vm_ops_needs_writenotify(vma->vm_ops)) 2034 return true; 2035 2036 /* 2037 * Even if the filesystem doesn't indicate a need for writenotify, if it 2038 * can writeback, dirty tracking is still required. 2039 */ 2040 return vma_fs_can_writeback(vma); 2041 } 2042 2043 /* 2044 * Some shared mappings will want the pages marked read-only 2045 * to track write events. If so, we'll downgrade vm_page_prot 2046 * to the private version (using protection_map[] without the 2047 * VM_SHARED bit). 2048 */ 2049 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 2050 { 2051 /* If it was private or non-writable, the write bit is already clear */ 2052 if (!vma_is_shared_writable(vma)) 2053 return false; 2054 2055 /* The backer wishes to know when pages are first written to? */ 2056 if (vm_ops_needs_writenotify(vma->vm_ops)) 2057 return true; 2058 2059 /* The open routine did something to the protections that pgprot_modify 2060 * won't preserve? */ 2061 if (pgprot_val(vm_page_prot) != 2062 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 2063 return false; 2064 2065 /* 2066 * Do we need to track softdirty? hugetlb does not support softdirty 2067 * tracking yet. 2068 */ 2069 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 2070 return true; 2071 2072 /* Do we need write faults for uffd-wp tracking? */ 2073 if (userfaultfd_wp(vma)) 2074 return true; 2075 2076 /* Can the mapping track the dirty pages? */ 2077 return vma_fs_can_writeback(vma); 2078 } 2079 2080 static DEFINE_MUTEX(mm_all_locks_mutex); 2081 2082 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2083 { 2084 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2085 /* 2086 * The LSB of head.next can't change from under us 2087 * because we hold the mm_all_locks_mutex. 2088 */ 2089 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 2090 /* 2091 * We can safely modify head.next after taking the 2092 * anon_vma->root->rwsem. If some other vma in this mm shares 2093 * the same anon_vma we won't take it again. 2094 * 2095 * No need of atomic instructions here, head.next 2096 * can't change from under us thanks to the 2097 * anon_vma->root->rwsem. 2098 */ 2099 if (__test_and_set_bit(0, (unsigned long *) 2100 &anon_vma->root->rb_root.rb_root.rb_node)) 2101 BUG(); 2102 } 2103 } 2104 2105 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2106 { 2107 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2108 /* 2109 * AS_MM_ALL_LOCKS can't change from under us because 2110 * we hold the mm_all_locks_mutex. 2111 * 2112 * Operations on ->flags have to be atomic because 2113 * even if AS_MM_ALL_LOCKS is stable thanks to the 2114 * mm_all_locks_mutex, there may be other cpus 2115 * changing other bitflags in parallel to us. 2116 */ 2117 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2118 BUG(); 2119 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2120 } 2121 } 2122 2123 /* 2124 * This operation locks against the VM for all pte/vma/mm related 2125 * operations that could ever happen on a certain mm. This includes 2126 * vmtruncate, try_to_unmap, and all page faults. 2127 * 2128 * The caller must take the mmap_lock in write mode before calling 2129 * mm_take_all_locks(). The caller isn't allowed to release the 2130 * mmap_lock until mm_drop_all_locks() returns. 2131 * 2132 * mmap_lock in write mode is required in order to block all operations 2133 * that could modify pagetables and free pages without need of 2134 * altering the vma layout. It's also needed in write mode to avoid new 2135 * anon_vmas to be associated with existing vmas. 2136 * 2137 * A single task can't take more than one mm_take_all_locks() in a row 2138 * or it would deadlock. 2139 * 2140 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2141 * mapping->flags avoid to take the same lock twice, if more than one 2142 * vma in this mm is backed by the same anon_vma or address_space. 2143 * 2144 * We take locks in following order, accordingly to comment at beginning 2145 * of mm/rmap.c: 2146 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2147 * hugetlb mapping); 2148 * - all vmas marked locked 2149 * - all i_mmap_rwsem locks; 2150 * - all anon_vma->rwseml 2151 * 2152 * We can take all locks within these types randomly because the VM code 2153 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2154 * mm_all_locks_mutex. 2155 * 2156 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2157 * that may have to take thousand of locks. 2158 * 2159 * mm_take_all_locks() can fail if it's interrupted by signals. 2160 */ 2161 int mm_take_all_locks(struct mm_struct *mm) 2162 { 2163 struct vm_area_struct *vma; 2164 struct anon_vma_chain *avc; 2165 VMA_ITERATOR(vmi, mm, 0); 2166 2167 mmap_assert_write_locked(mm); 2168 2169 mutex_lock(&mm_all_locks_mutex); 2170 2171 /* 2172 * vma_start_write() does not have a complement in mm_drop_all_locks() 2173 * because vma_start_write() is always asymmetrical; it marks a VMA as 2174 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2175 * is reached. 2176 */ 2177 for_each_vma(vmi, vma) { 2178 if (signal_pending(current)) 2179 goto out_unlock; 2180 vma_start_write(vma); 2181 } 2182 2183 vma_iter_init(&vmi, mm, 0); 2184 for_each_vma(vmi, vma) { 2185 if (signal_pending(current)) 2186 goto out_unlock; 2187 if (vma->vm_file && vma->vm_file->f_mapping && 2188 is_vm_hugetlb_page(vma)) 2189 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2190 } 2191 2192 vma_iter_init(&vmi, mm, 0); 2193 for_each_vma(vmi, vma) { 2194 if (signal_pending(current)) 2195 goto out_unlock; 2196 if (vma->vm_file && vma->vm_file->f_mapping && 2197 !is_vm_hugetlb_page(vma)) 2198 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2199 } 2200 2201 vma_iter_init(&vmi, mm, 0); 2202 for_each_vma(vmi, vma) { 2203 if (signal_pending(current)) 2204 goto out_unlock; 2205 if (vma->anon_vma) 2206 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2207 vm_lock_anon_vma(mm, avc->anon_vma); 2208 } 2209 2210 return 0; 2211 2212 out_unlock: 2213 mm_drop_all_locks(mm); 2214 return -EINTR; 2215 } 2216 2217 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2218 { 2219 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2220 /* 2221 * The LSB of head.next can't change to 0 from under 2222 * us because we hold the mm_all_locks_mutex. 2223 * 2224 * We must however clear the bitflag before unlocking 2225 * the vma so the users using the anon_vma->rb_root will 2226 * never see our bitflag. 2227 * 2228 * No need of atomic instructions here, head.next 2229 * can't change from under us until we release the 2230 * anon_vma->root->rwsem. 2231 */ 2232 if (!__test_and_clear_bit(0, (unsigned long *) 2233 &anon_vma->root->rb_root.rb_root.rb_node)) 2234 BUG(); 2235 anon_vma_unlock_write(anon_vma); 2236 } 2237 } 2238 2239 static void vm_unlock_mapping(struct address_space *mapping) 2240 { 2241 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2242 /* 2243 * AS_MM_ALL_LOCKS can't change to 0 from under us 2244 * because we hold the mm_all_locks_mutex. 2245 */ 2246 i_mmap_unlock_write(mapping); 2247 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2248 &mapping->flags)) 2249 BUG(); 2250 } 2251 } 2252 2253 /* 2254 * The mmap_lock cannot be released by the caller until 2255 * mm_drop_all_locks() returns. 2256 */ 2257 void mm_drop_all_locks(struct mm_struct *mm) 2258 { 2259 struct vm_area_struct *vma; 2260 struct anon_vma_chain *avc; 2261 VMA_ITERATOR(vmi, mm, 0); 2262 2263 mmap_assert_write_locked(mm); 2264 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2265 2266 for_each_vma(vmi, vma) { 2267 if (vma->anon_vma) 2268 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2269 vm_unlock_anon_vma(avc->anon_vma); 2270 if (vma->vm_file && vma->vm_file->f_mapping) 2271 vm_unlock_mapping(vma->vm_file->f_mapping); 2272 } 2273 2274 mutex_unlock(&mm_all_locks_mutex); 2275 } 2276 2277 /* 2278 * We account for memory if it's a private writeable mapping, 2279 * not hugepages and VM_NORESERVE wasn't set. 2280 */ 2281 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2282 { 2283 /* 2284 * hugetlb has its own accounting separate from the core VM 2285 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2286 */ 2287 if (file && is_file_hugepages(file)) 2288 return false; 2289 2290 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2291 } 2292 2293 /* 2294 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2295 * operation. 2296 * @vms: The vma unmap structure 2297 * @mas_detach: The maple state with the detached maple tree 2298 * 2299 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2300 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2301 * have been called), then a NULL is written over the vmas and the vmas are 2302 * removed (munmap() completed). 2303 */ 2304 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2305 struct ma_state *mas_detach) 2306 { 2307 struct ma_state *mas = &vms->vmi->mas; 2308 2309 if (!vms->nr_pages) 2310 return; 2311 2312 if (vms->clear_ptes) 2313 return reattach_vmas(mas_detach); 2314 2315 /* 2316 * Aborting cannot just call the vm_ops open() because they are often 2317 * not symmetrical and state data has been lost. Resort to the old 2318 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2319 */ 2320 mas_set_range(mas, vms->start, vms->end - 1); 2321 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2322 /* Clean up the insertion of the unfortunate gap */ 2323 vms_complete_munmap_vmas(vms, mas_detach); 2324 } 2325 2326 static void update_ksm_flags(struct mmap_state *map) 2327 { 2328 map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags); 2329 } 2330 2331 /* 2332 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2333 * unmapped once the map operation is completed, check limits, account mapping 2334 * and clean up any pre-existing VMAs. 2335 * 2336 * @map: Mapping state. 2337 * @uf: Userfaultfd context list. 2338 * 2339 * Returns: 0 on success, error code otherwise. 2340 */ 2341 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2342 { 2343 int error; 2344 struct vma_iterator *vmi = map->vmi; 2345 struct vma_munmap_struct *vms = &map->vms; 2346 2347 /* Find the first overlapping VMA and initialise unmap state. */ 2348 vms->vma = vma_find(vmi, map->end); 2349 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2350 /* unlock = */ false); 2351 2352 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2353 if (vms->vma) { 2354 mt_init_flags(&map->mt_detach, 2355 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2356 mt_on_stack(map->mt_detach); 2357 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2358 /* Prepare to unmap any existing mapping in the area */ 2359 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2360 if (error) { 2361 /* On error VMAs will already have been reattached. */ 2362 vms->nr_pages = 0; 2363 return error; 2364 } 2365 2366 map->next = vms->next; 2367 map->prev = vms->prev; 2368 } else { 2369 map->next = vma_iter_next_rewind(vmi, &map->prev); 2370 } 2371 2372 /* Check against address space limit. */ 2373 if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages)) 2374 return -ENOMEM; 2375 2376 /* Private writable mapping: check memory availability. */ 2377 if (accountable_mapping(map->file, map->vm_flags)) { 2378 map->charged = map->pglen; 2379 map->charged -= vms->nr_accounted; 2380 if (map->charged) { 2381 error = security_vm_enough_memory_mm(map->mm, map->charged); 2382 if (error) 2383 return error; 2384 } 2385 2386 vms->nr_accounted = 0; 2387 map->vm_flags |= VM_ACCOUNT; 2388 } 2389 2390 /* 2391 * Clear PTEs while the vma is still in the tree so that rmap 2392 * cannot race with the freeing later in the truncate scenario. 2393 * This is also needed for mmap_file(), which is why vm_ops 2394 * close function is called. 2395 */ 2396 vms_clean_up_area(vms, &map->mas_detach); 2397 2398 return 0; 2399 } 2400 2401 2402 static int __mmap_new_file_vma(struct mmap_state *map, 2403 struct vm_area_struct *vma) 2404 { 2405 struct vma_iterator *vmi = map->vmi; 2406 int error; 2407 2408 vma->vm_file = get_file(map->file); 2409 2410 if (!map->file->f_op->mmap) 2411 return 0; 2412 2413 error = mmap_file(vma->vm_file, vma); 2414 if (error) { 2415 fput(vma->vm_file); 2416 vma->vm_file = NULL; 2417 2418 vma_iter_set(vmi, vma->vm_end); 2419 /* Undo any partial mapping done by a device driver. */ 2420 unmap_region(&vmi->mas, vma, map->prev, map->next); 2421 2422 return error; 2423 } 2424 2425 /* Drivers cannot alter the address of the VMA. */ 2426 WARN_ON_ONCE(map->addr != vma->vm_start); 2427 /* 2428 * Drivers should not permit writability when previously it was 2429 * disallowed. 2430 */ 2431 VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags && 2432 !(map->vm_flags & VM_MAYWRITE) && 2433 (vma->vm_flags & VM_MAYWRITE)); 2434 2435 map->file = vma->vm_file; 2436 map->vm_flags = vma->vm_flags; 2437 2438 return 0; 2439 } 2440 2441 /* 2442 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2443 * possible. 2444 * 2445 * @map: Mapping state. 2446 * @vmap: Output pointer for the new VMA. 2447 * 2448 * Returns: Zero on success, or an error. 2449 */ 2450 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2451 { 2452 struct vma_iterator *vmi = map->vmi; 2453 int error = 0; 2454 struct vm_area_struct *vma; 2455 2456 /* 2457 * Determine the object being mapped and call the appropriate 2458 * specific mapper. the address has already been validated, but 2459 * not unmapped, but the maps are removed from the list. 2460 */ 2461 vma = vm_area_alloc(map->mm); 2462 if (!vma) 2463 return -ENOMEM; 2464 2465 vma_iter_config(vmi, map->addr, map->end); 2466 vma_set_range(vma, map->addr, map->end, map->pgoff); 2467 vm_flags_init(vma, map->vm_flags); 2468 vma->vm_page_prot = map->page_prot; 2469 2470 if (vma_iter_prealloc(vmi, vma)) { 2471 error = -ENOMEM; 2472 goto free_vma; 2473 } 2474 2475 if (map->file) 2476 error = __mmap_new_file_vma(map, vma); 2477 else if (map->vm_flags & VM_SHARED) 2478 error = shmem_zero_setup(vma); 2479 else 2480 vma_set_anonymous(vma); 2481 2482 if (error) 2483 goto free_iter_vma; 2484 2485 if (!map->check_ksm_early) { 2486 update_ksm_flags(map); 2487 vm_flags_init(vma, map->vm_flags); 2488 } 2489 2490 #ifdef CONFIG_SPARC64 2491 /* TODO: Fix SPARC ADI! */ 2492 WARN_ON_ONCE(!arch_validate_flags(map->vm_flags)); 2493 #endif 2494 2495 /* Lock the VMA since it is modified after insertion into VMA tree */ 2496 vma_start_write(vma); 2497 vma_iter_store_new(vmi, vma); 2498 map->mm->map_count++; 2499 vma_link_file(vma); 2500 2501 /* 2502 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2503 * call covers the non-merge case. 2504 */ 2505 if (!vma_is_anonymous(vma)) 2506 khugepaged_enter_vma(vma, map->vm_flags); 2507 *vmap = vma; 2508 return 0; 2509 2510 free_iter_vma: 2511 vma_iter_free(vmi); 2512 free_vma: 2513 vm_area_free(vma); 2514 return error; 2515 } 2516 2517 /* 2518 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2519 * statistics, handle locking and finalise the VMA. 2520 * 2521 * @map: Mapping state. 2522 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2523 */ 2524 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2525 { 2526 struct mm_struct *mm = map->mm; 2527 vm_flags_t vm_flags = vma->vm_flags; 2528 2529 perf_event_mmap(vma); 2530 2531 /* Unmap any existing mapping in the area. */ 2532 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2533 2534 vm_stat_account(mm, vma->vm_flags, map->pglen); 2535 if (vm_flags & VM_LOCKED) { 2536 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2537 is_vm_hugetlb_page(vma) || 2538 vma == get_gate_vma(mm)) 2539 vm_flags_clear(vma, VM_LOCKED_MASK); 2540 else 2541 mm->locked_vm += map->pglen; 2542 } 2543 2544 if (vma->vm_file) 2545 uprobe_mmap(vma); 2546 2547 /* 2548 * New (or expanded) vma always get soft dirty status. 2549 * Otherwise user-space soft-dirty page tracker won't 2550 * be able to distinguish situation when vma area unmapped, 2551 * then new mapped in-place (which must be aimed as 2552 * a completely new data area). 2553 */ 2554 vm_flags_set(vma, VM_SOFTDIRTY); 2555 2556 vma_set_page_prot(vma); 2557 } 2558 2559 /* 2560 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that 2561 * specifies it. 2562 * 2563 * This is called prior to any merge attempt, and updates whitelisted fields 2564 * that are permitted to be updated by the caller. 2565 * 2566 * All but user-defined fields will be pre-populated with original values. 2567 * 2568 * Returns 0 on success, or an error code otherwise. 2569 */ 2570 static int call_mmap_prepare(struct mmap_state *map) 2571 { 2572 int err; 2573 struct vm_area_desc desc = { 2574 .mm = map->mm, 2575 .start = map->addr, 2576 .end = map->end, 2577 2578 .pgoff = map->pgoff, 2579 .file = map->file, 2580 .vm_flags = map->vm_flags, 2581 .page_prot = map->page_prot, 2582 }; 2583 2584 /* Invoke the hook. */ 2585 err = vfs_mmap_prepare(map->file, &desc); 2586 if (err) 2587 return err; 2588 2589 /* Update fields permitted to be changed. */ 2590 map->pgoff = desc.pgoff; 2591 map->file = desc.file; 2592 map->vm_flags = desc.vm_flags; 2593 map->page_prot = desc.page_prot; 2594 /* User-defined fields. */ 2595 map->vm_ops = desc.vm_ops; 2596 map->vm_private_data = desc.private_data; 2597 2598 return 0; 2599 } 2600 2601 static void set_vma_user_defined_fields(struct vm_area_struct *vma, 2602 struct mmap_state *map) 2603 { 2604 if (map->vm_ops) 2605 vma->vm_ops = map->vm_ops; 2606 vma->vm_private_data = map->vm_private_data; 2607 } 2608 2609 /* 2610 * Are we guaranteed no driver can change state such as to preclude KSM merging? 2611 * If so, let's set the KSM mergeable flag early so we don't break VMA merging. 2612 */ 2613 static bool can_set_ksm_flags_early(struct mmap_state *map) 2614 { 2615 struct file *file = map->file; 2616 2617 /* Anonymous mappings have no driver which can change them. */ 2618 if (!file) 2619 return true; 2620 2621 /* 2622 * If .mmap_prepare() is specified, then the driver will have already 2623 * manipulated state prior to updating KSM flags. So no need to worry 2624 * about mmap callbacks modifying VMA flags after the KSM flag has been 2625 * updated here, which could otherwise affect KSM eligibility. 2626 */ 2627 if (file->f_op->mmap_prepare) 2628 return true; 2629 2630 /* shmem is safe. */ 2631 if (shmem_file(file)) 2632 return true; 2633 2634 /* Any other .mmap callback is not safe. */ 2635 return false; 2636 } 2637 2638 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2639 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2640 struct list_head *uf) 2641 { 2642 struct mm_struct *mm = current->mm; 2643 struct vm_area_struct *vma = NULL; 2644 int error; 2645 bool have_mmap_prepare = file && file->f_op->mmap_prepare; 2646 VMA_ITERATOR(vmi, mm, addr); 2647 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2648 2649 map.check_ksm_early = can_set_ksm_flags_early(&map); 2650 2651 error = __mmap_prepare(&map, uf); 2652 if (!error && have_mmap_prepare) 2653 error = call_mmap_prepare(&map); 2654 if (error) 2655 goto abort_munmap; 2656 2657 if (map.check_ksm_early) 2658 update_ksm_flags(&map); 2659 2660 /* Attempt to merge with adjacent VMAs... */ 2661 if (map.prev || map.next) { 2662 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2663 2664 vma = vma_merge_new_range(&vmg); 2665 } 2666 2667 /* ...but if we can't, allocate a new VMA. */ 2668 if (!vma) { 2669 error = __mmap_new_vma(&map, &vma); 2670 if (error) 2671 goto unacct_error; 2672 } 2673 2674 if (have_mmap_prepare) 2675 set_vma_user_defined_fields(vma, &map); 2676 2677 __mmap_complete(&map, vma); 2678 2679 return addr; 2680 2681 /* Accounting was done by __mmap_prepare(). */ 2682 unacct_error: 2683 if (map.charged) 2684 vm_unacct_memory(map.charged); 2685 abort_munmap: 2686 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2687 return error; 2688 } 2689 2690 /** 2691 * mmap_region() - Actually perform the userland mapping of a VMA into 2692 * current->mm with known, aligned and overflow-checked @addr and @len, and 2693 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2694 * 2695 * This is an internal memory management function, and should not be used 2696 * directly. 2697 * 2698 * The caller must write-lock current->mm->mmap_lock. 2699 * 2700 * @file: If a file-backed mapping, a pointer to the struct file describing the 2701 * file to be mapped, otherwise NULL. 2702 * @addr: The page-aligned address at which to perform the mapping. 2703 * @len: The page-aligned, non-zero, length of the mapping. 2704 * @vm_flags: The VMA flags which should be applied to the mapping. 2705 * @pgoff: If @file is specified, the page offset into the file, if not then 2706 * the virtual page offset in memory of the anonymous mapping. 2707 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2708 * events. 2709 * 2710 * Returns: Either an error, or the address at which the requested mapping has 2711 * been performed. 2712 */ 2713 unsigned long mmap_region(struct file *file, unsigned long addr, 2714 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2715 struct list_head *uf) 2716 { 2717 unsigned long ret; 2718 bool writable_file_mapping = false; 2719 2720 mmap_assert_write_locked(current->mm); 2721 2722 /* Check to see if MDWE is applicable. */ 2723 if (map_deny_write_exec(vm_flags, vm_flags)) 2724 return -EACCES; 2725 2726 /* Allow architectures to sanity-check the vm_flags. */ 2727 if (!arch_validate_flags(vm_flags)) 2728 return -EINVAL; 2729 2730 /* Map writable and ensure this isn't a sealed memfd. */ 2731 if (file && is_shared_maywrite(vm_flags)) { 2732 int error = mapping_map_writable(file->f_mapping); 2733 2734 if (error) 2735 return error; 2736 writable_file_mapping = true; 2737 } 2738 2739 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2740 2741 /* Clear our write mapping regardless of error. */ 2742 if (writable_file_mapping) 2743 mapping_unmap_writable(file->f_mapping); 2744 2745 validate_mm(current->mm); 2746 return ret; 2747 } 2748 2749 /* 2750 * do_brk_flags() - Increase the brk vma if the flags match. 2751 * @vmi: The vma iterator 2752 * @addr: The start address 2753 * @len: The length of the increase 2754 * @vma: The vma, 2755 * @vm_flags: The VMA Flags 2756 * 2757 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2758 * do not match then create a new anonymous VMA. Eventually we may be able to 2759 * do some brk-specific accounting here. 2760 */ 2761 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2762 unsigned long addr, unsigned long len, vm_flags_t vm_flags) 2763 { 2764 struct mm_struct *mm = current->mm; 2765 2766 /* 2767 * Check against address space limits by the changed size 2768 * Note: This happens *after* clearing old mappings in some code paths. 2769 */ 2770 vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2771 vm_flags = ksm_vma_flags(mm, NULL, vm_flags); 2772 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) 2773 return -ENOMEM; 2774 2775 if (mm->map_count > sysctl_max_map_count) 2776 return -ENOMEM; 2777 2778 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2779 return -ENOMEM; 2780 2781 /* 2782 * Expand the existing vma if possible; Note that singular lists do not 2783 * occur after forking, so the expand will only happen on new VMAs. 2784 */ 2785 if (vma && vma->vm_end == addr) { 2786 VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr)); 2787 2788 vmg.prev = vma; 2789 /* vmi is positioned at prev, which this mode expects. */ 2790 vmg.just_expand = true; 2791 2792 if (vma_merge_new_range(&vmg)) 2793 goto out; 2794 else if (vmg_nomem(&vmg)) 2795 goto unacct_fail; 2796 } 2797 2798 if (vma) 2799 vma_iter_next_range(vmi); 2800 /* create a vma struct for an anonymous mapping */ 2801 vma = vm_area_alloc(mm); 2802 if (!vma) 2803 goto unacct_fail; 2804 2805 vma_set_anonymous(vma); 2806 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2807 vm_flags_init(vma, vm_flags); 2808 vma->vm_page_prot = vm_get_page_prot(vm_flags); 2809 vma_start_write(vma); 2810 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2811 goto mas_store_fail; 2812 2813 mm->map_count++; 2814 validate_mm(mm); 2815 out: 2816 perf_event_mmap(vma); 2817 mm->total_vm += len >> PAGE_SHIFT; 2818 mm->data_vm += len >> PAGE_SHIFT; 2819 if (vm_flags & VM_LOCKED) 2820 mm->locked_vm += (len >> PAGE_SHIFT); 2821 vm_flags_set(vma, VM_SOFTDIRTY); 2822 return 0; 2823 2824 mas_store_fail: 2825 vm_area_free(vma); 2826 unacct_fail: 2827 vm_unacct_memory(len >> PAGE_SHIFT); 2828 return -ENOMEM; 2829 } 2830 2831 /** 2832 * unmapped_area() - Find an area between the low_limit and the high_limit with 2833 * the correct alignment and offset, all from @info. Note: current->mm is used 2834 * for the search. 2835 * 2836 * @info: The unmapped area information including the range [low_limit - 2837 * high_limit), the alignment offset and mask. 2838 * 2839 * Return: A memory address or -ENOMEM. 2840 */ 2841 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2842 { 2843 unsigned long length, gap; 2844 unsigned long low_limit, high_limit; 2845 struct vm_area_struct *tmp; 2846 VMA_ITERATOR(vmi, current->mm, 0); 2847 2848 /* Adjust search length to account for worst case alignment overhead */ 2849 length = info->length + info->align_mask + info->start_gap; 2850 if (length < info->length) 2851 return -ENOMEM; 2852 2853 low_limit = info->low_limit; 2854 if (low_limit < mmap_min_addr) 2855 low_limit = mmap_min_addr; 2856 high_limit = info->high_limit; 2857 retry: 2858 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2859 return -ENOMEM; 2860 2861 /* 2862 * Adjust for the gap first so it doesn't interfere with the 2863 * later alignment. The first step is the minimum needed to 2864 * fulill the start gap, the next steps is the minimum to align 2865 * that. It is the minimum needed to fulill both. 2866 */ 2867 gap = vma_iter_addr(&vmi) + info->start_gap; 2868 gap += (info->align_offset - gap) & info->align_mask; 2869 tmp = vma_next(&vmi); 2870 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2871 if (vm_start_gap(tmp) < gap + length - 1) { 2872 low_limit = tmp->vm_end; 2873 vma_iter_reset(&vmi); 2874 goto retry; 2875 } 2876 } else { 2877 tmp = vma_prev(&vmi); 2878 if (tmp && vm_end_gap(tmp) > gap) { 2879 low_limit = vm_end_gap(tmp); 2880 vma_iter_reset(&vmi); 2881 goto retry; 2882 } 2883 } 2884 2885 return gap; 2886 } 2887 2888 /** 2889 * unmapped_area_topdown() - Find an area between the low_limit and the 2890 * high_limit with the correct alignment and offset at the highest available 2891 * address, all from @info. Note: current->mm is used for the search. 2892 * 2893 * @info: The unmapped area information including the range [low_limit - 2894 * high_limit), the alignment offset and mask. 2895 * 2896 * Return: A memory address or -ENOMEM. 2897 */ 2898 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2899 { 2900 unsigned long length, gap, gap_end; 2901 unsigned long low_limit, high_limit; 2902 struct vm_area_struct *tmp; 2903 VMA_ITERATOR(vmi, current->mm, 0); 2904 2905 /* Adjust search length to account for worst case alignment overhead */ 2906 length = info->length + info->align_mask + info->start_gap; 2907 if (length < info->length) 2908 return -ENOMEM; 2909 2910 low_limit = info->low_limit; 2911 if (low_limit < mmap_min_addr) 2912 low_limit = mmap_min_addr; 2913 high_limit = info->high_limit; 2914 retry: 2915 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2916 return -ENOMEM; 2917 2918 gap = vma_iter_end(&vmi) - info->length; 2919 gap -= (gap - info->align_offset) & info->align_mask; 2920 gap_end = vma_iter_end(&vmi); 2921 tmp = vma_next(&vmi); 2922 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2923 if (vm_start_gap(tmp) < gap_end) { 2924 high_limit = vm_start_gap(tmp); 2925 vma_iter_reset(&vmi); 2926 goto retry; 2927 } 2928 } else { 2929 tmp = vma_prev(&vmi); 2930 if (tmp && vm_end_gap(tmp) > gap) { 2931 high_limit = tmp->vm_start; 2932 vma_iter_reset(&vmi); 2933 goto retry; 2934 } 2935 } 2936 2937 return gap; 2938 } 2939 2940 /* 2941 * Verify that the stack growth is acceptable and 2942 * update accounting. This is shared with both the 2943 * grow-up and grow-down cases. 2944 */ 2945 static int acct_stack_growth(struct vm_area_struct *vma, 2946 unsigned long size, unsigned long grow) 2947 { 2948 struct mm_struct *mm = vma->vm_mm; 2949 unsigned long new_start; 2950 2951 /* address space limit tests */ 2952 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2953 return -ENOMEM; 2954 2955 /* Stack limit test */ 2956 if (size > rlimit(RLIMIT_STACK)) 2957 return -ENOMEM; 2958 2959 /* mlock limit tests */ 2960 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2961 return -ENOMEM; 2962 2963 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2964 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2965 vma->vm_end - size; 2966 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2967 return -EFAULT; 2968 2969 /* 2970 * Overcommit.. This must be the final test, as it will 2971 * update security statistics. 2972 */ 2973 if (security_vm_enough_memory_mm(mm, grow)) 2974 return -ENOMEM; 2975 2976 return 0; 2977 } 2978 2979 #if defined(CONFIG_STACK_GROWSUP) 2980 /* 2981 * PA-RISC uses this for its stack. 2982 * vma is the last one with address > vma->vm_end. Have to extend vma. 2983 */ 2984 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2985 { 2986 struct mm_struct *mm = vma->vm_mm; 2987 struct vm_area_struct *next; 2988 unsigned long gap_addr; 2989 int error = 0; 2990 VMA_ITERATOR(vmi, mm, vma->vm_start); 2991 2992 if (!(vma->vm_flags & VM_GROWSUP)) 2993 return -EFAULT; 2994 2995 mmap_assert_write_locked(mm); 2996 2997 /* Guard against exceeding limits of the address space. */ 2998 address &= PAGE_MASK; 2999 if (address >= (TASK_SIZE & PAGE_MASK)) 3000 return -ENOMEM; 3001 address += PAGE_SIZE; 3002 3003 /* Enforce stack_guard_gap */ 3004 gap_addr = address + stack_guard_gap; 3005 3006 /* Guard against overflow */ 3007 if (gap_addr < address || gap_addr > TASK_SIZE) 3008 gap_addr = TASK_SIZE; 3009 3010 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 3011 if (next && vma_is_accessible(next)) { 3012 if (!(next->vm_flags & VM_GROWSUP)) 3013 return -ENOMEM; 3014 /* Check that both stack segments have the same anon_vma? */ 3015 } 3016 3017 if (next) 3018 vma_iter_prev_range_limit(&vmi, address); 3019 3020 vma_iter_config(&vmi, vma->vm_start, address); 3021 if (vma_iter_prealloc(&vmi, vma)) 3022 return -ENOMEM; 3023 3024 /* We must make sure the anon_vma is allocated. */ 3025 if (unlikely(anon_vma_prepare(vma))) { 3026 vma_iter_free(&vmi); 3027 return -ENOMEM; 3028 } 3029 3030 /* Lock the VMA before expanding to prevent concurrent page faults */ 3031 vma_start_write(vma); 3032 /* We update the anon VMA tree. */ 3033 anon_vma_lock_write(vma->anon_vma); 3034 3035 /* Somebody else might have raced and expanded it already */ 3036 if (address > vma->vm_end) { 3037 unsigned long size, grow; 3038 3039 size = address - vma->vm_start; 3040 grow = (address - vma->vm_end) >> PAGE_SHIFT; 3041 3042 error = -ENOMEM; 3043 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 3044 error = acct_stack_growth(vma, size, grow); 3045 if (!error) { 3046 if (vma->vm_flags & VM_LOCKED) 3047 mm->locked_vm += grow; 3048 vm_stat_account(mm, vma->vm_flags, grow); 3049 anon_vma_interval_tree_pre_update_vma(vma); 3050 vma->vm_end = address; 3051 /* Overwrite old entry in mtree. */ 3052 vma_iter_store_overwrite(&vmi, vma); 3053 anon_vma_interval_tree_post_update_vma(vma); 3054 3055 perf_event_mmap(vma); 3056 } 3057 } 3058 } 3059 anon_vma_unlock_write(vma->anon_vma); 3060 vma_iter_free(&vmi); 3061 validate_mm(mm); 3062 return error; 3063 } 3064 #endif /* CONFIG_STACK_GROWSUP */ 3065 3066 /* 3067 * vma is the first one with address < vma->vm_start. Have to extend vma. 3068 * mmap_lock held for writing. 3069 */ 3070 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 3071 { 3072 struct mm_struct *mm = vma->vm_mm; 3073 struct vm_area_struct *prev; 3074 int error = 0; 3075 VMA_ITERATOR(vmi, mm, vma->vm_start); 3076 3077 if (!(vma->vm_flags & VM_GROWSDOWN)) 3078 return -EFAULT; 3079 3080 mmap_assert_write_locked(mm); 3081 3082 address &= PAGE_MASK; 3083 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 3084 return -EPERM; 3085 3086 /* Enforce stack_guard_gap */ 3087 prev = vma_prev(&vmi); 3088 /* Check that both stack segments have the same anon_vma? */ 3089 if (prev) { 3090 if (!(prev->vm_flags & VM_GROWSDOWN) && 3091 vma_is_accessible(prev) && 3092 (address - prev->vm_end < stack_guard_gap)) 3093 return -ENOMEM; 3094 } 3095 3096 if (prev) 3097 vma_iter_next_range_limit(&vmi, vma->vm_start); 3098 3099 vma_iter_config(&vmi, address, vma->vm_end); 3100 if (vma_iter_prealloc(&vmi, vma)) 3101 return -ENOMEM; 3102 3103 /* We must make sure the anon_vma is allocated. */ 3104 if (unlikely(anon_vma_prepare(vma))) { 3105 vma_iter_free(&vmi); 3106 return -ENOMEM; 3107 } 3108 3109 /* Lock the VMA before expanding to prevent concurrent page faults */ 3110 vma_start_write(vma); 3111 /* We update the anon VMA tree. */ 3112 anon_vma_lock_write(vma->anon_vma); 3113 3114 /* Somebody else might have raced and expanded it already */ 3115 if (address < vma->vm_start) { 3116 unsigned long size, grow; 3117 3118 size = vma->vm_end - address; 3119 grow = (vma->vm_start - address) >> PAGE_SHIFT; 3120 3121 error = -ENOMEM; 3122 if (grow <= vma->vm_pgoff) { 3123 error = acct_stack_growth(vma, size, grow); 3124 if (!error) { 3125 if (vma->vm_flags & VM_LOCKED) 3126 mm->locked_vm += grow; 3127 vm_stat_account(mm, vma->vm_flags, grow); 3128 anon_vma_interval_tree_pre_update_vma(vma); 3129 vma->vm_start = address; 3130 vma->vm_pgoff -= grow; 3131 /* Overwrite old entry in mtree. */ 3132 vma_iter_store_overwrite(&vmi, vma); 3133 anon_vma_interval_tree_post_update_vma(vma); 3134 3135 perf_event_mmap(vma); 3136 } 3137 } 3138 } 3139 anon_vma_unlock_write(vma->anon_vma); 3140 vma_iter_free(&vmi); 3141 validate_mm(mm); 3142 return error; 3143 } 3144 3145 int __vm_munmap(unsigned long start, size_t len, bool unlock) 3146 { 3147 int ret; 3148 struct mm_struct *mm = current->mm; 3149 LIST_HEAD(uf); 3150 VMA_ITERATOR(vmi, mm, start); 3151 3152 if (mmap_write_lock_killable(mm)) 3153 return -EINTR; 3154 3155 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3156 if (ret || !unlock) 3157 mmap_write_unlock(mm); 3158 3159 userfaultfd_unmap_complete(mm, &uf); 3160 return ret; 3161 } 3162 3163 /* Insert vm structure into process list sorted by address 3164 * and into the inode's i_mmap tree. If vm_file is non-NULL 3165 * then i_mmap_rwsem is taken here. 3166 */ 3167 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3168 { 3169 unsigned long charged = vma_pages(vma); 3170 3171 3172 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3173 return -ENOMEM; 3174 3175 if ((vma->vm_flags & VM_ACCOUNT) && 3176 security_vm_enough_memory_mm(mm, charged)) 3177 return -ENOMEM; 3178 3179 /* 3180 * The vm_pgoff of a purely anonymous vma should be irrelevant 3181 * until its first write fault, when page's anon_vma and index 3182 * are set. But now set the vm_pgoff it will almost certainly 3183 * end up with (unless mremap moves it elsewhere before that 3184 * first wfault), so /proc/pid/maps tells a consistent story. 3185 * 3186 * By setting it to reflect the virtual start address of the 3187 * vma, merges and splits can happen in a seamless way, just 3188 * using the existing file pgoff checks and manipulations. 3189 * Similarly in do_mmap and in do_brk_flags. 3190 */ 3191 if (vma_is_anonymous(vma)) { 3192 BUG_ON(vma->anon_vma); 3193 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3194 } 3195 3196 if (vma_link(mm, vma)) { 3197 if (vma->vm_flags & VM_ACCOUNT) 3198 vm_unacct_memory(charged); 3199 return -ENOMEM; 3200 } 3201 3202 return 0; 3203 } 3204