1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 21 unsigned long charged; 22 bool retry_merge; 23 24 struct vm_area_struct *prev; 25 struct vm_area_struct *next; 26 27 /* Unmapping state. */ 28 struct vma_munmap_struct vms; 29 struct ma_state mas_detach; 30 struct maple_tree mt_detach; 31 }; 32 33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 34 struct mmap_state name = { \ 35 .mm = mm_, \ 36 .vmi = vmi_, \ 37 .addr = addr_, \ 38 .end = (addr_) + len, \ 39 .pgoff = pgoff_, \ 40 .pglen = PHYS_PFN(len_), \ 41 .flags = flags_, \ 42 .file = file_, \ 43 } 44 45 #define VMG_MMAP_STATE(name, map_, vma_) \ 46 struct vma_merge_struct name = { \ 47 .mm = (map_)->mm, \ 48 .vmi = (map_)->vmi, \ 49 .start = (map_)->addr, \ 50 .end = (map_)->end, \ 51 .flags = (map_)->flags, \ 52 .pgoff = (map_)->pgoff, \ 53 .file = (map_)->file, \ 54 .prev = (map_)->prev, \ 55 .vma = vma_, \ 56 .next = (vma_) ? NULL : (map_)->next, \ 57 .state = VMA_MERGE_START, \ 58 .merge_flags = VMG_FLAG_DEFAULT, \ 59 } 60 61 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 62 { 63 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 64 65 if (!mpol_equal(vmg->policy, vma_policy(vma))) 66 return false; 67 /* 68 * VM_SOFTDIRTY should not prevent from VMA merging, if we 69 * match the flags but dirty bit -- the caller should mark 70 * merged VMA as dirty. If dirty bit won't be excluded from 71 * comparison, we increase pressure on the memory system forcing 72 * the kernel to generate new VMAs when old one could be 73 * extended instead. 74 */ 75 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 76 return false; 77 if (vma->vm_file != vmg->file) 78 return false; 79 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 80 return false; 81 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 82 return false; 83 return true; 84 } 85 86 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 87 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 88 { 89 /* 90 * The list_is_singular() test is to avoid merging VMA cloned from 91 * parents. This can improve scalability caused by anon_vma lock. 92 */ 93 if ((!anon_vma1 || !anon_vma2) && (!vma || 94 list_is_singular(&vma->anon_vma_chain))) 95 return true; 96 return anon_vma1 == anon_vma2; 97 } 98 99 /* Are the anon_vma's belonging to each VMA compatible with one another? */ 100 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, 101 struct vm_area_struct *vma2) 102 { 103 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); 104 } 105 106 /* 107 * init_multi_vma_prep() - Initializer for struct vma_prepare 108 * @vp: The vma_prepare struct 109 * @vma: The vma that will be altered once locked 110 * @next: The next vma if it is to be adjusted 111 * @remove: The first vma to be removed 112 * @remove2: The second vma to be removed 113 */ 114 static void init_multi_vma_prep(struct vma_prepare *vp, 115 struct vm_area_struct *vma, 116 struct vm_area_struct *next, 117 struct vm_area_struct *remove, 118 struct vm_area_struct *remove2) 119 { 120 memset(vp, 0, sizeof(struct vma_prepare)); 121 vp->vma = vma; 122 vp->anon_vma = vma->anon_vma; 123 vp->remove = remove; 124 vp->remove2 = remove2; 125 vp->adj_next = next; 126 if (!vp->anon_vma && next) 127 vp->anon_vma = next->anon_vma; 128 129 vp->file = vma->vm_file; 130 if (vp->file) 131 vp->mapping = vma->vm_file->f_mapping; 132 133 } 134 135 /* 136 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 137 * in front of (at a lower virtual address and file offset than) the vma. 138 * 139 * We cannot merge two vmas if they have differently assigned (non-NULL) 140 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 141 * 142 * We don't check here for the merged mmap wrapping around the end of pagecache 143 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 144 * wrap, nor mmaps which cover the final page at index -1UL. 145 * 146 * We assume the vma may be removed as part of the merge. 147 */ 148 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 149 { 150 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 151 152 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 153 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 154 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 155 return true; 156 } 157 158 return false; 159 } 160 161 /* 162 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 163 * beyond (at a higher virtual address and file offset than) the vma. 164 * 165 * We cannot merge two vmas if they have differently assigned (non-NULL) 166 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 167 * 168 * We assume that vma is not removed as part of the merge. 169 */ 170 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 171 { 172 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 173 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 174 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 175 return true; 176 } 177 return false; 178 } 179 180 static void __vma_link_file(struct vm_area_struct *vma, 181 struct address_space *mapping) 182 { 183 if (vma_is_shared_maywrite(vma)) 184 mapping_allow_writable(mapping); 185 186 flush_dcache_mmap_lock(mapping); 187 vma_interval_tree_insert(vma, &mapping->i_mmap); 188 flush_dcache_mmap_unlock(mapping); 189 } 190 191 /* 192 * Requires inode->i_mapping->i_mmap_rwsem 193 */ 194 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 195 struct address_space *mapping) 196 { 197 if (vma_is_shared_maywrite(vma)) 198 mapping_unmap_writable(mapping); 199 200 flush_dcache_mmap_lock(mapping); 201 vma_interval_tree_remove(vma, &mapping->i_mmap); 202 flush_dcache_mmap_unlock(mapping); 203 } 204 205 /* 206 * vma_prepare() - Helper function for handling locking VMAs prior to altering 207 * @vp: The initialized vma_prepare struct 208 */ 209 static void vma_prepare(struct vma_prepare *vp) 210 { 211 if (vp->file) { 212 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 213 214 if (vp->adj_next) 215 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 216 vp->adj_next->vm_end); 217 218 i_mmap_lock_write(vp->mapping); 219 if (vp->insert && vp->insert->vm_file) { 220 /* 221 * Put into interval tree now, so instantiated pages 222 * are visible to arm/parisc __flush_dcache_page 223 * throughout; but we cannot insert into address 224 * space until vma start or end is updated. 225 */ 226 __vma_link_file(vp->insert, 227 vp->insert->vm_file->f_mapping); 228 } 229 } 230 231 if (vp->anon_vma) { 232 anon_vma_lock_write(vp->anon_vma); 233 anon_vma_interval_tree_pre_update_vma(vp->vma); 234 if (vp->adj_next) 235 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 236 } 237 238 if (vp->file) { 239 flush_dcache_mmap_lock(vp->mapping); 240 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 241 if (vp->adj_next) 242 vma_interval_tree_remove(vp->adj_next, 243 &vp->mapping->i_mmap); 244 } 245 246 } 247 248 /* 249 * vma_complete- Helper function for handling the unlocking after altering VMAs, 250 * or for inserting a VMA. 251 * 252 * @vp: The vma_prepare struct 253 * @vmi: The vma iterator 254 * @mm: The mm_struct 255 */ 256 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 257 struct mm_struct *mm) 258 { 259 if (vp->file) { 260 if (vp->adj_next) 261 vma_interval_tree_insert(vp->adj_next, 262 &vp->mapping->i_mmap); 263 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 264 flush_dcache_mmap_unlock(vp->mapping); 265 } 266 267 if (vp->remove && vp->file) { 268 __remove_shared_vm_struct(vp->remove, vp->mapping); 269 if (vp->remove2) 270 __remove_shared_vm_struct(vp->remove2, vp->mapping); 271 } else if (vp->insert) { 272 /* 273 * split_vma has split insert from vma, and needs 274 * us to insert it before dropping the locks 275 * (it may either follow vma or precede it). 276 */ 277 vma_iter_store(vmi, vp->insert); 278 mm->map_count++; 279 } 280 281 if (vp->anon_vma) { 282 anon_vma_interval_tree_post_update_vma(vp->vma); 283 if (vp->adj_next) 284 anon_vma_interval_tree_post_update_vma(vp->adj_next); 285 anon_vma_unlock_write(vp->anon_vma); 286 } 287 288 if (vp->file) { 289 i_mmap_unlock_write(vp->mapping); 290 uprobe_mmap(vp->vma); 291 292 if (vp->adj_next) 293 uprobe_mmap(vp->adj_next); 294 } 295 296 if (vp->remove) { 297 again: 298 vma_mark_detached(vp->remove, true); 299 if (vp->file) { 300 uprobe_munmap(vp->remove, vp->remove->vm_start, 301 vp->remove->vm_end); 302 fput(vp->file); 303 } 304 if (vp->remove->anon_vma) 305 anon_vma_merge(vp->vma, vp->remove); 306 mm->map_count--; 307 mpol_put(vma_policy(vp->remove)); 308 if (!vp->remove2) 309 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 310 vm_area_free(vp->remove); 311 312 /* 313 * In mprotect's case 6 (see comments on vma_merge), 314 * we are removing both mid and next vmas 315 */ 316 if (vp->remove2) { 317 vp->remove = vp->remove2; 318 vp->remove2 = NULL; 319 goto again; 320 } 321 } 322 if (vp->insert && vp->file) 323 uprobe_mmap(vp->insert); 324 } 325 326 /* 327 * init_vma_prep() - Initializer wrapper for vma_prepare struct 328 * @vp: The vma_prepare struct 329 * @vma: The vma that will be altered once locked 330 */ 331 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 332 { 333 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 334 } 335 336 /* 337 * Can the proposed VMA be merged with the left (previous) VMA taking into 338 * account the start position of the proposed range. 339 */ 340 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 341 342 { 343 return vmg->prev && vmg->prev->vm_end == vmg->start && 344 can_vma_merge_after(vmg); 345 } 346 347 /* 348 * Can the proposed VMA be merged with the right (next) VMA taking into 349 * account the end position of the proposed range. 350 * 351 * In addition, if we can merge with the left VMA, ensure that left and right 352 * anon_vma's are also compatible. 353 */ 354 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 355 bool can_merge_left) 356 { 357 if (!vmg->next || vmg->end != vmg->next->vm_start || 358 !can_vma_merge_before(vmg)) 359 return false; 360 361 if (!can_merge_left) 362 return true; 363 364 /* 365 * If we can merge with prev (left) and next (right), indicating that 366 * each VMA's anon_vma is compatible with the proposed anon_vma, this 367 * does not mean prev and next are compatible with EACH OTHER. 368 * 369 * We therefore check this in addition to mergeability to either side. 370 */ 371 return are_anon_vmas_compatible(vmg->prev, vmg->next); 372 } 373 374 /* 375 * Close a vm structure and free it. 376 */ 377 void remove_vma(struct vm_area_struct *vma, bool unreachable) 378 { 379 might_sleep(); 380 vma_close(vma); 381 if (vma->vm_file) 382 fput(vma->vm_file); 383 mpol_put(vma_policy(vma)); 384 if (unreachable) 385 __vm_area_free(vma); 386 else 387 vm_area_free(vma); 388 } 389 390 /* 391 * Get rid of page table information in the indicated region. 392 * 393 * Called with the mm semaphore held. 394 */ 395 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 396 struct vm_area_struct *prev, struct vm_area_struct *next) 397 { 398 struct mm_struct *mm = vma->vm_mm; 399 struct mmu_gather tlb; 400 401 lru_add_drain(); 402 tlb_gather_mmu(&tlb, mm); 403 update_hiwater_rss(mm); 404 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 405 /* mm_wr_locked = */ true); 406 mas_set(mas, vma->vm_end); 407 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 408 next ? next->vm_start : USER_PGTABLES_CEILING, 409 /* mm_wr_locked = */ true); 410 tlb_finish_mmu(&tlb); 411 } 412 413 /* 414 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 415 * has already been checked or doesn't make sense to fail. 416 * VMA Iterator will point to the original VMA. 417 */ 418 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 419 unsigned long addr, int new_below) 420 { 421 struct vma_prepare vp; 422 struct vm_area_struct *new; 423 int err; 424 425 WARN_ON(vma->vm_start >= addr); 426 WARN_ON(vma->vm_end <= addr); 427 428 if (vma->vm_ops && vma->vm_ops->may_split) { 429 err = vma->vm_ops->may_split(vma, addr); 430 if (err) 431 return err; 432 } 433 434 new = vm_area_dup(vma); 435 if (!new) 436 return -ENOMEM; 437 438 if (new_below) { 439 new->vm_end = addr; 440 } else { 441 new->vm_start = addr; 442 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 443 } 444 445 err = -ENOMEM; 446 vma_iter_config(vmi, new->vm_start, new->vm_end); 447 if (vma_iter_prealloc(vmi, new)) 448 goto out_free_vma; 449 450 err = vma_dup_policy(vma, new); 451 if (err) 452 goto out_free_vmi; 453 454 err = anon_vma_clone(new, vma); 455 if (err) 456 goto out_free_mpol; 457 458 if (new->vm_file) 459 get_file(new->vm_file); 460 461 if (new->vm_ops && new->vm_ops->open) 462 new->vm_ops->open(new); 463 464 vma_start_write(vma); 465 vma_start_write(new); 466 467 init_vma_prep(&vp, vma); 468 vp.insert = new; 469 vma_prepare(&vp); 470 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 471 472 if (new_below) { 473 vma->vm_start = addr; 474 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 475 } else { 476 vma->vm_end = addr; 477 } 478 479 /* vma_complete stores the new vma */ 480 vma_complete(&vp, vmi, vma->vm_mm); 481 validate_mm(vma->vm_mm); 482 483 /* Success. */ 484 if (new_below) 485 vma_next(vmi); 486 else 487 vma_prev(vmi); 488 489 return 0; 490 491 out_free_mpol: 492 mpol_put(vma_policy(new)); 493 out_free_vmi: 494 vma_iter_free(vmi); 495 out_free_vma: 496 vm_area_free(new); 497 return err; 498 } 499 500 /* 501 * Split a vma into two pieces at address 'addr', a new vma is allocated 502 * either for the first part or the tail. 503 */ 504 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 505 unsigned long addr, int new_below) 506 { 507 if (vma->vm_mm->map_count >= sysctl_max_map_count) 508 return -ENOMEM; 509 510 return __split_vma(vmi, vma, addr, new_below); 511 } 512 513 /* 514 * vma has some anon_vma assigned, and is already inserted on that 515 * anon_vma's interval trees. 516 * 517 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 518 * vma must be removed from the anon_vma's interval trees using 519 * anon_vma_interval_tree_pre_update_vma(). 520 * 521 * After the update, the vma will be reinserted using 522 * anon_vma_interval_tree_post_update_vma(). 523 * 524 * The entire update must be protected by exclusive mmap_lock and by 525 * the root anon_vma's mutex. 526 */ 527 void 528 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 529 { 530 struct anon_vma_chain *avc; 531 532 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 533 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 534 } 535 536 void 537 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 538 { 539 struct anon_vma_chain *avc; 540 541 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 542 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 543 } 544 545 /* 546 * dup_anon_vma() - Helper function to duplicate anon_vma 547 * @dst: The destination VMA 548 * @src: The source VMA 549 * @dup: Pointer to the destination VMA when successful. 550 * 551 * Returns: 0 on success. 552 */ 553 static int dup_anon_vma(struct vm_area_struct *dst, 554 struct vm_area_struct *src, struct vm_area_struct **dup) 555 { 556 /* 557 * Easily overlooked: when mprotect shifts the boundary, make sure the 558 * expanding vma has anon_vma set if the shrinking vma had, to cover any 559 * anon pages imported. 560 */ 561 if (src->anon_vma && !dst->anon_vma) { 562 int ret; 563 564 vma_assert_write_locked(dst); 565 dst->anon_vma = src->anon_vma; 566 ret = anon_vma_clone(dst, src); 567 if (ret) 568 return ret; 569 570 *dup = dst; 571 } 572 573 return 0; 574 } 575 576 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 577 void validate_mm(struct mm_struct *mm) 578 { 579 int bug = 0; 580 int i = 0; 581 struct vm_area_struct *vma; 582 VMA_ITERATOR(vmi, mm, 0); 583 584 mt_validate(&mm->mm_mt); 585 for_each_vma(vmi, vma) { 586 #ifdef CONFIG_DEBUG_VM_RB 587 struct anon_vma *anon_vma = vma->anon_vma; 588 struct anon_vma_chain *avc; 589 #endif 590 unsigned long vmi_start, vmi_end; 591 bool warn = 0; 592 593 vmi_start = vma_iter_addr(&vmi); 594 vmi_end = vma_iter_end(&vmi); 595 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 596 warn = 1; 597 598 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 599 warn = 1; 600 601 if (warn) { 602 pr_emerg("issue in %s\n", current->comm); 603 dump_stack(); 604 dump_vma(vma); 605 pr_emerg("tree range: %px start %lx end %lx\n", vma, 606 vmi_start, vmi_end - 1); 607 vma_iter_dump_tree(&vmi); 608 } 609 610 #ifdef CONFIG_DEBUG_VM_RB 611 if (anon_vma) { 612 anon_vma_lock_read(anon_vma); 613 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 614 anon_vma_interval_tree_verify(avc); 615 anon_vma_unlock_read(anon_vma); 616 } 617 #endif 618 i++; 619 } 620 if (i != mm->map_count) { 621 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 622 bug = 1; 623 } 624 VM_BUG_ON_MM(bug, mm); 625 } 626 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 627 628 /* Actually perform the VMA merge operation. */ 629 static int commit_merge(struct vma_merge_struct *vmg, 630 struct vm_area_struct *adjust, 631 struct vm_area_struct *remove, 632 struct vm_area_struct *remove2, 633 long adj_start, 634 bool expanded) 635 { 636 struct vma_prepare vp; 637 638 init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2); 639 640 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 641 vp.anon_vma != adjust->anon_vma); 642 643 if (expanded) { 644 /* Note: vma iterator must be pointing to 'start'. */ 645 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 646 } else { 647 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start, 648 adjust->vm_end); 649 } 650 651 if (vma_iter_prealloc(vmg->vmi, vmg->vma)) 652 return -ENOMEM; 653 654 vma_prepare(&vp); 655 vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start); 656 vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff); 657 658 if (expanded) 659 vma_iter_store(vmg->vmi, vmg->vma); 660 661 if (adj_start) { 662 adjust->vm_start += adj_start; 663 adjust->vm_pgoff += PHYS_PFN(adj_start); 664 if (adj_start < 0) { 665 WARN_ON(expanded); 666 vma_iter_store(vmg->vmi, adjust); 667 } 668 } 669 670 vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm); 671 672 return 0; 673 } 674 675 /* We can only remove VMAs when merging if they do not have a close hook. */ 676 static bool can_merge_remove_vma(struct vm_area_struct *vma) 677 { 678 return !vma->vm_ops || !vma->vm_ops->close; 679 } 680 681 /* 682 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 683 * attributes modified. 684 * 685 * @vmg: Describes the modifications being made to a VMA and associated 686 * metadata. 687 * 688 * When the attributes of a range within a VMA change, then it might be possible 689 * for immediately adjacent VMAs to be merged into that VMA due to having 690 * identical properties. 691 * 692 * This function checks for the existence of any such mergeable VMAs and updates 693 * the maple tree describing the @vmg->vma->vm_mm address space to account for 694 * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge. 695 * 696 * As part of this operation, if a merge occurs, the @vmg object will have its 697 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 698 * calls to this function should reset these fields. 699 * 700 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 701 * 702 * ASSUMPTIONS: 703 * - The caller must assign the VMA to be modifed to @vmg->vma. 704 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 705 * - The caller must not set @vmg->next, as we determine this. 706 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 707 * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end). 708 */ 709 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg) 710 { 711 struct vm_area_struct *vma = vmg->vma; 712 struct vm_area_struct *prev = vmg->prev; 713 struct vm_area_struct *next, *res; 714 struct vm_area_struct *anon_dup = NULL; 715 struct vm_area_struct *adjust = NULL; 716 unsigned long start = vmg->start; 717 unsigned long end = vmg->end; 718 bool left_side = vma && start == vma->vm_start; 719 bool right_side = vma && end == vma->vm_end; 720 int err = 0; 721 long adj_start = 0; 722 bool merge_will_delete_vma, merge_will_delete_next; 723 bool merge_left, merge_right, merge_both; 724 bool expanded; 725 726 mmap_assert_write_locked(vmg->mm); 727 VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */ 728 VM_WARN_ON(vmg->next); /* We set this. */ 729 VM_WARN_ON(prev && start <= prev->vm_start); 730 VM_WARN_ON(start >= end); 731 /* 732 * If vma == prev, then we are offset into a VMA. Otherwise, if we are 733 * not, we must span a portion of the VMA. 734 */ 735 VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) || 736 vmg->end > vma->vm_end)); 737 /* The vmi must be positioned within vmg->vma. */ 738 VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start && 739 vma_iter_addr(vmg->vmi) < vma->vm_end)); 740 741 vmg->state = VMA_MERGE_NOMERGE; 742 743 /* 744 * If a special mapping or if the range being modified is neither at the 745 * furthermost left or right side of the VMA, then we have no chance of 746 * merging and should abort. 747 */ 748 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 749 return NULL; 750 751 if (left_side) 752 merge_left = can_vma_merge_left(vmg); 753 else 754 merge_left = false; 755 756 if (right_side) { 757 next = vmg->next = vma_iter_next_range(vmg->vmi); 758 vma_iter_prev_range(vmg->vmi); 759 760 merge_right = can_vma_merge_right(vmg, merge_left); 761 } else { 762 merge_right = false; 763 next = NULL; 764 } 765 766 if (merge_left) /* If merging prev, position iterator there. */ 767 vma_prev(vmg->vmi); 768 else if (!merge_right) /* If we have nothing to merge, abort. */ 769 return NULL; 770 771 merge_both = merge_left && merge_right; 772 /* If we span the entire VMA, a merge implies it will be deleted. */ 773 merge_will_delete_vma = left_side && right_side; 774 775 /* 776 * If we need to remove vma in its entirety but are unable to do so, 777 * we have no sensible recourse but to abort the merge. 778 */ 779 if (merge_will_delete_vma && !can_merge_remove_vma(vma)) 780 return NULL; 781 782 /* 783 * If we merge both VMAs, then next is also deleted. This implies 784 * merge_will_delete_vma also. 785 */ 786 merge_will_delete_next = merge_both; 787 788 /* 789 * If we cannot delete next, then we can reduce the operation to merging 790 * prev and vma (thereby deleting vma). 791 */ 792 if (merge_will_delete_next && !can_merge_remove_vma(next)) { 793 merge_will_delete_next = false; 794 merge_right = false; 795 merge_both = false; 796 } 797 798 /* No matter what happens, we will be adjusting vma. */ 799 vma_start_write(vma); 800 801 if (merge_left) 802 vma_start_write(prev); 803 804 if (merge_right) 805 vma_start_write(next); 806 807 if (merge_both) { 808 /* 809 * |<----->| 810 * |-------*********-------| 811 * prev vma next 812 * extend delete delete 813 */ 814 815 vmg->vma = prev; 816 vmg->start = prev->vm_start; 817 vmg->end = next->vm_end; 818 vmg->pgoff = prev->vm_pgoff; 819 820 /* 821 * We already ensured anon_vma compatibility above, so now it's 822 * simply a case of, if prev has no anon_vma object, which of 823 * next or vma contains the anon_vma we must duplicate. 824 */ 825 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup); 826 } else if (merge_left) { 827 /* 828 * |<----->| OR 829 * |<--------->| 830 * |-------************* 831 * prev vma 832 * extend shrink/delete 833 */ 834 835 vmg->vma = prev; 836 vmg->start = prev->vm_start; 837 vmg->pgoff = prev->vm_pgoff; 838 839 if (!merge_will_delete_vma) { 840 adjust = vma; 841 adj_start = vmg->end - vma->vm_start; 842 } 843 844 err = dup_anon_vma(prev, vma, &anon_dup); 845 } else { /* merge_right */ 846 /* 847 * |<----->| OR 848 * |<--------->| 849 * *************-------| 850 * vma next 851 * shrink/delete extend 852 */ 853 854 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 855 856 VM_WARN_ON(!merge_right); 857 /* If we are offset into a VMA, then prev must be vma. */ 858 VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev); 859 860 if (merge_will_delete_vma) { 861 vmg->vma = next; 862 vmg->end = next->vm_end; 863 vmg->pgoff = next->vm_pgoff - pglen; 864 } else { 865 /* 866 * We shrink vma and expand next. 867 * 868 * IMPORTANT: This is the ONLY case where the final 869 * merged VMA is NOT vmg->vma, but rather vmg->next. 870 */ 871 872 vmg->start = vma->vm_start; 873 vmg->end = start; 874 vmg->pgoff = vma->vm_pgoff; 875 876 adjust = next; 877 adj_start = -(vma->vm_end - start); 878 } 879 880 err = dup_anon_vma(next, vma, &anon_dup); 881 } 882 883 if (err) 884 goto abort; 885 886 /* 887 * In nearly all cases, we expand vmg->vma. There is one exception - 888 * merge_right where we partially span the VMA. In this case we shrink 889 * the end of vmg->vma and adjust the start of vmg->next accordingly. 890 */ 891 expanded = !merge_right || merge_will_delete_vma; 892 893 if (commit_merge(vmg, adjust, 894 merge_will_delete_vma ? vma : NULL, 895 merge_will_delete_next ? next : NULL, 896 adj_start, expanded)) { 897 if (anon_dup) 898 unlink_anon_vmas(anon_dup); 899 900 vmg->state = VMA_MERGE_ERROR_NOMEM; 901 return NULL; 902 } 903 904 res = merge_left ? prev : next; 905 khugepaged_enter_vma(res, vmg->flags); 906 907 vmg->state = VMA_MERGE_SUCCESS; 908 return res; 909 910 abort: 911 vma_iter_set(vmg->vmi, start); 912 vma_iter_load(vmg->vmi); 913 vmg->state = VMA_MERGE_ERROR_NOMEM; 914 return NULL; 915 } 916 917 /* 918 * vma_merge_new_range - Attempt to merge a new VMA into address space 919 * 920 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 921 * (exclusive), which we try to merge with any adjacent VMAs if possible. 922 * 923 * We are about to add a VMA to the address space starting at @vmg->start and 924 * ending at @vmg->end. There are three different possible scenarios: 925 * 926 * 1. There is a VMA with identical properties immediately adjacent to the 927 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 928 * EXPAND that VMA: 929 * 930 * Proposed: |-----| or |-----| 931 * Existing: |----| |----| 932 * 933 * 2. There are VMAs with identical properties immediately adjacent to the 934 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 935 * EXPAND the former and REMOVE the latter: 936 * 937 * Proposed: |-----| 938 * Existing: |----| |----| 939 * 940 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 941 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 942 * 943 * In instances where we can merge, this function returns the expanded VMA which 944 * will have its range adjusted accordingly and the underlying maple tree also 945 * adjusted. 946 * 947 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 948 * to the VMA we expanded. 949 * 950 * This function adjusts @vmg to provide @vmg->next if not already specified, 951 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 952 * 953 * ASSUMPTIONS: 954 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 955 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 956 other than VMAs that will be unmapped should the operation succeed. 957 * - The caller must have specified the previous vma in @vmg->prev. 958 * - The caller must have specified the next vma in @vmg->next. 959 * - The caller must have positioned the vmi at or before the gap. 960 */ 961 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 962 { 963 struct vm_area_struct *prev = vmg->prev; 964 struct vm_area_struct *next = vmg->next; 965 unsigned long end = vmg->end; 966 bool can_merge_left, can_merge_right; 967 bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND; 968 969 mmap_assert_write_locked(vmg->mm); 970 VM_WARN_ON(vmg->vma); 971 /* vmi must point at or before the gap. */ 972 VM_WARN_ON(vma_iter_addr(vmg->vmi) > end); 973 974 vmg->state = VMA_MERGE_NOMERGE; 975 976 /* Special VMAs are unmergeable, also if no prev/next. */ 977 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 978 return NULL; 979 980 can_merge_left = can_vma_merge_left(vmg); 981 can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left); 982 983 /* If we can merge with the next VMA, adjust vmg accordingly. */ 984 if (can_merge_right) { 985 vmg->end = next->vm_end; 986 vmg->vma = next; 987 } 988 989 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 990 if (can_merge_left) { 991 vmg->start = prev->vm_start; 992 vmg->vma = prev; 993 vmg->pgoff = prev->vm_pgoff; 994 995 /* 996 * If this merge would result in removal of the next VMA but we 997 * are not permitted to do so, reduce the operation to merging 998 * prev and vma. 999 */ 1000 if (can_merge_right && !can_merge_remove_vma(next)) 1001 vmg->end = end; 1002 1003 /* In expand-only case we are already positioned at prev. */ 1004 if (!just_expand) { 1005 /* Equivalent to going to the previous range. */ 1006 vma_prev(vmg->vmi); 1007 } 1008 } 1009 1010 /* 1011 * Now try to expand adjacent VMA(s). This takes care of removing the 1012 * following VMA if we have VMAs on both sides. 1013 */ 1014 if (vmg->vma && !vma_expand(vmg)) { 1015 khugepaged_enter_vma(vmg->vma, vmg->flags); 1016 vmg->state = VMA_MERGE_SUCCESS; 1017 return vmg->vma; 1018 } 1019 1020 return NULL; 1021 } 1022 1023 /* 1024 * vma_expand - Expand an existing VMA 1025 * 1026 * @vmg: Describes a VMA expansion operation. 1027 * 1028 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1029 * Will expand over vmg->next if it's different from vmg->vma and vmg->end == 1030 * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with 1031 * vmg->next needs to be handled by the caller. 1032 * 1033 * Returns: 0 on success. 1034 * 1035 * ASSUMPTIONS: 1036 * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock. 1037 * - The caller must have set @vmg->vma and @vmg->next. 1038 */ 1039 int vma_expand(struct vma_merge_struct *vmg) 1040 { 1041 struct vm_area_struct *anon_dup = NULL; 1042 bool remove_next = false; 1043 struct vm_area_struct *vma = vmg->vma; 1044 struct vm_area_struct *next = vmg->next; 1045 1046 mmap_assert_write_locked(vmg->mm); 1047 1048 vma_start_write(vma); 1049 if (next && (vma != next) && (vmg->end == next->vm_end)) { 1050 int ret; 1051 1052 remove_next = true; 1053 /* This should already have been checked by this point. */ 1054 VM_WARN_ON(!can_merge_remove_vma(next)); 1055 vma_start_write(next); 1056 ret = dup_anon_vma(vma, next, &anon_dup); 1057 if (ret) 1058 return ret; 1059 } 1060 1061 /* Not merging but overwriting any part of next is not handled. */ 1062 VM_WARN_ON(next && !remove_next && 1063 next != vma && vmg->end > next->vm_start); 1064 /* Only handles expanding */ 1065 VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end); 1066 1067 if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true)) 1068 goto nomem; 1069 1070 return 0; 1071 1072 nomem: 1073 vmg->state = VMA_MERGE_ERROR_NOMEM; 1074 if (anon_dup) 1075 unlink_anon_vmas(anon_dup); 1076 return -ENOMEM; 1077 } 1078 1079 /* 1080 * vma_shrink() - Reduce an existing VMAs memory area 1081 * @vmi: The vma iterator 1082 * @vma: The VMA to modify 1083 * @start: The new start 1084 * @end: The new end 1085 * 1086 * Returns: 0 on success, -ENOMEM otherwise 1087 */ 1088 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1089 unsigned long start, unsigned long end, pgoff_t pgoff) 1090 { 1091 struct vma_prepare vp; 1092 1093 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1094 1095 if (vma->vm_start < start) 1096 vma_iter_config(vmi, vma->vm_start, start); 1097 else 1098 vma_iter_config(vmi, end, vma->vm_end); 1099 1100 if (vma_iter_prealloc(vmi, NULL)) 1101 return -ENOMEM; 1102 1103 vma_start_write(vma); 1104 1105 init_vma_prep(&vp, vma); 1106 vma_prepare(&vp); 1107 vma_adjust_trans_huge(vma, start, end, 0); 1108 1109 vma_iter_clear(vmi); 1110 vma_set_range(vma, start, end, pgoff); 1111 vma_complete(&vp, vmi, vma->vm_mm); 1112 validate_mm(vma->vm_mm); 1113 return 0; 1114 } 1115 1116 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1117 struct ma_state *mas_detach, bool mm_wr_locked) 1118 { 1119 struct mmu_gather tlb; 1120 1121 if (!vms->clear_ptes) /* Nothing to do */ 1122 return; 1123 1124 /* 1125 * We can free page tables without write-locking mmap_lock because VMAs 1126 * were isolated before we downgraded mmap_lock. 1127 */ 1128 mas_set(mas_detach, 1); 1129 lru_add_drain(); 1130 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1131 update_hiwater_rss(vms->vma->vm_mm); 1132 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1133 vms->vma_count, mm_wr_locked); 1134 1135 mas_set(mas_detach, 1); 1136 /* start and end may be different if there is no prev or next vma. */ 1137 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1138 vms->unmap_end, mm_wr_locked); 1139 tlb_finish_mmu(&tlb); 1140 vms->clear_ptes = false; 1141 } 1142 1143 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1144 struct ma_state *mas_detach) 1145 { 1146 struct vm_area_struct *vma; 1147 1148 if (!vms->nr_pages) 1149 return; 1150 1151 vms_clear_ptes(vms, mas_detach, true); 1152 mas_set(mas_detach, 0); 1153 mas_for_each(mas_detach, vma, ULONG_MAX) 1154 vma_close(vma); 1155 } 1156 1157 /* 1158 * vms_complete_munmap_vmas() - Finish the munmap() operation 1159 * @vms: The vma munmap struct 1160 * @mas_detach: The maple state of the detached vmas 1161 * 1162 * This updates the mm_struct, unmaps the region, frees the resources 1163 * used for the munmap() and may downgrade the lock - if requested. Everything 1164 * needed to be done once the vma maple tree is updated. 1165 */ 1166 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1167 struct ma_state *mas_detach) 1168 { 1169 struct vm_area_struct *vma; 1170 struct mm_struct *mm; 1171 1172 mm = current->mm; 1173 mm->map_count -= vms->vma_count; 1174 mm->locked_vm -= vms->locked_vm; 1175 if (vms->unlock) 1176 mmap_write_downgrade(mm); 1177 1178 if (!vms->nr_pages) 1179 return; 1180 1181 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1182 /* Update high watermark before we lower total_vm */ 1183 update_hiwater_vm(mm); 1184 /* Stat accounting */ 1185 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1186 /* Paranoid bookkeeping */ 1187 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1188 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1189 VM_WARN_ON(vms->data_vm > mm->data_vm); 1190 mm->exec_vm -= vms->exec_vm; 1191 mm->stack_vm -= vms->stack_vm; 1192 mm->data_vm -= vms->data_vm; 1193 1194 /* Remove and clean up vmas */ 1195 mas_set(mas_detach, 0); 1196 mas_for_each(mas_detach, vma, ULONG_MAX) 1197 remove_vma(vma, /* unreachable = */ false); 1198 1199 vm_unacct_memory(vms->nr_accounted); 1200 validate_mm(mm); 1201 if (vms->unlock) 1202 mmap_read_unlock(mm); 1203 1204 __mt_destroy(mas_detach->tree); 1205 } 1206 1207 /* 1208 * reattach_vmas() - Undo any munmap work and free resources 1209 * @mas_detach: The maple state with the detached maple tree 1210 * 1211 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1212 */ 1213 static void reattach_vmas(struct ma_state *mas_detach) 1214 { 1215 struct vm_area_struct *vma; 1216 1217 mas_set(mas_detach, 0); 1218 mas_for_each(mas_detach, vma, ULONG_MAX) 1219 vma_mark_detached(vma, false); 1220 1221 __mt_destroy(mas_detach->tree); 1222 } 1223 1224 /* 1225 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1226 * for removal at a later date. Handles splitting first and last if necessary 1227 * and marking the vmas as isolated. 1228 * 1229 * @vms: The vma munmap struct 1230 * @mas_detach: The maple state tracking the detached tree 1231 * 1232 * Return: 0 on success, error otherwise 1233 */ 1234 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1235 struct ma_state *mas_detach) 1236 { 1237 struct vm_area_struct *next = NULL; 1238 int error; 1239 1240 /* 1241 * If we need to split any vma, do it now to save pain later. 1242 * Does it split the first one? 1243 */ 1244 if (vms->start > vms->vma->vm_start) { 1245 1246 /* 1247 * Make sure that map_count on return from munmap() will 1248 * not exceed its limit; but let map_count go just above 1249 * its limit temporarily, to help free resources as expected. 1250 */ 1251 if (vms->end < vms->vma->vm_end && 1252 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1253 error = -ENOMEM; 1254 goto map_count_exceeded; 1255 } 1256 1257 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1258 if (!can_modify_vma(vms->vma)) { 1259 error = -EPERM; 1260 goto start_split_failed; 1261 } 1262 1263 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1264 if (error) 1265 goto start_split_failed; 1266 } 1267 vms->prev = vma_prev(vms->vmi); 1268 if (vms->prev) 1269 vms->unmap_start = vms->prev->vm_end; 1270 1271 /* 1272 * Detach a range of VMAs from the mm. Using next as a temp variable as 1273 * it is always overwritten. 1274 */ 1275 for_each_vma_range(*(vms->vmi), next, vms->end) { 1276 long nrpages; 1277 1278 if (!can_modify_vma(next)) { 1279 error = -EPERM; 1280 goto modify_vma_failed; 1281 } 1282 /* Does it split the end? */ 1283 if (next->vm_end > vms->end) { 1284 error = __split_vma(vms->vmi, next, vms->end, 0); 1285 if (error) 1286 goto end_split_failed; 1287 } 1288 vma_start_write(next); 1289 mas_set(mas_detach, vms->vma_count++); 1290 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1291 if (error) 1292 goto munmap_gather_failed; 1293 1294 vma_mark_detached(next, true); 1295 nrpages = vma_pages(next); 1296 1297 vms->nr_pages += nrpages; 1298 if (next->vm_flags & VM_LOCKED) 1299 vms->locked_vm += nrpages; 1300 1301 if (next->vm_flags & VM_ACCOUNT) 1302 vms->nr_accounted += nrpages; 1303 1304 if (is_exec_mapping(next->vm_flags)) 1305 vms->exec_vm += nrpages; 1306 else if (is_stack_mapping(next->vm_flags)) 1307 vms->stack_vm += nrpages; 1308 else if (is_data_mapping(next->vm_flags)) 1309 vms->data_vm += nrpages; 1310 1311 if (vms->uf) { 1312 /* 1313 * If userfaultfd_unmap_prep returns an error the vmas 1314 * will remain split, but userland will get a 1315 * highly unexpected error anyway. This is no 1316 * different than the case where the first of the two 1317 * __split_vma fails, but we don't undo the first 1318 * split, despite we could. This is unlikely enough 1319 * failure that it's not worth optimizing it for. 1320 */ 1321 error = userfaultfd_unmap_prep(next, vms->start, 1322 vms->end, vms->uf); 1323 if (error) 1324 goto userfaultfd_error; 1325 } 1326 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1327 BUG_ON(next->vm_start < vms->start); 1328 BUG_ON(next->vm_start > vms->end); 1329 #endif 1330 } 1331 1332 vms->next = vma_next(vms->vmi); 1333 if (vms->next) 1334 vms->unmap_end = vms->next->vm_start; 1335 1336 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1337 /* Make sure no VMAs are about to be lost. */ 1338 { 1339 MA_STATE(test, mas_detach->tree, 0, 0); 1340 struct vm_area_struct *vma_mas, *vma_test; 1341 int test_count = 0; 1342 1343 vma_iter_set(vms->vmi, vms->start); 1344 rcu_read_lock(); 1345 vma_test = mas_find(&test, vms->vma_count - 1); 1346 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1347 BUG_ON(vma_mas != vma_test); 1348 test_count++; 1349 vma_test = mas_next(&test, vms->vma_count - 1); 1350 } 1351 rcu_read_unlock(); 1352 BUG_ON(vms->vma_count != test_count); 1353 } 1354 #endif 1355 1356 while (vma_iter_addr(vms->vmi) > vms->start) 1357 vma_iter_prev_range(vms->vmi); 1358 1359 vms->clear_ptes = true; 1360 return 0; 1361 1362 userfaultfd_error: 1363 munmap_gather_failed: 1364 end_split_failed: 1365 modify_vma_failed: 1366 reattach_vmas(mas_detach); 1367 start_split_failed: 1368 map_count_exceeded: 1369 return error; 1370 } 1371 1372 /* 1373 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1374 * @vms: The vma munmap struct 1375 * @vmi: The vma iterator 1376 * @vma: The first vm_area_struct to munmap 1377 * @start: The aligned start address to munmap 1378 * @end: The aligned end address to munmap 1379 * @uf: The userfaultfd list_head 1380 * @unlock: Unlock after the operation. Only unlocked on success 1381 */ 1382 static void init_vma_munmap(struct vma_munmap_struct *vms, 1383 struct vma_iterator *vmi, struct vm_area_struct *vma, 1384 unsigned long start, unsigned long end, struct list_head *uf, 1385 bool unlock) 1386 { 1387 vms->vmi = vmi; 1388 vms->vma = vma; 1389 if (vma) { 1390 vms->start = start; 1391 vms->end = end; 1392 } else { 1393 vms->start = vms->end = 0; 1394 } 1395 vms->unlock = unlock; 1396 vms->uf = uf; 1397 vms->vma_count = 0; 1398 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1399 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1400 vms->unmap_start = FIRST_USER_ADDRESS; 1401 vms->unmap_end = USER_PGTABLES_CEILING; 1402 vms->clear_ptes = false; 1403 } 1404 1405 /* 1406 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1407 * @vmi: The vma iterator 1408 * @vma: The starting vm_area_struct 1409 * @mm: The mm_struct 1410 * @start: The aligned start address to munmap. 1411 * @end: The aligned end address to munmap. 1412 * @uf: The userfaultfd list_head 1413 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1414 * success. 1415 * 1416 * Return: 0 on success and drops the lock if so directed, error and leaves the 1417 * lock held otherwise. 1418 */ 1419 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1420 struct mm_struct *mm, unsigned long start, unsigned long end, 1421 struct list_head *uf, bool unlock) 1422 { 1423 struct maple_tree mt_detach; 1424 MA_STATE(mas_detach, &mt_detach, 0, 0); 1425 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1426 mt_on_stack(mt_detach); 1427 struct vma_munmap_struct vms; 1428 int error; 1429 1430 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1431 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1432 if (error) 1433 goto gather_failed; 1434 1435 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1436 if (error) 1437 goto clear_tree_failed; 1438 1439 /* Point of no return */ 1440 vms_complete_munmap_vmas(&vms, &mas_detach); 1441 return 0; 1442 1443 clear_tree_failed: 1444 reattach_vmas(&mas_detach); 1445 gather_failed: 1446 validate_mm(mm); 1447 return error; 1448 } 1449 1450 /* 1451 * do_vmi_munmap() - munmap a given range. 1452 * @vmi: The vma iterator 1453 * @mm: The mm_struct 1454 * @start: The start address to munmap 1455 * @len: The length of the range to munmap 1456 * @uf: The userfaultfd list_head 1457 * @unlock: set to true if the user wants to drop the mmap_lock on success 1458 * 1459 * This function takes a @mas that is either pointing to the previous VMA or set 1460 * to MA_START and sets it up to remove the mapping(s). The @len will be 1461 * aligned. 1462 * 1463 * Return: 0 on success and drops the lock if so directed, error and leaves the 1464 * lock held otherwise. 1465 */ 1466 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1467 unsigned long start, size_t len, struct list_head *uf, 1468 bool unlock) 1469 { 1470 unsigned long end; 1471 struct vm_area_struct *vma; 1472 1473 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1474 return -EINVAL; 1475 1476 end = start + PAGE_ALIGN(len); 1477 if (end == start) 1478 return -EINVAL; 1479 1480 /* Find the first overlapping VMA */ 1481 vma = vma_find(vmi, end); 1482 if (!vma) { 1483 if (unlock) 1484 mmap_write_unlock(mm); 1485 return 0; 1486 } 1487 1488 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1489 } 1490 1491 /* 1492 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1493 * context and anonymous VMA name within the range [start, end). 1494 * 1495 * As a result, we might be able to merge the newly modified VMA range with an 1496 * adjacent VMA with identical properties. 1497 * 1498 * If no merge is possible and the range does not span the entirety of the VMA, 1499 * we then need to split the VMA to accommodate the change. 1500 * 1501 * The function returns either the merged VMA, the original VMA if a split was 1502 * required instead, or an error if the split failed. 1503 */ 1504 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1505 { 1506 struct vm_area_struct *vma = vmg->vma; 1507 struct vm_area_struct *merged; 1508 1509 /* First, try to merge. */ 1510 merged = vma_merge_existing_range(vmg); 1511 if (merged) 1512 return merged; 1513 1514 /* Split any preceding portion of the VMA. */ 1515 if (vma->vm_start < vmg->start) { 1516 int err = split_vma(vmg->vmi, vma, vmg->start, 1); 1517 1518 if (err) 1519 return ERR_PTR(err); 1520 } 1521 1522 /* Split any trailing portion of the VMA. */ 1523 if (vma->vm_end > vmg->end) { 1524 int err = split_vma(vmg->vmi, vma, vmg->end, 0); 1525 1526 if (err) 1527 return ERR_PTR(err); 1528 } 1529 1530 return vma; 1531 } 1532 1533 struct vm_area_struct *vma_modify_flags( 1534 struct vma_iterator *vmi, struct vm_area_struct *prev, 1535 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1536 unsigned long new_flags) 1537 { 1538 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1539 1540 vmg.flags = new_flags; 1541 1542 return vma_modify(&vmg); 1543 } 1544 1545 struct vm_area_struct 1546 *vma_modify_flags_name(struct vma_iterator *vmi, 1547 struct vm_area_struct *prev, 1548 struct vm_area_struct *vma, 1549 unsigned long start, 1550 unsigned long end, 1551 unsigned long new_flags, 1552 struct anon_vma_name *new_name) 1553 { 1554 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1555 1556 vmg.flags = new_flags; 1557 vmg.anon_name = new_name; 1558 1559 return vma_modify(&vmg); 1560 } 1561 1562 struct vm_area_struct 1563 *vma_modify_policy(struct vma_iterator *vmi, 1564 struct vm_area_struct *prev, 1565 struct vm_area_struct *vma, 1566 unsigned long start, unsigned long end, 1567 struct mempolicy *new_pol) 1568 { 1569 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1570 1571 vmg.policy = new_pol; 1572 1573 return vma_modify(&vmg); 1574 } 1575 1576 struct vm_area_struct 1577 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1578 struct vm_area_struct *prev, 1579 struct vm_area_struct *vma, 1580 unsigned long start, unsigned long end, 1581 unsigned long new_flags, 1582 struct vm_userfaultfd_ctx new_ctx) 1583 { 1584 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1585 1586 vmg.flags = new_flags; 1587 vmg.uffd_ctx = new_ctx; 1588 1589 return vma_modify(&vmg); 1590 } 1591 1592 /* 1593 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1594 * VMA with identical properties. 1595 */ 1596 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1597 struct vm_area_struct *vma, 1598 unsigned long delta) 1599 { 1600 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1601 1602 vmg.next = vma_iter_next_rewind(vmi, NULL); 1603 vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */ 1604 1605 return vma_merge_new_range(&vmg); 1606 } 1607 1608 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1609 { 1610 vb->count = 0; 1611 } 1612 1613 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1614 { 1615 struct address_space *mapping; 1616 int i; 1617 1618 mapping = vb->vmas[0]->vm_file->f_mapping; 1619 i_mmap_lock_write(mapping); 1620 for (i = 0; i < vb->count; i++) { 1621 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1622 __remove_shared_vm_struct(vb->vmas[i], mapping); 1623 } 1624 i_mmap_unlock_write(mapping); 1625 1626 unlink_file_vma_batch_init(vb); 1627 } 1628 1629 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1630 struct vm_area_struct *vma) 1631 { 1632 if (vma->vm_file == NULL) 1633 return; 1634 1635 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1636 vb->count == ARRAY_SIZE(vb->vmas)) 1637 unlink_file_vma_batch_process(vb); 1638 1639 vb->vmas[vb->count] = vma; 1640 vb->count++; 1641 } 1642 1643 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1644 { 1645 if (vb->count > 0) 1646 unlink_file_vma_batch_process(vb); 1647 } 1648 1649 /* 1650 * Unlink a file-based vm structure from its interval tree, to hide 1651 * vma from rmap and vmtruncate before freeing its page tables. 1652 */ 1653 void unlink_file_vma(struct vm_area_struct *vma) 1654 { 1655 struct file *file = vma->vm_file; 1656 1657 if (file) { 1658 struct address_space *mapping = file->f_mapping; 1659 1660 i_mmap_lock_write(mapping); 1661 __remove_shared_vm_struct(vma, mapping); 1662 i_mmap_unlock_write(mapping); 1663 } 1664 } 1665 1666 void vma_link_file(struct vm_area_struct *vma) 1667 { 1668 struct file *file = vma->vm_file; 1669 struct address_space *mapping; 1670 1671 if (file) { 1672 mapping = file->f_mapping; 1673 i_mmap_lock_write(mapping); 1674 __vma_link_file(vma, mapping); 1675 i_mmap_unlock_write(mapping); 1676 } 1677 } 1678 1679 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1680 { 1681 VMA_ITERATOR(vmi, mm, 0); 1682 1683 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1684 if (vma_iter_prealloc(&vmi, vma)) 1685 return -ENOMEM; 1686 1687 vma_start_write(vma); 1688 vma_iter_store(&vmi, vma); 1689 vma_link_file(vma); 1690 mm->map_count++; 1691 validate_mm(mm); 1692 return 0; 1693 } 1694 1695 /* 1696 * Copy the vma structure to a new location in the same mm, 1697 * prior to moving page table entries, to effect an mremap move. 1698 */ 1699 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1700 unsigned long addr, unsigned long len, pgoff_t pgoff, 1701 bool *need_rmap_locks) 1702 { 1703 struct vm_area_struct *vma = *vmap; 1704 unsigned long vma_start = vma->vm_start; 1705 struct mm_struct *mm = vma->vm_mm; 1706 struct vm_area_struct *new_vma; 1707 bool faulted_in_anon_vma = true; 1708 VMA_ITERATOR(vmi, mm, addr); 1709 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1710 1711 /* 1712 * If anonymous vma has not yet been faulted, update new pgoff 1713 * to match new location, to increase its chance of merging. 1714 */ 1715 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1716 pgoff = addr >> PAGE_SHIFT; 1717 faulted_in_anon_vma = false; 1718 } 1719 1720 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1721 if (new_vma && new_vma->vm_start < addr + len) 1722 return NULL; /* should never get here */ 1723 1724 vmg.vma = NULL; /* New VMA range. */ 1725 vmg.pgoff = pgoff; 1726 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1727 new_vma = vma_merge_new_range(&vmg); 1728 1729 if (new_vma) { 1730 /* 1731 * Source vma may have been merged into new_vma 1732 */ 1733 if (unlikely(vma_start >= new_vma->vm_start && 1734 vma_start < new_vma->vm_end)) { 1735 /* 1736 * The only way we can get a vma_merge with 1737 * self during an mremap is if the vma hasn't 1738 * been faulted in yet and we were allowed to 1739 * reset the dst vma->vm_pgoff to the 1740 * destination address of the mremap to allow 1741 * the merge to happen. mremap must change the 1742 * vm_pgoff linearity between src and dst vmas 1743 * (in turn preventing a vma_merge) to be 1744 * safe. It is only safe to keep the vm_pgoff 1745 * linear if there are no pages mapped yet. 1746 */ 1747 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1748 *vmap = vma = new_vma; 1749 } 1750 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1751 } else { 1752 new_vma = vm_area_dup(vma); 1753 if (!new_vma) 1754 goto out; 1755 vma_set_range(new_vma, addr, addr + len, pgoff); 1756 if (vma_dup_policy(vma, new_vma)) 1757 goto out_free_vma; 1758 if (anon_vma_clone(new_vma, vma)) 1759 goto out_free_mempol; 1760 if (new_vma->vm_file) 1761 get_file(new_vma->vm_file); 1762 if (new_vma->vm_ops && new_vma->vm_ops->open) 1763 new_vma->vm_ops->open(new_vma); 1764 if (vma_link(mm, new_vma)) 1765 goto out_vma_link; 1766 *need_rmap_locks = false; 1767 } 1768 return new_vma; 1769 1770 out_vma_link: 1771 vma_close(new_vma); 1772 1773 if (new_vma->vm_file) 1774 fput(new_vma->vm_file); 1775 1776 unlink_anon_vmas(new_vma); 1777 out_free_mempol: 1778 mpol_put(vma_policy(new_vma)); 1779 out_free_vma: 1780 vm_area_free(new_vma); 1781 out: 1782 return NULL; 1783 } 1784 1785 /* 1786 * Rough compatibility check to quickly see if it's even worth looking 1787 * at sharing an anon_vma. 1788 * 1789 * They need to have the same vm_file, and the flags can only differ 1790 * in things that mprotect may change. 1791 * 1792 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1793 * we can merge the two vma's. For example, we refuse to merge a vma if 1794 * there is a vm_ops->close() function, because that indicates that the 1795 * driver is doing some kind of reference counting. But that doesn't 1796 * really matter for the anon_vma sharing case. 1797 */ 1798 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1799 { 1800 return a->vm_end == b->vm_start && 1801 mpol_equal(vma_policy(a), vma_policy(b)) && 1802 a->vm_file == b->vm_file && 1803 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1804 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1805 } 1806 1807 /* 1808 * Do some basic sanity checking to see if we can re-use the anon_vma 1809 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1810 * the same as 'old', the other will be the new one that is trying 1811 * to share the anon_vma. 1812 * 1813 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1814 * the anon_vma of 'old' is concurrently in the process of being set up 1815 * by another page fault trying to merge _that_. But that's ok: if it 1816 * is being set up, that automatically means that it will be a singleton 1817 * acceptable for merging, so we can do all of this optimistically. But 1818 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1819 * 1820 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1821 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1822 * is to return an anon_vma that is "complex" due to having gone through 1823 * a fork). 1824 * 1825 * We also make sure that the two vma's are compatible (adjacent, 1826 * and with the same memory policies). That's all stable, even with just 1827 * a read lock on the mmap_lock. 1828 */ 1829 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1830 struct vm_area_struct *a, 1831 struct vm_area_struct *b) 1832 { 1833 if (anon_vma_compatible(a, b)) { 1834 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1835 1836 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1837 return anon_vma; 1838 } 1839 return NULL; 1840 } 1841 1842 /* 1843 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1844 * neighbouring vmas for a suitable anon_vma, before it goes off 1845 * to allocate a new anon_vma. It checks because a repetitive 1846 * sequence of mprotects and faults may otherwise lead to distinct 1847 * anon_vmas being allocated, preventing vma merge in subsequent 1848 * mprotect. 1849 */ 1850 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1851 { 1852 struct anon_vma *anon_vma = NULL; 1853 struct vm_area_struct *prev, *next; 1854 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1855 1856 /* Try next first. */ 1857 next = vma_iter_load(&vmi); 1858 if (next) { 1859 anon_vma = reusable_anon_vma(next, vma, next); 1860 if (anon_vma) 1861 return anon_vma; 1862 } 1863 1864 prev = vma_prev(&vmi); 1865 VM_BUG_ON_VMA(prev != vma, vma); 1866 prev = vma_prev(&vmi); 1867 /* Try prev next. */ 1868 if (prev) 1869 anon_vma = reusable_anon_vma(prev, prev, vma); 1870 1871 /* 1872 * We might reach here with anon_vma == NULL if we can't find 1873 * any reusable anon_vma. 1874 * There's no absolute need to look only at touching neighbours: 1875 * we could search further afield for "compatible" anon_vmas. 1876 * But it would probably just be a waste of time searching, 1877 * or lead to too many vmas hanging off the same anon_vma. 1878 * We're trying to allow mprotect remerging later on, 1879 * not trying to minimize memory used for anon_vmas. 1880 */ 1881 return anon_vma; 1882 } 1883 1884 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1885 { 1886 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1887 } 1888 1889 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1890 { 1891 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1892 (VM_WRITE | VM_SHARED); 1893 } 1894 1895 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1896 { 1897 /* No managed pages to writeback. */ 1898 if (vma->vm_flags & VM_PFNMAP) 1899 return false; 1900 1901 return vma->vm_file && vma->vm_file->f_mapping && 1902 mapping_can_writeback(vma->vm_file->f_mapping); 1903 } 1904 1905 /* 1906 * Does this VMA require the underlying folios to have their dirty state 1907 * tracked? 1908 */ 1909 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1910 { 1911 /* Only shared, writable VMAs require dirty tracking. */ 1912 if (!vma_is_shared_writable(vma)) 1913 return false; 1914 1915 /* Does the filesystem need to be notified? */ 1916 if (vm_ops_needs_writenotify(vma->vm_ops)) 1917 return true; 1918 1919 /* 1920 * Even if the filesystem doesn't indicate a need for writenotify, if it 1921 * can writeback, dirty tracking is still required. 1922 */ 1923 return vma_fs_can_writeback(vma); 1924 } 1925 1926 /* 1927 * Some shared mappings will want the pages marked read-only 1928 * to track write events. If so, we'll downgrade vm_page_prot 1929 * to the private version (using protection_map[] without the 1930 * VM_SHARED bit). 1931 */ 1932 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1933 { 1934 /* If it was private or non-writable, the write bit is already clear */ 1935 if (!vma_is_shared_writable(vma)) 1936 return false; 1937 1938 /* The backer wishes to know when pages are first written to? */ 1939 if (vm_ops_needs_writenotify(vma->vm_ops)) 1940 return true; 1941 1942 /* The open routine did something to the protections that pgprot_modify 1943 * won't preserve? */ 1944 if (pgprot_val(vm_page_prot) != 1945 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1946 return false; 1947 1948 /* 1949 * Do we need to track softdirty? hugetlb does not support softdirty 1950 * tracking yet. 1951 */ 1952 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1953 return true; 1954 1955 /* Do we need write faults for uffd-wp tracking? */ 1956 if (userfaultfd_wp(vma)) 1957 return true; 1958 1959 /* Can the mapping track the dirty pages? */ 1960 return vma_fs_can_writeback(vma); 1961 } 1962 1963 static DEFINE_MUTEX(mm_all_locks_mutex); 1964 1965 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1966 { 1967 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1968 /* 1969 * The LSB of head.next can't change from under us 1970 * because we hold the mm_all_locks_mutex. 1971 */ 1972 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1973 /* 1974 * We can safely modify head.next after taking the 1975 * anon_vma->root->rwsem. If some other vma in this mm shares 1976 * the same anon_vma we won't take it again. 1977 * 1978 * No need of atomic instructions here, head.next 1979 * can't change from under us thanks to the 1980 * anon_vma->root->rwsem. 1981 */ 1982 if (__test_and_set_bit(0, (unsigned long *) 1983 &anon_vma->root->rb_root.rb_root.rb_node)) 1984 BUG(); 1985 } 1986 } 1987 1988 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 1989 { 1990 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1991 /* 1992 * AS_MM_ALL_LOCKS can't change from under us because 1993 * we hold the mm_all_locks_mutex. 1994 * 1995 * Operations on ->flags have to be atomic because 1996 * even if AS_MM_ALL_LOCKS is stable thanks to the 1997 * mm_all_locks_mutex, there may be other cpus 1998 * changing other bitflags in parallel to us. 1999 */ 2000 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2001 BUG(); 2002 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2003 } 2004 } 2005 2006 /* 2007 * This operation locks against the VM for all pte/vma/mm related 2008 * operations that could ever happen on a certain mm. This includes 2009 * vmtruncate, try_to_unmap, and all page faults. 2010 * 2011 * The caller must take the mmap_lock in write mode before calling 2012 * mm_take_all_locks(). The caller isn't allowed to release the 2013 * mmap_lock until mm_drop_all_locks() returns. 2014 * 2015 * mmap_lock in write mode is required in order to block all operations 2016 * that could modify pagetables and free pages without need of 2017 * altering the vma layout. It's also needed in write mode to avoid new 2018 * anon_vmas to be associated with existing vmas. 2019 * 2020 * A single task can't take more than one mm_take_all_locks() in a row 2021 * or it would deadlock. 2022 * 2023 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2024 * mapping->flags avoid to take the same lock twice, if more than one 2025 * vma in this mm is backed by the same anon_vma or address_space. 2026 * 2027 * We take locks in following order, accordingly to comment at beginning 2028 * of mm/rmap.c: 2029 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2030 * hugetlb mapping); 2031 * - all vmas marked locked 2032 * - all i_mmap_rwsem locks; 2033 * - all anon_vma->rwseml 2034 * 2035 * We can take all locks within these types randomly because the VM code 2036 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2037 * mm_all_locks_mutex. 2038 * 2039 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2040 * that may have to take thousand of locks. 2041 * 2042 * mm_take_all_locks() can fail if it's interrupted by signals. 2043 */ 2044 int mm_take_all_locks(struct mm_struct *mm) 2045 { 2046 struct vm_area_struct *vma; 2047 struct anon_vma_chain *avc; 2048 VMA_ITERATOR(vmi, mm, 0); 2049 2050 mmap_assert_write_locked(mm); 2051 2052 mutex_lock(&mm_all_locks_mutex); 2053 2054 /* 2055 * vma_start_write() does not have a complement in mm_drop_all_locks() 2056 * because vma_start_write() is always asymmetrical; it marks a VMA as 2057 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2058 * is reached. 2059 */ 2060 for_each_vma(vmi, vma) { 2061 if (signal_pending(current)) 2062 goto out_unlock; 2063 vma_start_write(vma); 2064 } 2065 2066 vma_iter_init(&vmi, mm, 0); 2067 for_each_vma(vmi, vma) { 2068 if (signal_pending(current)) 2069 goto out_unlock; 2070 if (vma->vm_file && vma->vm_file->f_mapping && 2071 is_vm_hugetlb_page(vma)) 2072 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2073 } 2074 2075 vma_iter_init(&vmi, mm, 0); 2076 for_each_vma(vmi, vma) { 2077 if (signal_pending(current)) 2078 goto out_unlock; 2079 if (vma->vm_file && vma->vm_file->f_mapping && 2080 !is_vm_hugetlb_page(vma)) 2081 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2082 } 2083 2084 vma_iter_init(&vmi, mm, 0); 2085 for_each_vma(vmi, vma) { 2086 if (signal_pending(current)) 2087 goto out_unlock; 2088 if (vma->anon_vma) 2089 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2090 vm_lock_anon_vma(mm, avc->anon_vma); 2091 } 2092 2093 return 0; 2094 2095 out_unlock: 2096 mm_drop_all_locks(mm); 2097 return -EINTR; 2098 } 2099 2100 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2101 { 2102 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2103 /* 2104 * The LSB of head.next can't change to 0 from under 2105 * us because we hold the mm_all_locks_mutex. 2106 * 2107 * We must however clear the bitflag before unlocking 2108 * the vma so the users using the anon_vma->rb_root will 2109 * never see our bitflag. 2110 * 2111 * No need of atomic instructions here, head.next 2112 * can't change from under us until we release the 2113 * anon_vma->root->rwsem. 2114 */ 2115 if (!__test_and_clear_bit(0, (unsigned long *) 2116 &anon_vma->root->rb_root.rb_root.rb_node)) 2117 BUG(); 2118 anon_vma_unlock_write(anon_vma); 2119 } 2120 } 2121 2122 static void vm_unlock_mapping(struct address_space *mapping) 2123 { 2124 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2125 /* 2126 * AS_MM_ALL_LOCKS can't change to 0 from under us 2127 * because we hold the mm_all_locks_mutex. 2128 */ 2129 i_mmap_unlock_write(mapping); 2130 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2131 &mapping->flags)) 2132 BUG(); 2133 } 2134 } 2135 2136 /* 2137 * The mmap_lock cannot be released by the caller until 2138 * mm_drop_all_locks() returns. 2139 */ 2140 void mm_drop_all_locks(struct mm_struct *mm) 2141 { 2142 struct vm_area_struct *vma; 2143 struct anon_vma_chain *avc; 2144 VMA_ITERATOR(vmi, mm, 0); 2145 2146 mmap_assert_write_locked(mm); 2147 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2148 2149 for_each_vma(vmi, vma) { 2150 if (vma->anon_vma) 2151 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2152 vm_unlock_anon_vma(avc->anon_vma); 2153 if (vma->vm_file && vma->vm_file->f_mapping) 2154 vm_unlock_mapping(vma->vm_file->f_mapping); 2155 } 2156 2157 mutex_unlock(&mm_all_locks_mutex); 2158 } 2159 2160 /* 2161 * We account for memory if it's a private writeable mapping, 2162 * not hugepages and VM_NORESERVE wasn't set. 2163 */ 2164 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2165 { 2166 /* 2167 * hugetlb has its own accounting separate from the core VM 2168 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2169 */ 2170 if (file && is_file_hugepages(file)) 2171 return false; 2172 2173 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2174 } 2175 2176 /* 2177 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2178 * operation. 2179 * @vms: The vma unmap structure 2180 * @mas_detach: The maple state with the detached maple tree 2181 * 2182 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2183 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2184 * have been called), then a NULL is written over the vmas and the vmas are 2185 * removed (munmap() completed). 2186 */ 2187 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2188 struct ma_state *mas_detach) 2189 { 2190 struct ma_state *mas = &vms->vmi->mas; 2191 2192 if (!vms->nr_pages) 2193 return; 2194 2195 if (vms->clear_ptes) 2196 return reattach_vmas(mas_detach); 2197 2198 /* 2199 * Aborting cannot just call the vm_ops open() because they are often 2200 * not symmetrical and state data has been lost. Resort to the old 2201 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2202 */ 2203 mas_set_range(mas, vms->start, vms->end - 1); 2204 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2205 /* Clean up the insertion of the unfortunate gap */ 2206 vms_complete_munmap_vmas(vms, mas_detach); 2207 } 2208 2209 /* 2210 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2211 * unmapped once the map operation is completed, check limits, account mapping 2212 * and clean up any pre-existing VMAs. 2213 * 2214 * @map: Mapping state. 2215 * @uf: Userfaultfd context list. 2216 * 2217 * Returns: 0 on success, error code otherwise. 2218 */ 2219 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2220 { 2221 int error; 2222 struct vma_iterator *vmi = map->vmi; 2223 struct vma_munmap_struct *vms = &map->vms; 2224 2225 /* Find the first overlapping VMA and initialise unmap state. */ 2226 vms->vma = vma_find(vmi, map->end); 2227 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2228 /* unlock = */ false); 2229 2230 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2231 if (vms->vma) { 2232 mt_init_flags(&map->mt_detach, 2233 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2234 mt_on_stack(map->mt_detach); 2235 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2236 /* Prepare to unmap any existing mapping in the area */ 2237 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2238 if (error) { 2239 /* On error VMAs will already have been reattached. */ 2240 vms->nr_pages = 0; 2241 return error; 2242 } 2243 2244 map->next = vms->next; 2245 map->prev = vms->prev; 2246 } else { 2247 map->next = vma_iter_next_rewind(vmi, &map->prev); 2248 } 2249 2250 /* Check against address space limit. */ 2251 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2252 return -ENOMEM; 2253 2254 /* Private writable mapping: check memory availability. */ 2255 if (accountable_mapping(map->file, map->flags)) { 2256 map->charged = map->pglen; 2257 map->charged -= vms->nr_accounted; 2258 if (map->charged) { 2259 error = security_vm_enough_memory_mm(map->mm, map->charged); 2260 if (error) 2261 return error; 2262 } 2263 2264 vms->nr_accounted = 0; 2265 map->flags |= VM_ACCOUNT; 2266 } 2267 2268 /* 2269 * Clear PTEs while the vma is still in the tree so that rmap 2270 * cannot race with the freeing later in the truncate scenario. 2271 * This is also needed for mmap_file(), which is why vm_ops 2272 * close function is called. 2273 */ 2274 vms_clean_up_area(vms, &map->mas_detach); 2275 2276 return 0; 2277 } 2278 2279 2280 static int __mmap_new_file_vma(struct mmap_state *map, 2281 struct vm_area_struct *vma) 2282 { 2283 struct vma_iterator *vmi = map->vmi; 2284 int error; 2285 2286 vma->vm_file = get_file(map->file); 2287 error = mmap_file(vma->vm_file, vma); 2288 if (error) { 2289 fput(vma->vm_file); 2290 vma->vm_file = NULL; 2291 2292 vma_iter_set(vmi, vma->vm_end); 2293 /* Undo any partial mapping done by a device driver. */ 2294 unmap_region(&vmi->mas, vma, map->prev, map->next); 2295 2296 return error; 2297 } 2298 2299 /* Drivers cannot alter the address of the VMA. */ 2300 WARN_ON_ONCE(map->addr != vma->vm_start); 2301 /* 2302 * Drivers should not permit writability when previously it was 2303 * disallowed. 2304 */ 2305 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2306 !(map->flags & VM_MAYWRITE) && 2307 (vma->vm_flags & VM_MAYWRITE)); 2308 2309 /* If the flags change (and are mergeable), let's retry later. */ 2310 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); 2311 map->flags = vma->vm_flags; 2312 2313 return 0; 2314 } 2315 2316 /* 2317 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2318 * possible. 2319 * 2320 * @map: Mapping state. 2321 * @vmap: Output pointer for the new VMA. 2322 * 2323 * Returns: Zero on success, or an error. 2324 */ 2325 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2326 { 2327 struct vma_iterator *vmi = map->vmi; 2328 int error = 0; 2329 struct vm_area_struct *vma; 2330 2331 /* 2332 * Determine the object being mapped and call the appropriate 2333 * specific mapper. the address has already been validated, but 2334 * not unmapped, but the maps are removed from the list. 2335 */ 2336 vma = vm_area_alloc(map->mm); 2337 if (!vma) 2338 return -ENOMEM; 2339 2340 vma_iter_config(vmi, map->addr, map->end); 2341 vma_set_range(vma, map->addr, map->end, map->pgoff); 2342 vm_flags_init(vma, map->flags); 2343 vma->vm_page_prot = vm_get_page_prot(map->flags); 2344 2345 if (vma_iter_prealloc(vmi, vma)) { 2346 error = -ENOMEM; 2347 goto free_vma; 2348 } 2349 2350 if (map->file) 2351 error = __mmap_new_file_vma(map, vma); 2352 else if (map->flags & VM_SHARED) 2353 error = shmem_zero_setup(vma); 2354 else 2355 vma_set_anonymous(vma); 2356 2357 if (error) 2358 goto free_iter_vma; 2359 2360 #ifdef CONFIG_SPARC64 2361 /* TODO: Fix SPARC ADI! */ 2362 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2363 #endif 2364 2365 /* Lock the VMA since it is modified after insertion into VMA tree */ 2366 vma_start_write(vma); 2367 vma_iter_store(vmi, vma); 2368 map->mm->map_count++; 2369 vma_link_file(vma); 2370 2371 /* 2372 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2373 * call covers the non-merge case. 2374 */ 2375 khugepaged_enter_vma(vma, map->flags); 2376 ksm_add_vma(vma); 2377 *vmap = vma; 2378 return 0; 2379 2380 free_iter_vma: 2381 vma_iter_free(vmi); 2382 free_vma: 2383 vm_area_free(vma); 2384 return error; 2385 } 2386 2387 /* 2388 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2389 * statistics, handle locking and finalise the VMA. 2390 * 2391 * @map: Mapping state. 2392 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2393 */ 2394 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2395 { 2396 struct mm_struct *mm = map->mm; 2397 unsigned long vm_flags = vma->vm_flags; 2398 2399 perf_event_mmap(vma); 2400 2401 /* Unmap any existing mapping in the area. */ 2402 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2403 2404 vm_stat_account(mm, vma->vm_flags, map->pglen); 2405 if (vm_flags & VM_LOCKED) { 2406 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2407 is_vm_hugetlb_page(vma) || 2408 vma == get_gate_vma(mm)) 2409 vm_flags_clear(vma, VM_LOCKED_MASK); 2410 else 2411 mm->locked_vm += map->pglen; 2412 } 2413 2414 if (vma->vm_file) 2415 uprobe_mmap(vma); 2416 2417 /* 2418 * New (or expanded) vma always get soft dirty status. 2419 * Otherwise user-space soft-dirty page tracker won't 2420 * be able to distinguish situation when vma area unmapped, 2421 * then new mapped in-place (which must be aimed as 2422 * a completely new data area). 2423 */ 2424 vm_flags_set(vma, VM_SOFTDIRTY); 2425 2426 vma_set_page_prot(vma); 2427 } 2428 2429 unsigned long __mmap_region(struct file *file, unsigned long addr, 2430 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2431 struct list_head *uf) 2432 { 2433 struct mm_struct *mm = current->mm; 2434 struct vm_area_struct *vma = NULL; 2435 int error; 2436 VMA_ITERATOR(vmi, mm, addr); 2437 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2438 2439 error = __mmap_prepare(&map, uf); 2440 if (error) 2441 goto abort_munmap; 2442 2443 /* Attempt to merge with adjacent VMAs... */ 2444 if (map.prev || map.next) { 2445 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2446 2447 vma = vma_merge_new_range(&vmg); 2448 } 2449 2450 /* ...but if we can't, allocate a new VMA. */ 2451 if (!vma) { 2452 error = __mmap_new_vma(&map, &vma); 2453 if (error) 2454 goto unacct_error; 2455 } 2456 2457 /* If flags changed, we might be able to merge, so try again. */ 2458 if (map.retry_merge) { 2459 VMG_MMAP_STATE(vmg, &map, vma); 2460 2461 vma_iter_config(map.vmi, map.addr, map.end); 2462 vma_merge_existing_range(&vmg); 2463 } 2464 2465 __mmap_complete(&map, vma); 2466 2467 return addr; 2468 2469 /* Accounting was done by __mmap_prepare(). */ 2470 unacct_error: 2471 if (map.charged) 2472 vm_unacct_memory(map.charged); 2473 abort_munmap: 2474 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2475 return error; 2476 } 2477