1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * VMA-specific functions.
5 */
6
7 #include "vma_internal.h"
8 #include "vma.h"
9
10 struct mmap_state {
11 struct mm_struct *mm;
12 struct vma_iterator *vmi;
13
14 unsigned long addr;
15 unsigned long end;
16 pgoff_t pgoff;
17 unsigned long pglen;
18 vm_flags_t vm_flags;
19 struct file *file;
20 pgprot_t page_prot;
21
22 /* User-defined fields, perhaps updated by .mmap_prepare(). */
23 const struct vm_operations_struct *vm_ops;
24 void *vm_private_data;
25
26 unsigned long charged;
27
28 struct vm_area_struct *prev;
29 struct vm_area_struct *next;
30
31 /* Unmapping state. */
32 struct vma_munmap_struct vms;
33 struct ma_state mas_detach;
34 struct maple_tree mt_detach;
35
36 /* Determine if we can check KSM flags early in mmap() logic. */
37 bool check_ksm_early :1;
38 /* If we map new, hold the file rmap lock on mapping. */
39 bool hold_file_rmap_lock :1;
40 };
41
42 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, vm_flags_, file_) \
43 struct mmap_state name = { \
44 .mm = mm_, \
45 .vmi = vmi_, \
46 .addr = addr_, \
47 .end = (addr_) + (len_), \
48 .pgoff = pgoff_, \
49 .pglen = PHYS_PFN(len_), \
50 .vm_flags = vm_flags_, \
51 .file = file_, \
52 .page_prot = vm_get_page_prot(vm_flags_), \
53 }
54
55 #define VMG_MMAP_STATE(name, map_, vma_) \
56 struct vma_merge_struct name = { \
57 .mm = (map_)->mm, \
58 .vmi = (map_)->vmi, \
59 .start = (map_)->addr, \
60 .end = (map_)->end, \
61 .vm_flags = (map_)->vm_flags, \
62 .pgoff = (map_)->pgoff, \
63 .file = (map_)->file, \
64 .prev = (map_)->prev, \
65 .middle = vma_, \
66 .next = (vma_) ? NULL : (map_)->next, \
67 .state = VMA_MERGE_START, \
68 }
69
70 /*
71 * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain
72 * more than one anon_vma_chain connecting it to more than one anon_vma. A merge
73 * would mean a wider range of folios sharing the root anon_vma lock, and thus
74 * potential lock contention, we do not wish to encourage merging such that this
75 * scales to a problem.
76 */
vma_had_uncowed_parents(struct vm_area_struct * vma)77 static bool vma_had_uncowed_parents(struct vm_area_struct *vma)
78 {
79 /*
80 * The list_is_singular() test is to avoid merging VMA cloned from
81 * parents. This can improve scalability caused by anon_vma lock.
82 */
83 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain);
84 }
85
is_mergeable_vma(struct vma_merge_struct * vmg,bool merge_next)86 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
87 {
88 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
89
90 if (!mpol_equal(vmg->policy, vma_policy(vma)))
91 return false;
92 if ((vma->vm_flags ^ vmg->vm_flags) & ~VM_IGNORE_MERGE)
93 return false;
94 if (vma->vm_file != vmg->file)
95 return false;
96 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
97 return false;
98 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
99 return false;
100 return true;
101 }
102
is_mergeable_anon_vma(struct vma_merge_struct * vmg,bool merge_next)103 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next)
104 {
105 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev;
106 struct vm_area_struct *src = vmg->middle; /* existing merge case. */
107 struct anon_vma *tgt_anon = tgt->anon_vma;
108 struct anon_vma *src_anon = vmg->anon_vma;
109
110 /*
111 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we
112 * will remove the existing VMA's anon_vma's so there's no scalability
113 * concerns.
114 */
115 VM_WARN_ON(src && src_anon != src->anon_vma);
116
117 /* Case 1 - we will dup_anon_vma() from src into tgt. */
118 if (!tgt_anon && src_anon)
119 return !vma_had_uncowed_parents(src);
120 /* Case 2 - we will simply use tgt's anon_vma. */
121 if (tgt_anon && !src_anon)
122 return !vma_had_uncowed_parents(tgt);
123 /* Case 3 - the anon_vma's are already shared. */
124 return src_anon == tgt_anon;
125 }
126
127 /*
128 * init_multi_vma_prep() - Initializer for struct vma_prepare
129 * @vp: The vma_prepare struct
130 * @vma: The vma that will be altered once locked
131 * @vmg: The merge state that will be used to determine adjustment and VMA
132 * removal.
133 */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vma_merge_struct * vmg)134 static void init_multi_vma_prep(struct vma_prepare *vp,
135 struct vm_area_struct *vma,
136 struct vma_merge_struct *vmg)
137 {
138 struct vm_area_struct *adjust;
139 struct vm_area_struct **remove = &vp->remove;
140
141 memset(vp, 0, sizeof(struct vma_prepare));
142 vp->vma = vma;
143 vp->anon_vma = vma->anon_vma;
144
145 if (vmg && vmg->__remove_middle) {
146 *remove = vmg->middle;
147 remove = &vp->remove2;
148 }
149 if (vmg && vmg->__remove_next)
150 *remove = vmg->next;
151
152 if (vmg && vmg->__adjust_middle_start)
153 adjust = vmg->middle;
154 else if (vmg && vmg->__adjust_next_start)
155 adjust = vmg->next;
156 else
157 adjust = NULL;
158
159 vp->adj_next = adjust;
160 if (!vp->anon_vma && adjust)
161 vp->anon_vma = adjust->anon_vma;
162
163 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma &&
164 vp->anon_vma != adjust->anon_vma);
165
166 vp->file = vma->vm_file;
167 if (vp->file)
168 vp->mapping = vma->vm_file->f_mapping;
169
170 if (vmg && vmg->skip_vma_uprobe)
171 vp->skip_vma_uprobe = true;
172 }
173
174 /*
175 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
176 * in front of (at a lower virtual address and file offset than) the vma.
177 *
178 * We cannot merge two vmas if they have differently assigned (non-NULL)
179 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
180 *
181 * We don't check here for the merged mmap wrapping around the end of pagecache
182 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
183 * wrap, nor mmaps which cover the final page at index -1UL.
184 *
185 * We assume the vma may be removed as part of the merge.
186 */
can_vma_merge_before(struct vma_merge_struct * vmg)187 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
188 {
189 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
190
191 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
192 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) {
193 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
194 return true;
195 }
196
197 return false;
198 }
199
200 /*
201 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
202 * beyond (at a higher virtual address and file offset than) the vma.
203 *
204 * We cannot merge two vmas if they have differently assigned (non-NULL)
205 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
206 *
207 * We assume that vma is not removed as part of the merge.
208 */
can_vma_merge_after(struct vma_merge_struct * vmg)209 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
210 {
211 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
212 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) {
213 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
214 return true;
215 }
216 return false;
217 }
218
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)219 static void __vma_link_file(struct vm_area_struct *vma,
220 struct address_space *mapping)
221 {
222 if (vma_is_shared_maywrite(vma))
223 mapping_allow_writable(mapping);
224
225 flush_dcache_mmap_lock(mapping);
226 vma_interval_tree_insert(vma, &mapping->i_mmap);
227 flush_dcache_mmap_unlock(mapping);
228 }
229
230 /*
231 * Requires inode->i_mapping->i_mmap_rwsem
232 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct address_space * mapping)233 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
234 struct address_space *mapping)
235 {
236 if (vma_is_shared_maywrite(vma))
237 mapping_unmap_writable(mapping);
238
239 flush_dcache_mmap_lock(mapping);
240 vma_interval_tree_remove(vma, &mapping->i_mmap);
241 flush_dcache_mmap_unlock(mapping);
242 }
243
244 /*
245 * vma has some anon_vma assigned, and is already inserted on that
246 * anon_vma's interval trees.
247 *
248 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
249 * vma must be removed from the anon_vma's interval trees using
250 * anon_vma_interval_tree_pre_update_vma().
251 *
252 * After the update, the vma will be reinserted using
253 * anon_vma_interval_tree_post_update_vma().
254 *
255 * The entire update must be protected by exclusive mmap_lock and by
256 * the root anon_vma's mutex.
257 */
258 static void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)259 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
260 {
261 struct anon_vma_chain *avc;
262
263 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
264 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
265 }
266
267 static void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)268 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
269 {
270 struct anon_vma_chain *avc;
271
272 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
273 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
274 }
275
276 /*
277 * vma_prepare() - Helper function for handling locking VMAs prior to altering
278 * @vp: The initialized vma_prepare struct
279 */
vma_prepare(struct vma_prepare * vp)280 static void vma_prepare(struct vma_prepare *vp)
281 {
282 if (vp->file) {
283 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
284
285 if (vp->adj_next)
286 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
287 vp->adj_next->vm_end);
288
289 i_mmap_lock_write(vp->mapping);
290 if (vp->insert && vp->insert->vm_file) {
291 /*
292 * Put into interval tree now, so instantiated pages
293 * are visible to arm/parisc __flush_dcache_page
294 * throughout; but we cannot insert into address
295 * space until vma start or end is updated.
296 */
297 __vma_link_file(vp->insert,
298 vp->insert->vm_file->f_mapping);
299 }
300 }
301
302 if (vp->anon_vma) {
303 anon_vma_lock_write(vp->anon_vma);
304 anon_vma_interval_tree_pre_update_vma(vp->vma);
305 if (vp->adj_next)
306 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
307 }
308
309 if (vp->file) {
310 flush_dcache_mmap_lock(vp->mapping);
311 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
312 if (vp->adj_next)
313 vma_interval_tree_remove(vp->adj_next,
314 &vp->mapping->i_mmap);
315 }
316
317 }
318
319 /*
320 * vma_complete- Helper function for handling the unlocking after altering VMAs,
321 * or for inserting a VMA.
322 *
323 * @vp: The vma_prepare struct
324 * @vmi: The vma iterator
325 * @mm: The mm_struct
326 */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)327 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
328 struct mm_struct *mm)
329 {
330 if (vp->file) {
331 if (vp->adj_next)
332 vma_interval_tree_insert(vp->adj_next,
333 &vp->mapping->i_mmap);
334 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
335 flush_dcache_mmap_unlock(vp->mapping);
336 }
337
338 if (vp->remove && vp->file) {
339 __remove_shared_vm_struct(vp->remove, vp->mapping);
340 if (vp->remove2)
341 __remove_shared_vm_struct(vp->remove2, vp->mapping);
342 } else if (vp->insert) {
343 /*
344 * split_vma has split insert from vma, and needs
345 * us to insert it before dropping the locks
346 * (it may either follow vma or precede it).
347 */
348 vma_iter_store_new(vmi, vp->insert);
349 mm->map_count++;
350 }
351
352 if (vp->anon_vma) {
353 anon_vma_interval_tree_post_update_vma(vp->vma);
354 if (vp->adj_next)
355 anon_vma_interval_tree_post_update_vma(vp->adj_next);
356 anon_vma_unlock_write(vp->anon_vma);
357 }
358
359 if (vp->file) {
360 i_mmap_unlock_write(vp->mapping);
361
362 if (!vp->skip_vma_uprobe) {
363 uprobe_mmap(vp->vma);
364
365 if (vp->adj_next)
366 uprobe_mmap(vp->adj_next);
367 }
368 }
369
370 if (vp->remove) {
371 again:
372 vma_mark_detached(vp->remove);
373 if (vp->file) {
374 uprobe_munmap(vp->remove, vp->remove->vm_start,
375 vp->remove->vm_end);
376 fput(vp->file);
377 }
378 if (vp->remove->anon_vma)
379 anon_vma_merge(vp->vma, vp->remove);
380 mm->map_count--;
381 mpol_put(vma_policy(vp->remove));
382 if (!vp->remove2)
383 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
384 vm_area_free(vp->remove);
385
386 /*
387 * In mprotect's case 6 (see comments on vma_merge),
388 * we are removing both mid and next vmas
389 */
390 if (vp->remove2) {
391 vp->remove = vp->remove2;
392 vp->remove2 = NULL;
393 goto again;
394 }
395 }
396 if (vp->insert && vp->file)
397 uprobe_mmap(vp->insert);
398 }
399
400 /*
401 * init_vma_prep() - Initializer wrapper for vma_prepare struct
402 * @vp: The vma_prepare struct
403 * @vma: The vma that will be altered once locked
404 */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)405 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
406 {
407 init_multi_vma_prep(vp, vma, NULL);
408 }
409
410 /*
411 * Can the proposed VMA be merged with the left (previous) VMA taking into
412 * account the start position of the proposed range.
413 */
can_vma_merge_left(struct vma_merge_struct * vmg)414 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
415
416 {
417 return vmg->prev && vmg->prev->vm_end == vmg->start &&
418 can_vma_merge_after(vmg);
419 }
420
421 /*
422 * Can the proposed VMA be merged with the right (next) VMA taking into
423 * account the end position of the proposed range.
424 *
425 * In addition, if we can merge with the left VMA, ensure that left and right
426 * anon_vma's are also compatible.
427 */
can_vma_merge_right(struct vma_merge_struct * vmg,bool can_merge_left)428 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
429 bool can_merge_left)
430 {
431 struct vm_area_struct *next = vmg->next;
432 struct vm_area_struct *prev;
433
434 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg))
435 return false;
436
437 if (!can_merge_left)
438 return true;
439
440 /*
441 * If we can merge with prev (left) and next (right), indicating that
442 * each VMA's anon_vma is compatible with the proposed anon_vma, this
443 * does not mean prev and next are compatible with EACH OTHER.
444 *
445 * We therefore check this in addition to mergeability to either side.
446 */
447 prev = vmg->prev;
448 return !prev->anon_vma || !next->anon_vma ||
449 prev->anon_vma == next->anon_vma;
450 }
451
452 /*
453 * Close a vm structure and free it.
454 */
remove_vma(struct vm_area_struct * vma)455 void remove_vma(struct vm_area_struct *vma)
456 {
457 might_sleep();
458 vma_close(vma);
459 if (vma->vm_file)
460 fput(vma->vm_file);
461 mpol_put(vma_policy(vma));
462 vm_area_free(vma);
463 }
464
465 /*
466 * Get rid of page table information in the indicated region.
467 *
468 * Called with the mm semaphore held.
469 */
unmap_region(struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next)470 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
471 struct vm_area_struct *prev, struct vm_area_struct *next)
472 {
473 struct mm_struct *mm = vma->vm_mm;
474 struct mmu_gather tlb;
475
476 tlb_gather_mmu(&tlb, mm);
477 update_hiwater_rss(mm);
478 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end);
479 mas_set(mas, vma->vm_end);
480 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
481 next ? next->vm_start : USER_PGTABLES_CEILING,
482 /* mm_wr_locked = */ true);
483 tlb_finish_mmu(&tlb);
484 }
485
486 /*
487 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
488 * has already been checked or doesn't make sense to fail.
489 * VMA Iterator will point to the original VMA.
490 */
491 static __must_check int
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)492 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
493 unsigned long addr, int new_below)
494 {
495 struct vma_prepare vp;
496 struct vm_area_struct *new;
497 int err;
498
499 WARN_ON(vma->vm_start >= addr);
500 WARN_ON(vma->vm_end <= addr);
501
502 if (vma->vm_ops && vma->vm_ops->may_split) {
503 err = vma->vm_ops->may_split(vma, addr);
504 if (err)
505 return err;
506 }
507
508 new = vm_area_dup(vma);
509 if (!new)
510 return -ENOMEM;
511
512 if (new_below) {
513 new->vm_end = addr;
514 } else {
515 new->vm_start = addr;
516 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
517 }
518
519 err = -ENOMEM;
520 vma_iter_config(vmi, new->vm_start, new->vm_end);
521 if (vma_iter_prealloc(vmi, new))
522 goto out_free_vma;
523
524 err = vma_dup_policy(vma, new);
525 if (err)
526 goto out_free_vmi;
527
528 err = anon_vma_clone(new, vma);
529 if (err)
530 goto out_free_mpol;
531
532 if (new->vm_file)
533 get_file(new->vm_file);
534
535 if (new->vm_ops && new->vm_ops->open)
536 new->vm_ops->open(new);
537
538 vma_start_write(vma);
539 vma_start_write(new);
540
541 init_vma_prep(&vp, vma);
542 vp.insert = new;
543 vma_prepare(&vp);
544
545 /*
546 * Get rid of huge pages and shared page tables straddling the split
547 * boundary.
548 */
549 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL);
550 if (is_vm_hugetlb_page(vma))
551 hugetlb_split(vma, addr);
552
553 if (new_below) {
554 vma->vm_start = addr;
555 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
556 } else {
557 vma->vm_end = addr;
558 }
559
560 /* vma_complete stores the new vma */
561 vma_complete(&vp, vmi, vma->vm_mm);
562 validate_mm(vma->vm_mm);
563
564 /* Success. */
565 if (new_below)
566 vma_next(vmi);
567 else
568 vma_prev(vmi);
569
570 return 0;
571
572 out_free_mpol:
573 mpol_put(vma_policy(new));
574 out_free_vmi:
575 vma_iter_free(vmi);
576 out_free_vma:
577 vm_area_free(new);
578 return err;
579 }
580
581 /*
582 * Split a vma into two pieces at address 'addr', a new vma is allocated
583 * either for the first part or the tail.
584 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)585 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
586 unsigned long addr, int new_below)
587 {
588 if (vma->vm_mm->map_count >= sysctl_max_map_count)
589 return -ENOMEM;
590
591 return __split_vma(vmi, vma, addr, new_below);
592 }
593
594 /*
595 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the
596 * instance that the destination VMA has no anon_vma but the source does.
597 *
598 * @dst: The destination VMA
599 * @src: The source VMA
600 * @dup: Pointer to the destination VMA when successful.
601 *
602 * Returns: 0 on success.
603 */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)604 static int dup_anon_vma(struct vm_area_struct *dst,
605 struct vm_area_struct *src, struct vm_area_struct **dup)
606 {
607 /*
608 * There are three cases to consider for correctly propagating
609 * anon_vma's on merge.
610 *
611 * The first is trivial - neither VMA has anon_vma, we need not do
612 * anything.
613 *
614 * The second where both have anon_vma is also a no-op, as they must
615 * then be the same, so there is simply nothing to copy.
616 *
617 * Here we cover the third - if the destination VMA has no anon_vma,
618 * that is it is unfaulted, we need to ensure that the newly merged
619 * range is referenced by the anon_vma's of the source.
620 */
621 if (src->anon_vma && !dst->anon_vma) {
622 int ret;
623
624 vma_assert_write_locked(dst);
625 dst->anon_vma = src->anon_vma;
626 ret = anon_vma_clone(dst, src);
627 if (ret)
628 return ret;
629
630 *dup = dst;
631 }
632
633 return 0;
634 }
635
636 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
validate_mm(struct mm_struct * mm)637 void validate_mm(struct mm_struct *mm)
638 {
639 int bug = 0;
640 int i = 0;
641 struct vm_area_struct *vma;
642 VMA_ITERATOR(vmi, mm, 0);
643
644 mt_validate(&mm->mm_mt);
645 for_each_vma(vmi, vma) {
646 #ifdef CONFIG_DEBUG_VM_RB
647 struct anon_vma *anon_vma = vma->anon_vma;
648 struct anon_vma_chain *avc;
649 #endif
650 unsigned long vmi_start, vmi_end;
651 bool warn = 0;
652
653 vmi_start = vma_iter_addr(&vmi);
654 vmi_end = vma_iter_end(&vmi);
655 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
656 warn = 1;
657
658 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
659 warn = 1;
660
661 if (warn) {
662 pr_emerg("issue in %s\n", current->comm);
663 dump_stack();
664 dump_vma(vma);
665 pr_emerg("tree range: %px start %lx end %lx\n", vma,
666 vmi_start, vmi_end - 1);
667 vma_iter_dump_tree(&vmi);
668 }
669
670 #ifdef CONFIG_DEBUG_VM_RB
671 if (anon_vma) {
672 anon_vma_lock_read(anon_vma);
673 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
674 anon_vma_interval_tree_verify(avc);
675 anon_vma_unlock_read(anon_vma);
676 }
677 #endif
678 /* Check for a infinite loop */
679 if (++i > mm->map_count + 10) {
680 i = -1;
681 break;
682 }
683 }
684 if (i != mm->map_count) {
685 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
686 bug = 1;
687 }
688 VM_BUG_ON_MM(bug, mm);
689 }
690 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
691
692 /*
693 * Based on the vmg flag indicating whether we need to adjust the vm_start field
694 * for the middle or next VMA, we calculate what the range of the newly adjusted
695 * VMA ought to be, and set the VMA's range accordingly.
696 */
vmg_adjust_set_range(struct vma_merge_struct * vmg)697 static void vmg_adjust_set_range(struct vma_merge_struct *vmg)
698 {
699 struct vm_area_struct *adjust;
700 pgoff_t pgoff;
701
702 if (vmg->__adjust_middle_start) {
703 adjust = vmg->middle;
704 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start);
705 } else if (vmg->__adjust_next_start) {
706 adjust = vmg->next;
707 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end);
708 } else {
709 return;
710 }
711
712 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff);
713 }
714
715 /*
716 * Actually perform the VMA merge operation.
717 *
718 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not
719 * modify any VMAs or cause inconsistent state should an OOM condition arise.
720 *
721 * Returns 0 on success, or an error value on failure.
722 */
commit_merge(struct vma_merge_struct * vmg)723 static int commit_merge(struct vma_merge_struct *vmg)
724 {
725 struct vm_area_struct *vma;
726 struct vma_prepare vp;
727
728 if (vmg->__adjust_next_start) {
729 /* We manipulate middle and adjust next, which is the target. */
730 vma = vmg->middle;
731 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end);
732 } else {
733 vma = vmg->target;
734 /* Note: vma iterator must be pointing to 'start'. */
735 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
736 }
737
738 init_multi_vma_prep(&vp, vma, vmg);
739
740 /*
741 * If vmg->give_up_on_oom is set, we're safe, because we don't actually
742 * manipulate any VMAs until we succeed at preallocation.
743 *
744 * Past this point, we will not return an error.
745 */
746 if (vma_iter_prealloc(vmg->vmi, vma))
747 return -ENOMEM;
748
749 vma_prepare(&vp);
750 /*
751 * THP pages may need to do additional splits if we increase
752 * middle->vm_start.
753 */
754 vma_adjust_trans_huge(vma, vmg->start, vmg->end,
755 vmg->__adjust_middle_start ? vmg->middle : NULL);
756 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff);
757 vmg_adjust_set_range(vmg);
758 vma_iter_store_overwrite(vmg->vmi, vmg->target);
759
760 vma_complete(&vp, vmg->vmi, vma->vm_mm);
761
762 return 0;
763 }
764
765 /* We can only remove VMAs when merging if they do not have a close hook. */
can_merge_remove_vma(struct vm_area_struct * vma)766 static bool can_merge_remove_vma(struct vm_area_struct *vma)
767 {
768 return !vma->vm_ops || !vma->vm_ops->close;
769 }
770
771 /*
772 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
773 * attributes modified.
774 *
775 * @vmg: Describes the modifications being made to a VMA and associated
776 * metadata.
777 *
778 * When the attributes of a range within a VMA change, then it might be possible
779 * for immediately adjacent VMAs to be merged into that VMA due to having
780 * identical properties.
781 *
782 * This function checks for the existence of any such mergeable VMAs and updates
783 * the maple tree describing the @vmg->middle->vm_mm address space to account
784 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this
785 * merge.
786 *
787 * As part of this operation, if a merge occurs, the @vmg object will have its
788 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
789 * calls to this function should reset these fields.
790 *
791 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
792 *
793 * ASSUMPTIONS:
794 * - The caller must assign the VMA to be modified to @vmg->middle.
795 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
796 * - The caller must not set @vmg->next, as we determine this.
797 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
798 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end).
799 */
vma_merge_existing_range(struct vma_merge_struct * vmg)800 static __must_check struct vm_area_struct *vma_merge_existing_range(
801 struct vma_merge_struct *vmg)
802 {
803 vm_flags_t sticky_flags = vmg->vm_flags & VM_STICKY;
804 struct vm_area_struct *middle = vmg->middle;
805 struct vm_area_struct *prev = vmg->prev;
806 struct vm_area_struct *next;
807 struct vm_area_struct *anon_dup = NULL;
808 unsigned long start = vmg->start;
809 unsigned long end = vmg->end;
810 bool left_side = middle && start == middle->vm_start;
811 bool right_side = middle && end == middle->vm_end;
812 int err = 0;
813 bool merge_left, merge_right, merge_both;
814
815 mmap_assert_write_locked(vmg->mm);
816 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */
817 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
818 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
819 VM_WARN_ON_VMG(start >= end, vmg);
820
821 /*
822 * If middle == prev, then we are offset into a VMA. Otherwise, if we are
823 * not, we must span a portion of the VMA.
824 */
825 VM_WARN_ON_VMG(middle &&
826 ((middle != prev && vmg->start != middle->vm_start) ||
827 vmg->end > middle->vm_end), vmg);
828 /* The vmi must be positioned within vmg->middle. */
829 VM_WARN_ON_VMG(middle &&
830 !(vma_iter_addr(vmg->vmi) >= middle->vm_start &&
831 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg);
832
833 vmg->state = VMA_MERGE_NOMERGE;
834
835 /*
836 * If a special mapping or if the range being modified is neither at the
837 * furthermost left or right side of the VMA, then we have no chance of
838 * merging and should abort.
839 */
840 if (vmg->vm_flags & VM_SPECIAL || (!left_side && !right_side))
841 return NULL;
842
843 if (left_side)
844 merge_left = can_vma_merge_left(vmg);
845 else
846 merge_left = false;
847
848 if (right_side) {
849 next = vmg->next = vma_iter_next_range(vmg->vmi);
850 vma_iter_prev_range(vmg->vmi);
851
852 merge_right = can_vma_merge_right(vmg, merge_left);
853 } else {
854 merge_right = false;
855 next = NULL;
856 }
857
858 if (merge_left) /* If merging prev, position iterator there. */
859 vma_prev(vmg->vmi);
860 else if (!merge_right) /* If we have nothing to merge, abort. */
861 return NULL;
862
863 merge_both = merge_left && merge_right;
864 /* If we span the entire VMA, a merge implies it will be deleted. */
865 vmg->__remove_middle = left_side && right_side;
866
867 /*
868 * If we need to remove middle in its entirety but are unable to do so,
869 * we have no sensible recourse but to abort the merge.
870 */
871 if (vmg->__remove_middle && !can_merge_remove_vma(middle))
872 return NULL;
873
874 /*
875 * If we merge both VMAs, then next is also deleted. This implies
876 * merge_will_delete_vma also.
877 */
878 vmg->__remove_next = merge_both;
879
880 /*
881 * If we cannot delete next, then we can reduce the operation to merging
882 * prev and middle (thereby deleting middle).
883 */
884 if (vmg->__remove_next && !can_merge_remove_vma(next)) {
885 vmg->__remove_next = false;
886 merge_right = false;
887 merge_both = false;
888 }
889
890 /* No matter what happens, we will be adjusting middle. */
891 vma_start_write(middle);
892
893 if (merge_right) {
894 vma_start_write(next);
895 vmg->target = next;
896 sticky_flags |= (next->vm_flags & VM_STICKY);
897 }
898
899 if (merge_left) {
900 vma_start_write(prev);
901 vmg->target = prev;
902 sticky_flags |= (prev->vm_flags & VM_STICKY);
903 }
904
905 if (merge_both) {
906 /*
907 * |<-------------------->|
908 * |-------********-------|
909 * prev middle next
910 * extend delete delete
911 */
912
913 vmg->start = prev->vm_start;
914 vmg->end = next->vm_end;
915 vmg->pgoff = prev->vm_pgoff;
916
917 /*
918 * We already ensured anon_vma compatibility above, so now it's
919 * simply a case of, if prev has no anon_vma object, which of
920 * next or middle contains the anon_vma we must duplicate.
921 */
922 err = dup_anon_vma(prev, next->anon_vma ? next : middle,
923 &anon_dup);
924 } else if (merge_left) {
925 /*
926 * |<------------>| OR
927 * |<----------------->|
928 * |-------*************
929 * prev middle
930 * extend shrink/delete
931 */
932
933 vmg->start = prev->vm_start;
934 vmg->pgoff = prev->vm_pgoff;
935
936 if (!vmg->__remove_middle)
937 vmg->__adjust_middle_start = true;
938
939 err = dup_anon_vma(prev, middle, &anon_dup);
940 } else { /* merge_right */
941 /*
942 * |<------------->| OR
943 * |<----------------->|
944 * *************-------|
945 * middle next
946 * shrink/delete extend
947 */
948
949 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
950
951 VM_WARN_ON_VMG(!merge_right, vmg);
952 /* If we are offset into a VMA, then prev must be middle. */
953 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg);
954
955 if (vmg->__remove_middle) {
956 vmg->end = next->vm_end;
957 vmg->pgoff = next->vm_pgoff - pglen;
958 } else {
959 /* We shrink middle and expand next. */
960 vmg->__adjust_next_start = true;
961 vmg->start = middle->vm_start;
962 vmg->end = start;
963 vmg->pgoff = middle->vm_pgoff;
964 }
965
966 err = dup_anon_vma(next, middle, &anon_dup);
967 }
968
969 if (err || commit_merge(vmg))
970 goto abort;
971
972 vm_flags_set(vmg->target, sticky_flags);
973 khugepaged_enter_vma(vmg->target, vmg->vm_flags);
974 vmg->state = VMA_MERGE_SUCCESS;
975 return vmg->target;
976
977 abort:
978 vma_iter_set(vmg->vmi, start);
979 vma_iter_load(vmg->vmi);
980
981 if (anon_dup)
982 unlink_anon_vmas(anon_dup);
983
984 /*
985 * This means we have failed to clone anon_vma's correctly, but no
986 * actual changes to VMAs have occurred, so no harm no foul - if the
987 * user doesn't want this reported and instead just wants to give up on
988 * the merge, allow it.
989 */
990 if (!vmg->give_up_on_oom)
991 vmg->state = VMA_MERGE_ERROR_NOMEM;
992 return NULL;
993 }
994
995 /*
996 * vma_merge_new_range - Attempt to merge a new VMA into address space
997 *
998 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
999 * (exclusive), which we try to merge with any adjacent VMAs if possible.
1000 *
1001 * We are about to add a VMA to the address space starting at @vmg->start and
1002 * ending at @vmg->end. There are three different possible scenarios:
1003 *
1004 * 1. There is a VMA with identical properties immediately adjacent to the
1005 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
1006 * EXPAND that VMA:
1007 *
1008 * Proposed: |-----| or |-----|
1009 * Existing: |----| |----|
1010 *
1011 * 2. There are VMAs with identical properties immediately adjacent to the
1012 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
1013 * EXPAND the former and REMOVE the latter:
1014 *
1015 * Proposed: |-----|
1016 * Existing: |----| |----|
1017 *
1018 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
1019 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
1020 *
1021 * In instances where we can merge, this function returns the expanded VMA which
1022 * will have its range adjusted accordingly and the underlying maple tree also
1023 * adjusted.
1024 *
1025 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1026 * to the VMA we expanded.
1027 *
1028 * This function adjusts @vmg to provide @vmg->next if not already specified,
1029 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
1030 *
1031 * ASSUMPTIONS:
1032 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1033 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
1034 other than VMAs that will be unmapped should the operation succeed.
1035 * - The caller must have specified the previous vma in @vmg->prev.
1036 * - The caller must have specified the next vma in @vmg->next.
1037 * - The caller must have positioned the vmi at or before the gap.
1038 */
vma_merge_new_range(struct vma_merge_struct * vmg)1039 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
1040 {
1041 struct vm_area_struct *prev = vmg->prev;
1042 struct vm_area_struct *next = vmg->next;
1043 unsigned long end = vmg->end;
1044 bool can_merge_left, can_merge_right;
1045
1046 mmap_assert_write_locked(vmg->mm);
1047 VM_WARN_ON_VMG(vmg->middle, vmg);
1048 VM_WARN_ON_VMG(vmg->target, vmg);
1049 /* vmi must point at or before the gap. */
1050 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
1051
1052 vmg->state = VMA_MERGE_NOMERGE;
1053
1054 /* Special VMAs are unmergeable, also if no prev/next. */
1055 if ((vmg->vm_flags & VM_SPECIAL) || (!prev && !next))
1056 return NULL;
1057
1058 can_merge_left = can_vma_merge_left(vmg);
1059 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left);
1060
1061 /* If we can merge with the next VMA, adjust vmg accordingly. */
1062 if (can_merge_right) {
1063 vmg->end = next->vm_end;
1064 vmg->target = next;
1065 }
1066
1067 /* If we can merge with the previous VMA, adjust vmg accordingly. */
1068 if (can_merge_left) {
1069 vmg->start = prev->vm_start;
1070 vmg->target = prev;
1071 vmg->pgoff = prev->vm_pgoff;
1072
1073 /*
1074 * If this merge would result in removal of the next VMA but we
1075 * are not permitted to do so, reduce the operation to merging
1076 * prev and vma.
1077 */
1078 if (can_merge_right && !can_merge_remove_vma(next))
1079 vmg->end = end;
1080
1081 /* In expand-only case we are already positioned at prev. */
1082 if (!vmg->just_expand) {
1083 /* Equivalent to going to the previous range. */
1084 vma_prev(vmg->vmi);
1085 }
1086 }
1087
1088 /*
1089 * Now try to expand adjacent VMA(s). This takes care of removing the
1090 * following VMA if we have VMAs on both sides.
1091 */
1092 if (vmg->target && !vma_expand(vmg)) {
1093 khugepaged_enter_vma(vmg->target, vmg->vm_flags);
1094 vmg->state = VMA_MERGE_SUCCESS;
1095 return vmg->target;
1096 }
1097
1098 return NULL;
1099 }
1100
1101 /*
1102 * vma_expand - Expand an existing VMA
1103 *
1104 * @vmg: Describes a VMA expansion operation.
1105 *
1106 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
1107 * Will expand over vmg->next if it's different from vmg->target and vmg->end ==
1108 * vmg->next->vm_end. Checking if the vmg->target can expand and merge with
1109 * vmg->next needs to be handled by the caller.
1110 *
1111 * Returns: 0 on success.
1112 *
1113 * ASSUMPTIONS:
1114 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1115 * - The caller must have set @vmg->target and @vmg->next.
1116 */
vma_expand(struct vma_merge_struct * vmg)1117 int vma_expand(struct vma_merge_struct *vmg)
1118 {
1119 struct vm_area_struct *anon_dup = NULL;
1120 bool remove_next = false;
1121 struct vm_area_struct *target = vmg->target;
1122 struct vm_area_struct *next = vmg->next;
1123 vm_flags_t sticky_flags;
1124
1125 sticky_flags = vmg->vm_flags & VM_STICKY;
1126 sticky_flags |= target->vm_flags & VM_STICKY;
1127
1128 VM_WARN_ON_VMG(!target, vmg);
1129
1130 mmap_assert_write_locked(vmg->mm);
1131
1132 vma_start_write(target);
1133 if (next && (target != next) && (vmg->end == next->vm_end)) {
1134 int ret;
1135
1136 sticky_flags |= next->vm_flags & VM_STICKY;
1137 remove_next = true;
1138 /* This should already have been checked by this point. */
1139 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg);
1140 vma_start_write(next);
1141 /*
1142 * In this case we don't report OOM, so vmg->give_up_on_mm is
1143 * safe.
1144 */
1145 ret = dup_anon_vma(target, next, &anon_dup);
1146 if (ret)
1147 return ret;
1148 }
1149
1150 /* Not merging but overwriting any part of next is not handled. */
1151 VM_WARN_ON_VMG(next && !remove_next &&
1152 next != target && vmg->end > next->vm_start, vmg);
1153 /* Only handles expanding */
1154 VM_WARN_ON_VMG(target->vm_start < vmg->start ||
1155 target->vm_end > vmg->end, vmg);
1156
1157 if (remove_next)
1158 vmg->__remove_next = true;
1159
1160 if (commit_merge(vmg))
1161 goto nomem;
1162
1163 vm_flags_set(target, sticky_flags);
1164 return 0;
1165
1166 nomem:
1167 if (anon_dup)
1168 unlink_anon_vmas(anon_dup);
1169 /*
1170 * If the user requests that we just give upon OOM, we are safe to do so
1171 * here, as commit merge provides this contract to us. Nothing has been
1172 * changed - no harm no foul, just don't report it.
1173 */
1174 if (!vmg->give_up_on_oom)
1175 vmg->state = VMA_MERGE_ERROR_NOMEM;
1176 return -ENOMEM;
1177 }
1178
1179 /*
1180 * vma_shrink() - Reduce an existing VMAs memory area
1181 * @vmi: The vma iterator
1182 * @vma: The VMA to modify
1183 * @start: The new start
1184 * @end: The new end
1185 *
1186 * Returns: 0 on success, -ENOMEM otherwise
1187 */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1188 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1189 unsigned long start, unsigned long end, pgoff_t pgoff)
1190 {
1191 struct vma_prepare vp;
1192
1193 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1194
1195 if (vma->vm_start < start)
1196 vma_iter_config(vmi, vma->vm_start, start);
1197 else
1198 vma_iter_config(vmi, end, vma->vm_end);
1199
1200 if (vma_iter_prealloc(vmi, NULL))
1201 return -ENOMEM;
1202
1203 vma_start_write(vma);
1204
1205 init_vma_prep(&vp, vma);
1206 vma_prepare(&vp);
1207 vma_adjust_trans_huge(vma, start, end, NULL);
1208
1209 vma_iter_clear(vmi);
1210 vma_set_range(vma, start, end, pgoff);
1211 vma_complete(&vp, vmi, vma->vm_mm);
1212 validate_mm(vma->vm_mm);
1213 return 0;
1214 }
1215
vms_clear_ptes(struct vma_munmap_struct * vms,struct ma_state * mas_detach,bool mm_wr_locked)1216 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1217 struct ma_state *mas_detach, bool mm_wr_locked)
1218 {
1219 struct mmu_gather tlb;
1220
1221 if (!vms->clear_ptes) /* Nothing to do */
1222 return;
1223
1224 /*
1225 * We can free page tables without write-locking mmap_lock because VMAs
1226 * were isolated before we downgraded mmap_lock.
1227 */
1228 mas_set(mas_detach, 1);
1229 tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1230 update_hiwater_rss(vms->vma->vm_mm);
1231 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1232 vms->vma_count);
1233
1234 mas_set(mas_detach, 1);
1235 /* start and end may be different if there is no prev or next vma. */
1236 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1237 vms->unmap_end, mm_wr_locked);
1238 tlb_finish_mmu(&tlb);
1239 vms->clear_ptes = false;
1240 }
1241
vms_clean_up_area(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1242 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1243 struct ma_state *mas_detach)
1244 {
1245 struct vm_area_struct *vma;
1246
1247 if (!vms->nr_pages)
1248 return;
1249
1250 vms_clear_ptes(vms, mas_detach, true);
1251 mas_set(mas_detach, 0);
1252 mas_for_each(mas_detach, vma, ULONG_MAX)
1253 vma_close(vma);
1254 }
1255
1256 /*
1257 * vms_complete_munmap_vmas() - Finish the munmap() operation
1258 * @vms: The vma munmap struct
1259 * @mas_detach: The maple state of the detached vmas
1260 *
1261 * This updates the mm_struct, unmaps the region, frees the resources
1262 * used for the munmap() and may downgrade the lock - if requested. Everything
1263 * needed to be done once the vma maple tree is updated.
1264 */
vms_complete_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1265 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1266 struct ma_state *mas_detach)
1267 {
1268 struct vm_area_struct *vma;
1269 struct mm_struct *mm;
1270
1271 mm = current->mm;
1272 mm->map_count -= vms->vma_count;
1273 mm->locked_vm -= vms->locked_vm;
1274 if (vms->unlock)
1275 mmap_write_downgrade(mm);
1276
1277 if (!vms->nr_pages)
1278 return;
1279
1280 vms_clear_ptes(vms, mas_detach, !vms->unlock);
1281 /* Update high watermark before we lower total_vm */
1282 update_hiwater_vm(mm);
1283 /* Stat accounting */
1284 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1285 /* Paranoid bookkeeping */
1286 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1287 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1288 VM_WARN_ON(vms->data_vm > mm->data_vm);
1289 mm->exec_vm -= vms->exec_vm;
1290 mm->stack_vm -= vms->stack_vm;
1291 mm->data_vm -= vms->data_vm;
1292
1293 /* Remove and clean up vmas */
1294 mas_set(mas_detach, 0);
1295 mas_for_each(mas_detach, vma, ULONG_MAX)
1296 remove_vma(vma);
1297
1298 vm_unacct_memory(vms->nr_accounted);
1299 validate_mm(mm);
1300 if (vms->unlock)
1301 mmap_read_unlock(mm);
1302
1303 __mt_destroy(mas_detach->tree);
1304 }
1305
1306 /*
1307 * reattach_vmas() - Undo any munmap work and free resources
1308 * @mas_detach: The maple state with the detached maple tree
1309 *
1310 * Reattach any detached vmas and free up the maple tree used to track the vmas.
1311 */
reattach_vmas(struct ma_state * mas_detach)1312 static void reattach_vmas(struct ma_state *mas_detach)
1313 {
1314 struct vm_area_struct *vma;
1315
1316 mas_set(mas_detach, 0);
1317 mas_for_each(mas_detach, vma, ULONG_MAX)
1318 vma_mark_attached(vma);
1319
1320 __mt_destroy(mas_detach->tree);
1321 }
1322
1323 /*
1324 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1325 * for removal at a later date. Handles splitting first and last if necessary
1326 * and marking the vmas as isolated.
1327 *
1328 * @vms: The vma munmap struct
1329 * @mas_detach: The maple state tracking the detached tree
1330 *
1331 * Return: 0 on success, error otherwise
1332 */
vms_gather_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1333 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1334 struct ma_state *mas_detach)
1335 {
1336 struct vm_area_struct *next = NULL;
1337 int error;
1338
1339 /*
1340 * If we need to split any vma, do it now to save pain later.
1341 * Does it split the first one?
1342 */
1343 if (vms->start > vms->vma->vm_start) {
1344
1345 /*
1346 * Make sure that map_count on return from munmap() will
1347 * not exceed its limit; but let map_count go just above
1348 * its limit temporarily, to help free resources as expected.
1349 */
1350 if (vms->end < vms->vma->vm_end &&
1351 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1352 error = -ENOMEM;
1353 goto map_count_exceeded;
1354 }
1355
1356 /* Don't bother splitting the VMA if we can't unmap it anyway */
1357 if (vma_is_sealed(vms->vma)) {
1358 error = -EPERM;
1359 goto start_split_failed;
1360 }
1361
1362 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1363 if (error)
1364 goto start_split_failed;
1365 }
1366 vms->prev = vma_prev(vms->vmi);
1367 if (vms->prev)
1368 vms->unmap_start = vms->prev->vm_end;
1369
1370 /*
1371 * Detach a range of VMAs from the mm. Using next as a temp variable as
1372 * it is always overwritten.
1373 */
1374 for_each_vma_range(*(vms->vmi), next, vms->end) {
1375 long nrpages;
1376
1377 if (vma_is_sealed(next)) {
1378 error = -EPERM;
1379 goto modify_vma_failed;
1380 }
1381 /* Does it split the end? */
1382 if (next->vm_end > vms->end) {
1383 error = __split_vma(vms->vmi, next, vms->end, 0);
1384 if (error)
1385 goto end_split_failed;
1386 }
1387 vma_start_write(next);
1388 mas_set(mas_detach, vms->vma_count++);
1389 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1390 if (error)
1391 goto munmap_gather_failed;
1392
1393 vma_mark_detached(next);
1394 nrpages = vma_pages(next);
1395
1396 vms->nr_pages += nrpages;
1397 if (next->vm_flags & VM_LOCKED)
1398 vms->locked_vm += nrpages;
1399
1400 if (next->vm_flags & VM_ACCOUNT)
1401 vms->nr_accounted += nrpages;
1402
1403 if (is_exec_mapping(next->vm_flags))
1404 vms->exec_vm += nrpages;
1405 else if (is_stack_mapping(next->vm_flags))
1406 vms->stack_vm += nrpages;
1407 else if (is_data_mapping(next->vm_flags))
1408 vms->data_vm += nrpages;
1409
1410 if (vms->uf) {
1411 /*
1412 * If userfaultfd_unmap_prep returns an error the vmas
1413 * will remain split, but userland will get a
1414 * highly unexpected error anyway. This is no
1415 * different than the case where the first of the two
1416 * __split_vma fails, but we don't undo the first
1417 * split, despite we could. This is unlikely enough
1418 * failure that it's not worth optimizing it for.
1419 */
1420 error = userfaultfd_unmap_prep(next, vms->start,
1421 vms->end, vms->uf);
1422 if (error)
1423 goto userfaultfd_error;
1424 }
1425 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1426 BUG_ON(next->vm_start < vms->start);
1427 BUG_ON(next->vm_start > vms->end);
1428 #endif
1429 }
1430
1431 vms->next = vma_next(vms->vmi);
1432 if (vms->next)
1433 vms->unmap_end = vms->next->vm_start;
1434
1435 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1436 /* Make sure no VMAs are about to be lost. */
1437 {
1438 MA_STATE(test, mas_detach->tree, 0, 0);
1439 struct vm_area_struct *vma_mas, *vma_test;
1440 int test_count = 0;
1441
1442 vma_iter_set(vms->vmi, vms->start);
1443 rcu_read_lock();
1444 vma_test = mas_find(&test, vms->vma_count - 1);
1445 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1446 BUG_ON(vma_mas != vma_test);
1447 test_count++;
1448 vma_test = mas_next(&test, vms->vma_count - 1);
1449 }
1450 rcu_read_unlock();
1451 BUG_ON(vms->vma_count != test_count);
1452 }
1453 #endif
1454
1455 while (vma_iter_addr(vms->vmi) > vms->start)
1456 vma_iter_prev_range(vms->vmi);
1457
1458 vms->clear_ptes = true;
1459 return 0;
1460
1461 userfaultfd_error:
1462 munmap_gather_failed:
1463 end_split_failed:
1464 modify_vma_failed:
1465 reattach_vmas(mas_detach);
1466 start_split_failed:
1467 map_count_exceeded:
1468 return error;
1469 }
1470
1471 /*
1472 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1473 * @vms: The vma munmap struct
1474 * @vmi: The vma iterator
1475 * @vma: The first vm_area_struct to munmap
1476 * @start: The aligned start address to munmap
1477 * @end: The aligned end address to munmap
1478 * @uf: The userfaultfd list_head
1479 * @unlock: Unlock after the operation. Only unlocked on success
1480 */
init_vma_munmap(struct vma_munmap_struct * vms,struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1481 static void init_vma_munmap(struct vma_munmap_struct *vms,
1482 struct vma_iterator *vmi, struct vm_area_struct *vma,
1483 unsigned long start, unsigned long end, struct list_head *uf,
1484 bool unlock)
1485 {
1486 vms->vmi = vmi;
1487 vms->vma = vma;
1488 if (vma) {
1489 vms->start = start;
1490 vms->end = end;
1491 } else {
1492 vms->start = vms->end = 0;
1493 }
1494 vms->unlock = unlock;
1495 vms->uf = uf;
1496 vms->vma_count = 0;
1497 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1498 vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1499 vms->unmap_start = FIRST_USER_ADDRESS;
1500 vms->unmap_end = USER_PGTABLES_CEILING;
1501 vms->clear_ptes = false;
1502 }
1503
1504 /*
1505 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1506 * @vmi: The vma iterator
1507 * @vma: The starting vm_area_struct
1508 * @mm: The mm_struct
1509 * @start: The aligned start address to munmap.
1510 * @end: The aligned end address to munmap.
1511 * @uf: The userfaultfd list_head
1512 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1513 * success.
1514 *
1515 * Return: 0 on success and drops the lock if so directed, error and leaves the
1516 * lock held otherwise.
1517 */
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1518 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1519 struct mm_struct *mm, unsigned long start, unsigned long end,
1520 struct list_head *uf, bool unlock)
1521 {
1522 struct maple_tree mt_detach;
1523 MA_STATE(mas_detach, &mt_detach, 0, 0);
1524 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1525 mt_on_stack(mt_detach);
1526 struct vma_munmap_struct vms;
1527 int error;
1528
1529 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1530 error = vms_gather_munmap_vmas(&vms, &mas_detach);
1531 if (error)
1532 goto gather_failed;
1533
1534 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1535 if (error)
1536 goto clear_tree_failed;
1537
1538 /* Point of no return */
1539 vms_complete_munmap_vmas(&vms, &mas_detach);
1540 return 0;
1541
1542 clear_tree_failed:
1543 reattach_vmas(&mas_detach);
1544 gather_failed:
1545 validate_mm(mm);
1546 return error;
1547 }
1548
1549 /*
1550 * do_vmi_munmap() - munmap a given range.
1551 * @vmi: The vma iterator
1552 * @mm: The mm_struct
1553 * @start: The start address to munmap
1554 * @len: The length of the range to munmap
1555 * @uf: The userfaultfd list_head
1556 * @unlock: set to true if the user wants to drop the mmap_lock on success
1557 *
1558 * This function takes a @mas that is either pointing to the previous VMA or set
1559 * to MA_START and sets it up to remove the mapping(s). The @len will be
1560 * aligned.
1561 *
1562 * Return: 0 on success and drops the lock if so directed, error and leaves the
1563 * lock held otherwise.
1564 */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)1565 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1566 unsigned long start, size_t len, struct list_head *uf,
1567 bool unlock)
1568 {
1569 unsigned long end;
1570 struct vm_area_struct *vma;
1571
1572 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1573 return -EINVAL;
1574
1575 end = start + PAGE_ALIGN(len);
1576 if (end == start)
1577 return -EINVAL;
1578
1579 /* Find the first overlapping VMA */
1580 vma = vma_find(vmi, end);
1581 if (!vma) {
1582 if (unlock)
1583 mmap_write_unlock(mm);
1584 return 0;
1585 }
1586
1587 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1588 }
1589
1590 /*
1591 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1592 * context and anonymous VMA name within the range [start, end).
1593 *
1594 * As a result, we might be able to merge the newly modified VMA range with an
1595 * adjacent VMA with identical properties.
1596 *
1597 * If no merge is possible and the range does not span the entirety of the VMA,
1598 * we then need to split the VMA to accommodate the change.
1599 *
1600 * The function returns either the merged VMA, the original VMA if a split was
1601 * required instead, or an error if the split failed.
1602 */
vma_modify(struct vma_merge_struct * vmg)1603 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1604 {
1605 struct vm_area_struct *vma = vmg->middle;
1606 unsigned long start = vmg->start;
1607 unsigned long end = vmg->end;
1608 struct vm_area_struct *merged;
1609
1610 /* First, try to merge. */
1611 merged = vma_merge_existing_range(vmg);
1612 if (merged)
1613 return merged;
1614 if (vmg_nomem(vmg))
1615 return ERR_PTR(-ENOMEM);
1616
1617 /*
1618 * Split can fail for reasons other than OOM, so if the user requests
1619 * this it's probably a mistake.
1620 */
1621 VM_WARN_ON(vmg->give_up_on_oom &&
1622 (vma->vm_start != start || vma->vm_end != end));
1623
1624 /* Split any preceding portion of the VMA. */
1625 if (vma->vm_start < start) {
1626 int err = split_vma(vmg->vmi, vma, start, 1);
1627
1628 if (err)
1629 return ERR_PTR(err);
1630 }
1631
1632 /* Split any trailing portion of the VMA. */
1633 if (vma->vm_end > end) {
1634 int err = split_vma(vmg->vmi, vma, end, 0);
1635
1636 if (err)
1637 return ERR_PTR(err);
1638 }
1639
1640 return vma;
1641 }
1642
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t * vm_flags_ptr)1643 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi,
1644 struct vm_area_struct *prev, struct vm_area_struct *vma,
1645 unsigned long start, unsigned long end,
1646 vm_flags_t *vm_flags_ptr)
1647 {
1648 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1649 const vm_flags_t vm_flags = *vm_flags_ptr;
1650 struct vm_area_struct *ret;
1651
1652 vmg.vm_flags = vm_flags;
1653
1654 ret = vma_modify(&vmg);
1655 if (IS_ERR(ret))
1656 return ret;
1657
1658 /*
1659 * For a merge to succeed, the flags must match those
1660 * requested. However, sticky flags may have been retained, so propagate
1661 * them to the caller.
1662 */
1663 if (vmg.state == VMA_MERGE_SUCCESS)
1664 *vm_flags_ptr = ret->vm_flags;
1665 return ret;
1666 }
1667
vma_modify_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct anon_vma_name * new_name)1668 struct vm_area_struct *vma_modify_name(struct vma_iterator *vmi,
1669 struct vm_area_struct *prev, struct vm_area_struct *vma,
1670 unsigned long start, unsigned long end,
1671 struct anon_vma_name *new_name)
1672 {
1673 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1674
1675 vmg.anon_name = new_name;
1676
1677 return vma_modify(&vmg);
1678 }
1679
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)1680 struct vm_area_struct *vma_modify_policy(struct vma_iterator *vmi,
1681 struct vm_area_struct *prev, struct vm_area_struct *vma,
1682 unsigned long start, unsigned long end,
1683 struct mempolicy *new_pol)
1684 {
1685 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1686
1687 vmg.policy = new_pol;
1688
1689 return vma_modify(&vmg);
1690 }
1691
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,vm_flags_t vm_flags,struct vm_userfaultfd_ctx new_ctx,bool give_up_on_oom)1692 struct vm_area_struct *vma_modify_flags_uffd(struct vma_iterator *vmi,
1693 struct vm_area_struct *prev, struct vm_area_struct *vma,
1694 unsigned long start, unsigned long end, vm_flags_t vm_flags,
1695 struct vm_userfaultfd_ctx new_ctx, bool give_up_on_oom)
1696 {
1697 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1698
1699 vmg.vm_flags = vm_flags;
1700 vmg.uffd_ctx = new_ctx;
1701 if (give_up_on_oom)
1702 vmg.give_up_on_oom = true;
1703
1704 return vma_modify(&vmg);
1705 }
1706
1707 /*
1708 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1709 * VMA with identical properties.
1710 */
vma_merge_extend(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long delta)1711 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1712 struct vm_area_struct *vma,
1713 unsigned long delta)
1714 {
1715 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1716
1717 vmg.next = vma_iter_next_rewind(vmi, NULL);
1718 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */
1719
1720 return vma_merge_new_range(&vmg);
1721 }
1722
unlink_file_vma_batch_init(struct unlink_vma_file_batch * vb)1723 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1724 {
1725 vb->count = 0;
1726 }
1727
unlink_file_vma_batch_process(struct unlink_vma_file_batch * vb)1728 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1729 {
1730 struct address_space *mapping;
1731 int i;
1732
1733 mapping = vb->vmas[0]->vm_file->f_mapping;
1734 i_mmap_lock_write(mapping);
1735 for (i = 0; i < vb->count; i++) {
1736 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1737 __remove_shared_vm_struct(vb->vmas[i], mapping);
1738 }
1739 i_mmap_unlock_write(mapping);
1740
1741 unlink_file_vma_batch_init(vb);
1742 }
1743
unlink_file_vma_batch_add(struct unlink_vma_file_batch * vb,struct vm_area_struct * vma)1744 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1745 struct vm_area_struct *vma)
1746 {
1747 if (vma->vm_file == NULL)
1748 return;
1749
1750 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1751 vb->count == ARRAY_SIZE(vb->vmas))
1752 unlink_file_vma_batch_process(vb);
1753
1754 vb->vmas[vb->count] = vma;
1755 vb->count++;
1756 }
1757
unlink_file_vma_batch_final(struct unlink_vma_file_batch * vb)1758 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1759 {
1760 if (vb->count > 0)
1761 unlink_file_vma_batch_process(vb);
1762 }
1763
vma_link_file(struct vm_area_struct * vma,bool hold_rmap_lock)1764 static void vma_link_file(struct vm_area_struct *vma, bool hold_rmap_lock)
1765 {
1766 struct file *file = vma->vm_file;
1767 struct address_space *mapping;
1768
1769 if (file) {
1770 mapping = file->f_mapping;
1771 i_mmap_lock_write(mapping);
1772 __vma_link_file(vma, mapping);
1773 if (!hold_rmap_lock)
1774 i_mmap_unlock_write(mapping);
1775 }
1776 }
1777
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)1778 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1779 {
1780 VMA_ITERATOR(vmi, mm, 0);
1781
1782 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1783 if (vma_iter_prealloc(&vmi, vma))
1784 return -ENOMEM;
1785
1786 vma_start_write(vma);
1787 vma_iter_store_new(&vmi, vma);
1788 vma_link_file(vma, /* hold_rmap_lock= */false);
1789 mm->map_count++;
1790 validate_mm(mm);
1791 return 0;
1792 }
1793
1794 /*
1795 * Copy the vma structure to a new location in the same mm,
1796 * prior to moving page table entries, to effect an mremap move.
1797 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)1798 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1799 unsigned long addr, unsigned long len, pgoff_t pgoff,
1800 bool *need_rmap_locks)
1801 {
1802 struct vm_area_struct *vma = *vmap;
1803 unsigned long vma_start = vma->vm_start;
1804 struct mm_struct *mm = vma->vm_mm;
1805 struct vm_area_struct *new_vma;
1806 bool faulted_in_anon_vma = true;
1807 VMA_ITERATOR(vmi, mm, addr);
1808 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1809
1810 /*
1811 * If anonymous vma has not yet been faulted, update new pgoff
1812 * to match new location, to increase its chance of merging.
1813 */
1814 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1815 pgoff = addr >> PAGE_SHIFT;
1816 faulted_in_anon_vma = false;
1817 }
1818
1819 /*
1820 * If the VMA we are copying might contain a uprobe PTE, ensure
1821 * that we do not establish one upon merge. Otherwise, when mremap()
1822 * moves page tables, it will orphan the newly created PTE.
1823 */
1824 if (vma->vm_file)
1825 vmg.skip_vma_uprobe = true;
1826
1827 new_vma = find_vma_prev(mm, addr, &vmg.prev);
1828 if (new_vma && new_vma->vm_start < addr + len)
1829 return NULL; /* should never get here */
1830
1831 vmg.middle = NULL; /* New VMA range. */
1832 vmg.pgoff = pgoff;
1833 vmg.next = vma_iter_next_rewind(&vmi, NULL);
1834 new_vma = vma_merge_new_range(&vmg);
1835
1836 if (new_vma) {
1837 /*
1838 * Source vma may have been merged into new_vma
1839 */
1840 if (unlikely(vma_start >= new_vma->vm_start &&
1841 vma_start < new_vma->vm_end)) {
1842 /*
1843 * The only way we can get a vma_merge with
1844 * self during an mremap is if the vma hasn't
1845 * been faulted in yet and we were allowed to
1846 * reset the dst vma->vm_pgoff to the
1847 * destination address of the mremap to allow
1848 * the merge to happen. mremap must change the
1849 * vm_pgoff linearity between src and dst vmas
1850 * (in turn preventing a vma_merge) to be
1851 * safe. It is only safe to keep the vm_pgoff
1852 * linear if there are no pages mapped yet.
1853 */
1854 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1855 *vmap = vma = new_vma;
1856 }
1857 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1858 } else {
1859 new_vma = vm_area_dup(vma);
1860 if (!new_vma)
1861 goto out;
1862 vma_set_range(new_vma, addr, addr + len, pgoff);
1863 if (vma_dup_policy(vma, new_vma))
1864 goto out_free_vma;
1865 if (anon_vma_clone(new_vma, vma))
1866 goto out_free_mempol;
1867 if (new_vma->vm_file)
1868 get_file(new_vma->vm_file);
1869 if (new_vma->vm_ops && new_vma->vm_ops->open)
1870 new_vma->vm_ops->open(new_vma);
1871 if (vma_link(mm, new_vma))
1872 goto out_vma_link;
1873 *need_rmap_locks = false;
1874 }
1875 return new_vma;
1876
1877 out_vma_link:
1878 fixup_hugetlb_reservations(new_vma);
1879 vma_close(new_vma);
1880
1881 if (new_vma->vm_file)
1882 fput(new_vma->vm_file);
1883
1884 unlink_anon_vmas(new_vma);
1885 out_free_mempol:
1886 mpol_put(vma_policy(new_vma));
1887 out_free_vma:
1888 vm_area_free(new_vma);
1889 out:
1890 return NULL;
1891 }
1892
1893 /*
1894 * Rough compatibility check to quickly see if it's even worth looking
1895 * at sharing an anon_vma.
1896 *
1897 * They need to have the same vm_file, and the flags can only differ
1898 * in things that mprotect may change.
1899 *
1900 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1901 * we can merge the two vma's. For example, we refuse to merge a vma if
1902 * there is a vm_ops->close() function, because that indicates that the
1903 * driver is doing some kind of reference counting. But that doesn't
1904 * really matter for the anon_vma sharing case.
1905 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1906 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1907 {
1908 return a->vm_end == b->vm_start &&
1909 mpol_equal(vma_policy(a), vma_policy(b)) &&
1910 a->vm_file == b->vm_file &&
1911 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_IGNORE_MERGE)) &&
1912 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1913 }
1914
1915 /*
1916 * Do some basic sanity checking to see if we can re-use the anon_vma
1917 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1918 * the same as 'old', the other will be the new one that is trying
1919 * to share the anon_vma.
1920 *
1921 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1922 * the anon_vma of 'old' is concurrently in the process of being set up
1923 * by another page fault trying to merge _that_. But that's ok: if it
1924 * is being set up, that automatically means that it will be a singleton
1925 * acceptable for merging, so we can do all of this optimistically. But
1926 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1927 *
1928 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1929 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1930 * is to return an anon_vma that is "complex" due to having gone through
1931 * a fork).
1932 *
1933 * We also make sure that the two vma's are compatible (adjacent,
1934 * and with the same memory policies). That's all stable, even with just
1935 * a read lock on the mmap_lock.
1936 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1937 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1938 struct vm_area_struct *a,
1939 struct vm_area_struct *b)
1940 {
1941 if (anon_vma_compatible(a, b)) {
1942 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1943
1944 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1945 return anon_vma;
1946 }
1947 return NULL;
1948 }
1949
1950 /*
1951 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1952 * neighbouring vmas for a suitable anon_vma, before it goes off
1953 * to allocate a new anon_vma. It checks because a repetitive
1954 * sequence of mprotects and faults may otherwise lead to distinct
1955 * anon_vmas being allocated, preventing vma merge in subsequent
1956 * mprotect.
1957 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1958 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1959 {
1960 struct anon_vma *anon_vma = NULL;
1961 struct vm_area_struct *prev, *next;
1962 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1963
1964 /* Try next first. */
1965 next = vma_iter_load(&vmi);
1966 if (next) {
1967 anon_vma = reusable_anon_vma(next, vma, next);
1968 if (anon_vma)
1969 return anon_vma;
1970 }
1971
1972 prev = vma_prev(&vmi);
1973 VM_BUG_ON_VMA(prev != vma, vma);
1974 prev = vma_prev(&vmi);
1975 /* Try prev next. */
1976 if (prev)
1977 anon_vma = reusable_anon_vma(prev, prev, vma);
1978
1979 /*
1980 * We might reach here with anon_vma == NULL if we can't find
1981 * any reusable anon_vma.
1982 * There's no absolute need to look only at touching neighbours:
1983 * we could search further afield for "compatible" anon_vmas.
1984 * But it would probably just be a waste of time searching,
1985 * or lead to too many vmas hanging off the same anon_vma.
1986 * We're trying to allow mprotect remerging later on,
1987 * not trying to minimize memory used for anon_vmas.
1988 */
1989 return anon_vma;
1990 }
1991
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)1992 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1993 {
1994 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1995 }
1996
vma_is_shared_writable(struct vm_area_struct * vma)1997 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1998 {
1999 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
2000 (VM_WRITE | VM_SHARED);
2001 }
2002
vma_fs_can_writeback(struct vm_area_struct * vma)2003 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
2004 {
2005 /* No managed pages to writeback. */
2006 if (vma->vm_flags & VM_PFNMAP)
2007 return false;
2008
2009 return vma->vm_file && vma->vm_file->f_mapping &&
2010 mapping_can_writeback(vma->vm_file->f_mapping);
2011 }
2012
2013 /*
2014 * Does this VMA require the underlying folios to have their dirty state
2015 * tracked?
2016 */
vma_needs_dirty_tracking(struct vm_area_struct * vma)2017 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
2018 {
2019 /* Only shared, writable VMAs require dirty tracking. */
2020 if (!vma_is_shared_writable(vma))
2021 return false;
2022
2023 /* Does the filesystem need to be notified? */
2024 if (vm_ops_needs_writenotify(vma->vm_ops))
2025 return true;
2026
2027 /*
2028 * Even if the filesystem doesn't indicate a need for writenotify, if it
2029 * can writeback, dirty tracking is still required.
2030 */
2031 return vma_fs_can_writeback(vma);
2032 }
2033
2034 /*
2035 * Some shared mappings will want the pages marked read-only
2036 * to track write events. If so, we'll downgrade vm_page_prot
2037 * to the private version (using protection_map[] without the
2038 * VM_SHARED bit).
2039 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)2040 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
2041 {
2042 /* If it was private or non-writable, the write bit is already clear */
2043 if (!vma_is_shared_writable(vma))
2044 return false;
2045
2046 /* The backer wishes to know when pages are first written to? */
2047 if (vm_ops_needs_writenotify(vma->vm_ops))
2048 return true;
2049
2050 /* The open routine did something to the protections that pgprot_modify
2051 * won't preserve? */
2052 if (pgprot_val(vm_page_prot) !=
2053 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
2054 return false;
2055
2056 /*
2057 * Do we need to track softdirty? hugetlb does not support softdirty
2058 * tracking yet.
2059 */
2060 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
2061 return true;
2062
2063 /* Do we need write faults for uffd-wp tracking? */
2064 if (userfaultfd_wp(vma))
2065 return true;
2066
2067 /* Can the mapping track the dirty pages? */
2068 return vma_fs_can_writeback(vma);
2069 }
2070
2071 static DEFINE_MUTEX(mm_all_locks_mutex);
2072
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2073 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2074 {
2075 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2076 /*
2077 * The LSB of head.next can't change from under us
2078 * because we hold the mm_all_locks_mutex.
2079 */
2080 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2081 /*
2082 * We can safely modify head.next after taking the
2083 * anon_vma->root->rwsem. If some other vma in this mm shares
2084 * the same anon_vma we won't take it again.
2085 *
2086 * No need of atomic instructions here, head.next
2087 * can't change from under us thanks to the
2088 * anon_vma->root->rwsem.
2089 */
2090 if (__test_and_set_bit(0, (unsigned long *)
2091 &anon_vma->root->rb_root.rb_root.rb_node))
2092 BUG();
2093 }
2094 }
2095
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2096 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2097 {
2098 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2099 /*
2100 * AS_MM_ALL_LOCKS can't change from under us because
2101 * we hold the mm_all_locks_mutex.
2102 *
2103 * Operations on ->flags have to be atomic because
2104 * even if AS_MM_ALL_LOCKS is stable thanks to the
2105 * mm_all_locks_mutex, there may be other cpus
2106 * changing other bitflags in parallel to us.
2107 */
2108 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2109 BUG();
2110 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2111 }
2112 }
2113
2114 /*
2115 * This operation locks against the VM for all pte/vma/mm related
2116 * operations that could ever happen on a certain mm. This includes
2117 * vmtruncate, try_to_unmap, and all page faults.
2118 *
2119 * The caller must take the mmap_lock in write mode before calling
2120 * mm_take_all_locks(). The caller isn't allowed to release the
2121 * mmap_lock until mm_drop_all_locks() returns.
2122 *
2123 * mmap_lock in write mode is required in order to block all operations
2124 * that could modify pagetables and free pages without need of
2125 * altering the vma layout. It's also needed in write mode to avoid new
2126 * anon_vmas to be associated with existing vmas.
2127 *
2128 * A single task can't take more than one mm_take_all_locks() in a row
2129 * or it would deadlock.
2130 *
2131 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2132 * mapping->flags avoid to take the same lock twice, if more than one
2133 * vma in this mm is backed by the same anon_vma or address_space.
2134 *
2135 * We take locks in following order, accordingly to comment at beginning
2136 * of mm/rmap.c:
2137 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2138 * hugetlb mapping);
2139 * - all vmas marked locked
2140 * - all i_mmap_rwsem locks;
2141 * - all anon_vma->rwseml
2142 *
2143 * We can take all locks within these types randomly because the VM code
2144 * doesn't nest them and we protected from parallel mm_take_all_locks() by
2145 * mm_all_locks_mutex.
2146 *
2147 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2148 * that may have to take thousand of locks.
2149 *
2150 * mm_take_all_locks() can fail if it's interrupted by signals.
2151 */
mm_take_all_locks(struct mm_struct * mm)2152 int mm_take_all_locks(struct mm_struct *mm)
2153 {
2154 struct vm_area_struct *vma;
2155 struct anon_vma_chain *avc;
2156 VMA_ITERATOR(vmi, mm, 0);
2157
2158 mmap_assert_write_locked(mm);
2159
2160 mutex_lock(&mm_all_locks_mutex);
2161
2162 /*
2163 * vma_start_write() does not have a complement in mm_drop_all_locks()
2164 * because vma_start_write() is always asymmetrical; it marks a VMA as
2165 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2166 * is reached.
2167 */
2168 for_each_vma(vmi, vma) {
2169 if (signal_pending(current))
2170 goto out_unlock;
2171 vma_start_write(vma);
2172 }
2173
2174 vma_iter_init(&vmi, mm, 0);
2175 for_each_vma(vmi, vma) {
2176 if (signal_pending(current))
2177 goto out_unlock;
2178 if (vma->vm_file && vma->vm_file->f_mapping &&
2179 is_vm_hugetlb_page(vma))
2180 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2181 }
2182
2183 vma_iter_init(&vmi, mm, 0);
2184 for_each_vma(vmi, vma) {
2185 if (signal_pending(current))
2186 goto out_unlock;
2187 if (vma->vm_file && vma->vm_file->f_mapping &&
2188 !is_vm_hugetlb_page(vma))
2189 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2190 }
2191
2192 vma_iter_init(&vmi, mm, 0);
2193 for_each_vma(vmi, vma) {
2194 if (signal_pending(current))
2195 goto out_unlock;
2196 if (vma->anon_vma)
2197 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2198 vm_lock_anon_vma(mm, avc->anon_vma);
2199 }
2200
2201 return 0;
2202
2203 out_unlock:
2204 mm_drop_all_locks(mm);
2205 return -EINTR;
2206 }
2207
vm_unlock_anon_vma(struct anon_vma * anon_vma)2208 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2209 {
2210 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2211 /*
2212 * The LSB of head.next can't change to 0 from under
2213 * us because we hold the mm_all_locks_mutex.
2214 *
2215 * We must however clear the bitflag before unlocking
2216 * the vma so the users using the anon_vma->rb_root will
2217 * never see our bitflag.
2218 *
2219 * No need of atomic instructions here, head.next
2220 * can't change from under us until we release the
2221 * anon_vma->root->rwsem.
2222 */
2223 if (!__test_and_clear_bit(0, (unsigned long *)
2224 &anon_vma->root->rb_root.rb_root.rb_node))
2225 BUG();
2226 anon_vma_unlock_write(anon_vma);
2227 }
2228 }
2229
vm_unlock_mapping(struct address_space * mapping)2230 static void vm_unlock_mapping(struct address_space *mapping)
2231 {
2232 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2233 /*
2234 * AS_MM_ALL_LOCKS can't change to 0 from under us
2235 * because we hold the mm_all_locks_mutex.
2236 */
2237 i_mmap_unlock_write(mapping);
2238 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2239 &mapping->flags))
2240 BUG();
2241 }
2242 }
2243
2244 /*
2245 * The mmap_lock cannot be released by the caller until
2246 * mm_drop_all_locks() returns.
2247 */
mm_drop_all_locks(struct mm_struct * mm)2248 void mm_drop_all_locks(struct mm_struct *mm)
2249 {
2250 struct vm_area_struct *vma;
2251 struct anon_vma_chain *avc;
2252 VMA_ITERATOR(vmi, mm, 0);
2253
2254 mmap_assert_write_locked(mm);
2255 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2256
2257 for_each_vma(vmi, vma) {
2258 if (vma->anon_vma)
2259 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2260 vm_unlock_anon_vma(avc->anon_vma);
2261 if (vma->vm_file && vma->vm_file->f_mapping)
2262 vm_unlock_mapping(vma->vm_file->f_mapping);
2263 }
2264
2265 mutex_unlock(&mm_all_locks_mutex);
2266 }
2267
2268 /*
2269 * We account for memory if it's a private writeable mapping,
2270 * not hugepages and VM_NORESERVE wasn't set.
2271 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)2272 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2273 {
2274 /*
2275 * hugetlb has its own accounting separate from the core VM
2276 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2277 */
2278 if (file && is_file_hugepages(file))
2279 return false;
2280
2281 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2282 }
2283
2284 /*
2285 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2286 * operation.
2287 * @vms: The vma unmap structure
2288 * @mas_detach: The maple state with the detached maple tree
2289 *
2290 * Reattach any detached vmas, free up the maple tree used to track the vmas.
2291 * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2292 * have been called), then a NULL is written over the vmas and the vmas are
2293 * removed (munmap() completed).
2294 */
vms_abort_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)2295 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2296 struct ma_state *mas_detach)
2297 {
2298 struct ma_state *mas = &vms->vmi->mas;
2299
2300 if (!vms->nr_pages)
2301 return;
2302
2303 if (vms->clear_ptes)
2304 return reattach_vmas(mas_detach);
2305
2306 /*
2307 * Aborting cannot just call the vm_ops open() because they are often
2308 * not symmetrical and state data has been lost. Resort to the old
2309 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2310 */
2311 mas_set_range(mas, vms->start, vms->end - 1);
2312 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2313 /* Clean up the insertion of the unfortunate gap */
2314 vms_complete_munmap_vmas(vms, mas_detach);
2315 }
2316
update_ksm_flags(struct mmap_state * map)2317 static void update_ksm_flags(struct mmap_state *map)
2318 {
2319 map->vm_flags = ksm_vma_flags(map->mm, map->file, map->vm_flags);
2320 }
2321
set_desc_from_map(struct vm_area_desc * desc,const struct mmap_state * map)2322 static void set_desc_from_map(struct vm_area_desc *desc,
2323 const struct mmap_state *map)
2324 {
2325 desc->start = map->addr;
2326 desc->end = map->end;
2327
2328 desc->pgoff = map->pgoff;
2329 desc->vm_file = map->file;
2330 desc->vm_flags = map->vm_flags;
2331 desc->page_prot = map->page_prot;
2332 }
2333
2334 /*
2335 * __mmap_setup() - Prepare to gather any overlapping VMAs that need to be
2336 * unmapped once the map operation is completed, check limits, account mapping
2337 * and clean up any pre-existing VMAs.
2338 *
2339 * As a result it sets up the @map and @desc objects.
2340 *
2341 * @map: Mapping state.
2342 * @desc: VMA descriptor
2343 * @uf: Userfaultfd context list.
2344 *
2345 * Returns: 0 on success, error code otherwise.
2346 */
__mmap_setup(struct mmap_state * map,struct vm_area_desc * desc,struct list_head * uf)2347 static int __mmap_setup(struct mmap_state *map, struct vm_area_desc *desc,
2348 struct list_head *uf)
2349 {
2350 int error;
2351 struct vma_iterator *vmi = map->vmi;
2352 struct vma_munmap_struct *vms = &map->vms;
2353
2354 /* Find the first overlapping VMA and initialise unmap state. */
2355 vms->vma = vma_find(vmi, map->end);
2356 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2357 /* unlock = */ false);
2358
2359 /* OK, we have overlapping VMAs - prepare to unmap them. */
2360 if (vms->vma) {
2361 mt_init_flags(&map->mt_detach,
2362 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2363 mt_on_stack(map->mt_detach);
2364 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2365 /* Prepare to unmap any existing mapping in the area */
2366 error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2367 if (error) {
2368 /* On error VMAs will already have been reattached. */
2369 vms->nr_pages = 0;
2370 return error;
2371 }
2372
2373 map->next = vms->next;
2374 map->prev = vms->prev;
2375 } else {
2376 map->next = vma_iter_next_rewind(vmi, &map->prev);
2377 }
2378
2379 /* Check against address space limit. */
2380 if (!may_expand_vm(map->mm, map->vm_flags, map->pglen - vms->nr_pages))
2381 return -ENOMEM;
2382
2383 /* Private writable mapping: check memory availability. */
2384 if (accountable_mapping(map->file, map->vm_flags)) {
2385 map->charged = map->pglen;
2386 map->charged -= vms->nr_accounted;
2387 if (map->charged) {
2388 error = security_vm_enough_memory_mm(map->mm, map->charged);
2389 if (error)
2390 return error;
2391 }
2392
2393 vms->nr_accounted = 0;
2394 map->vm_flags |= VM_ACCOUNT;
2395 }
2396
2397 /*
2398 * Clear PTEs while the vma is still in the tree so that rmap
2399 * cannot race with the freeing later in the truncate scenario.
2400 * This is also needed for mmap_file(), which is why vm_ops
2401 * close function is called.
2402 */
2403 vms_clean_up_area(vms, &map->mas_detach);
2404
2405 set_desc_from_map(desc, map);
2406 return 0;
2407 }
2408
2409
__mmap_new_file_vma(struct mmap_state * map,struct vm_area_struct * vma)2410 static int __mmap_new_file_vma(struct mmap_state *map,
2411 struct vm_area_struct *vma)
2412 {
2413 struct vma_iterator *vmi = map->vmi;
2414 int error;
2415
2416 vma->vm_file = get_file(map->file);
2417
2418 if (!map->file->f_op->mmap)
2419 return 0;
2420
2421 error = mmap_file(vma->vm_file, vma);
2422 if (error) {
2423 fput(vma->vm_file);
2424 vma->vm_file = NULL;
2425
2426 vma_iter_set(vmi, vma->vm_end);
2427 /* Undo any partial mapping done by a device driver. */
2428 unmap_region(&vmi->mas, vma, map->prev, map->next);
2429
2430 return error;
2431 }
2432
2433 /* Drivers cannot alter the address of the VMA. */
2434 WARN_ON_ONCE(map->addr != vma->vm_start);
2435 /*
2436 * Drivers should not permit writability when previously it was
2437 * disallowed.
2438 */
2439 VM_WARN_ON_ONCE(map->vm_flags != vma->vm_flags &&
2440 !(map->vm_flags & VM_MAYWRITE) &&
2441 (vma->vm_flags & VM_MAYWRITE));
2442
2443 map->file = vma->vm_file;
2444 map->vm_flags = vma->vm_flags;
2445
2446 return 0;
2447 }
2448
2449 /*
2450 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2451 * possible.
2452 *
2453 * @map: Mapping state.
2454 * @vmap: Output pointer for the new VMA.
2455 *
2456 * Returns: Zero on success, or an error.
2457 */
__mmap_new_vma(struct mmap_state * map,struct vm_area_struct ** vmap)2458 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2459 {
2460 struct vma_iterator *vmi = map->vmi;
2461 int error = 0;
2462 struct vm_area_struct *vma;
2463
2464 /*
2465 * Determine the object being mapped and call the appropriate
2466 * specific mapper. the address has already been validated, but
2467 * not unmapped, but the maps are removed from the list.
2468 */
2469 vma = vm_area_alloc(map->mm);
2470 if (!vma)
2471 return -ENOMEM;
2472
2473 vma_iter_config(vmi, map->addr, map->end);
2474 vma_set_range(vma, map->addr, map->end, map->pgoff);
2475 vm_flags_init(vma, map->vm_flags);
2476 vma->vm_page_prot = map->page_prot;
2477
2478 if (vma_iter_prealloc(vmi, vma)) {
2479 error = -ENOMEM;
2480 goto free_vma;
2481 }
2482
2483 if (map->file)
2484 error = __mmap_new_file_vma(map, vma);
2485 else if (map->vm_flags & VM_SHARED)
2486 error = shmem_zero_setup(vma);
2487 else
2488 vma_set_anonymous(vma);
2489
2490 if (error)
2491 goto free_iter_vma;
2492
2493 if (!map->check_ksm_early) {
2494 update_ksm_flags(map);
2495 vm_flags_init(vma, map->vm_flags);
2496 }
2497
2498 #ifdef CONFIG_SPARC64
2499 /* TODO: Fix SPARC ADI! */
2500 WARN_ON_ONCE(!arch_validate_flags(map->vm_flags));
2501 #endif
2502
2503 /* Lock the VMA since it is modified after insertion into VMA tree */
2504 vma_start_write(vma);
2505 vma_iter_store_new(vmi, vma);
2506 map->mm->map_count++;
2507 vma_link_file(vma, map->hold_file_rmap_lock);
2508
2509 /*
2510 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2511 * call covers the non-merge case.
2512 */
2513 if (!vma_is_anonymous(vma))
2514 khugepaged_enter_vma(vma, map->vm_flags);
2515 *vmap = vma;
2516 return 0;
2517
2518 free_iter_vma:
2519 vma_iter_free(vmi);
2520 free_vma:
2521 vm_area_free(vma);
2522 return error;
2523 }
2524
2525 /*
2526 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2527 * statistics, handle locking and finalise the VMA.
2528 *
2529 * @map: Mapping state.
2530 * @vma: Merged or newly allocated VMA for the mmap()'d region.
2531 */
__mmap_complete(struct mmap_state * map,struct vm_area_struct * vma)2532 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2533 {
2534 struct mm_struct *mm = map->mm;
2535 vm_flags_t vm_flags = vma->vm_flags;
2536
2537 perf_event_mmap(vma);
2538
2539 /* Unmap any existing mapping in the area. */
2540 vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2541
2542 vm_stat_account(mm, vma->vm_flags, map->pglen);
2543 if (vm_flags & VM_LOCKED) {
2544 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2545 is_vm_hugetlb_page(vma) ||
2546 vma == get_gate_vma(mm))
2547 vm_flags_clear(vma, VM_LOCKED_MASK);
2548 else
2549 mm->locked_vm += map->pglen;
2550 }
2551
2552 if (vma->vm_file)
2553 uprobe_mmap(vma);
2554
2555 /*
2556 * New (or expanded) vma always get soft dirty status.
2557 * Otherwise user-space soft-dirty page tracker won't
2558 * be able to distinguish situation when vma area unmapped,
2559 * then new mapped in-place (which must be aimed as
2560 * a completely new data area).
2561 */
2562 if (pgtable_supports_soft_dirty())
2563 vm_flags_set(vma, VM_SOFTDIRTY);
2564
2565 vma_set_page_prot(vma);
2566 }
2567
call_action_prepare(struct mmap_state * map,struct vm_area_desc * desc)2568 static void call_action_prepare(struct mmap_state *map,
2569 struct vm_area_desc *desc)
2570 {
2571 struct mmap_action *action = &desc->action;
2572
2573 mmap_action_prepare(action, desc);
2574
2575 if (action->hide_from_rmap_until_complete)
2576 map->hold_file_rmap_lock = true;
2577 }
2578
2579 /*
2580 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that
2581 * specifies it.
2582 *
2583 * This is called prior to any merge attempt, and updates whitelisted fields
2584 * that are permitted to be updated by the caller.
2585 *
2586 * All but user-defined fields will be pre-populated with original values.
2587 *
2588 * Returns 0 on success, or an error code otherwise.
2589 */
call_mmap_prepare(struct mmap_state * map,struct vm_area_desc * desc)2590 static int call_mmap_prepare(struct mmap_state *map,
2591 struct vm_area_desc *desc)
2592 {
2593 int err;
2594
2595 /* Invoke the hook. */
2596 err = vfs_mmap_prepare(map->file, desc);
2597 if (err)
2598 return err;
2599
2600 call_action_prepare(map, desc);
2601
2602 /* Update fields permitted to be changed. */
2603 map->pgoff = desc->pgoff;
2604 map->file = desc->vm_file;
2605 map->vm_flags = desc->vm_flags;
2606 map->page_prot = desc->page_prot;
2607 /* User-defined fields. */
2608 map->vm_ops = desc->vm_ops;
2609 map->vm_private_data = desc->private_data;
2610
2611 return 0;
2612 }
2613
set_vma_user_defined_fields(struct vm_area_struct * vma,struct mmap_state * map)2614 static void set_vma_user_defined_fields(struct vm_area_struct *vma,
2615 struct mmap_state *map)
2616 {
2617 if (map->vm_ops)
2618 vma->vm_ops = map->vm_ops;
2619 vma->vm_private_data = map->vm_private_data;
2620 }
2621
2622 /*
2623 * Are we guaranteed no driver can change state such as to preclude KSM merging?
2624 * If so, let's set the KSM mergeable flag early so we don't break VMA merging.
2625 */
can_set_ksm_flags_early(struct mmap_state * map)2626 static bool can_set_ksm_flags_early(struct mmap_state *map)
2627 {
2628 struct file *file = map->file;
2629
2630 /* Anonymous mappings have no driver which can change them. */
2631 if (!file)
2632 return true;
2633
2634 /*
2635 * If .mmap_prepare() is specified, then the driver will have already
2636 * manipulated state prior to updating KSM flags. So no need to worry
2637 * about mmap callbacks modifying VMA flags after the KSM flag has been
2638 * updated here, which could otherwise affect KSM eligibility.
2639 */
2640 if (file->f_op->mmap_prepare)
2641 return true;
2642
2643 /* shmem is safe. */
2644 if (shmem_file(file))
2645 return true;
2646
2647 /* Any other .mmap callback is not safe. */
2648 return false;
2649 }
2650
call_action_complete(struct mmap_state * map,struct vm_area_desc * desc,struct vm_area_struct * vma)2651 static int call_action_complete(struct mmap_state *map,
2652 struct vm_area_desc *desc,
2653 struct vm_area_struct *vma)
2654 {
2655 struct mmap_action *action = &desc->action;
2656 int ret;
2657
2658 ret = mmap_action_complete(action, vma);
2659
2660 /* If we held the file rmap we need to release it. */
2661 if (map->hold_file_rmap_lock) {
2662 struct file *file = vma->vm_file;
2663
2664 i_mmap_unlock_write(file->f_mapping);
2665 }
2666 return ret;
2667 }
2668
__mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2669 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2670 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2671 struct list_head *uf)
2672 {
2673 struct mm_struct *mm = current->mm;
2674 struct vm_area_struct *vma = NULL;
2675 bool have_mmap_prepare = file && file->f_op->mmap_prepare;
2676 VMA_ITERATOR(vmi, mm, addr);
2677 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2678 struct vm_area_desc desc = {
2679 .mm = mm,
2680 .file = file,
2681 .action = {
2682 .type = MMAP_NOTHING, /* Default to no further action. */
2683 },
2684 };
2685 bool allocated_new = false;
2686 int error;
2687
2688 map.check_ksm_early = can_set_ksm_flags_early(&map);
2689
2690 error = __mmap_setup(&map, &desc, uf);
2691 if (!error && have_mmap_prepare)
2692 error = call_mmap_prepare(&map, &desc);
2693 if (error)
2694 goto abort_munmap;
2695
2696 if (map.check_ksm_early)
2697 update_ksm_flags(&map);
2698
2699 /* Attempt to merge with adjacent VMAs... */
2700 if (map.prev || map.next) {
2701 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2702
2703 vma = vma_merge_new_range(&vmg);
2704 }
2705
2706 /* ...but if we can't, allocate a new VMA. */
2707 if (!vma) {
2708 error = __mmap_new_vma(&map, &vma);
2709 if (error)
2710 goto unacct_error;
2711 allocated_new = true;
2712 }
2713
2714 if (have_mmap_prepare)
2715 set_vma_user_defined_fields(vma, &map);
2716
2717 __mmap_complete(&map, vma);
2718
2719 if (have_mmap_prepare && allocated_new) {
2720 error = call_action_complete(&map, &desc, vma);
2721
2722 if (error)
2723 return error;
2724 }
2725
2726 return addr;
2727
2728 /* Accounting was done by __mmap_setup(). */
2729 unacct_error:
2730 if (map.charged)
2731 vm_unacct_memory(map.charged);
2732 abort_munmap:
2733 vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2734 return error;
2735 }
2736
2737 /**
2738 * mmap_region() - Actually perform the userland mapping of a VMA into
2739 * current->mm with known, aligned and overflow-checked @addr and @len, and
2740 * correctly determined VMA flags @vm_flags and page offset @pgoff.
2741 *
2742 * This is an internal memory management function, and should not be used
2743 * directly.
2744 *
2745 * The caller must write-lock current->mm->mmap_lock.
2746 *
2747 * @file: If a file-backed mapping, a pointer to the struct file describing the
2748 * file to be mapped, otherwise NULL.
2749 * @addr: The page-aligned address at which to perform the mapping.
2750 * @len: The page-aligned, non-zero, length of the mapping.
2751 * @vm_flags: The VMA flags which should be applied to the mapping.
2752 * @pgoff: If @file is specified, the page offset into the file, if not then
2753 * the virtual page offset in memory of the anonymous mapping.
2754 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2755 * events.
2756 *
2757 * Returns: Either an error, or the address at which the requested mapping has
2758 * been performed.
2759 */
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2760 unsigned long mmap_region(struct file *file, unsigned long addr,
2761 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2762 struct list_head *uf)
2763 {
2764 unsigned long ret;
2765 bool writable_file_mapping = false;
2766
2767 mmap_assert_write_locked(current->mm);
2768
2769 /* Check to see if MDWE is applicable. */
2770 if (map_deny_write_exec(vm_flags, vm_flags))
2771 return -EACCES;
2772
2773 /* Allow architectures to sanity-check the vm_flags. */
2774 if (!arch_validate_flags(vm_flags))
2775 return -EINVAL;
2776
2777 /* Map writable and ensure this isn't a sealed memfd. */
2778 if (file && is_shared_maywrite(vm_flags)) {
2779 int error = mapping_map_writable(file->f_mapping);
2780
2781 if (error)
2782 return error;
2783 writable_file_mapping = true;
2784 }
2785
2786 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2787
2788 /* Clear our write mapping regardless of error. */
2789 if (writable_file_mapping)
2790 mapping_unmap_writable(file->f_mapping);
2791
2792 validate_mm(current->mm);
2793 return ret;
2794 }
2795
2796 /*
2797 * do_brk_flags() - Increase the brk vma if the flags match.
2798 * @vmi: The vma iterator
2799 * @addr: The start address
2800 * @len: The length of the increase
2801 * @vma: The vma,
2802 * @vm_flags: The VMA Flags
2803 *
2804 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2805 * do not match then create a new anonymous VMA. Eventually we may be able to
2806 * do some brk-specific accounting here.
2807 */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,vm_flags_t vm_flags)2808 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2809 unsigned long addr, unsigned long len, vm_flags_t vm_flags)
2810 {
2811 struct mm_struct *mm = current->mm;
2812
2813 /*
2814 * Check against address space limits by the changed size
2815 * Note: This happens *after* clearing old mappings in some code paths.
2816 */
2817 vm_flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2818 vm_flags = ksm_vma_flags(mm, NULL, vm_flags);
2819 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT))
2820 return -ENOMEM;
2821
2822 if (mm->map_count > sysctl_max_map_count)
2823 return -ENOMEM;
2824
2825 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2826 return -ENOMEM;
2827
2828 /*
2829 * Expand the existing vma if possible; Note that singular lists do not
2830 * occur after forking, so the expand will only happen on new VMAs.
2831 */
2832 if (vma && vma->vm_end == addr) {
2833 VMG_STATE(vmg, mm, vmi, addr, addr + len, vm_flags, PHYS_PFN(addr));
2834
2835 vmg.prev = vma;
2836 /* vmi is positioned at prev, which this mode expects. */
2837 vmg.just_expand = true;
2838
2839 if (vma_merge_new_range(&vmg))
2840 goto out;
2841 else if (vmg_nomem(&vmg))
2842 goto unacct_fail;
2843 }
2844
2845 if (vma)
2846 vma_iter_next_range(vmi);
2847 /* create a vma struct for an anonymous mapping */
2848 vma = vm_area_alloc(mm);
2849 if (!vma)
2850 goto unacct_fail;
2851
2852 vma_set_anonymous(vma);
2853 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2854 vm_flags_init(vma, vm_flags);
2855 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2856 vma_start_write(vma);
2857 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2858 goto mas_store_fail;
2859
2860 mm->map_count++;
2861 validate_mm(mm);
2862 out:
2863 perf_event_mmap(vma);
2864 mm->total_vm += len >> PAGE_SHIFT;
2865 mm->data_vm += len >> PAGE_SHIFT;
2866 if (vm_flags & VM_LOCKED)
2867 mm->locked_vm += (len >> PAGE_SHIFT);
2868 if (pgtable_supports_soft_dirty())
2869 vm_flags_set(vma, VM_SOFTDIRTY);
2870 return 0;
2871
2872 mas_store_fail:
2873 vm_area_free(vma);
2874 unacct_fail:
2875 vm_unacct_memory(len >> PAGE_SHIFT);
2876 return -ENOMEM;
2877 }
2878
2879 /**
2880 * unmapped_area() - Find an area between the low_limit and the high_limit with
2881 * the correct alignment and offset, all from @info. Note: current->mm is used
2882 * for the search.
2883 *
2884 * @info: The unmapped area information including the range [low_limit -
2885 * high_limit), the alignment offset and mask.
2886 *
2887 * Return: A memory address or -ENOMEM.
2888 */
unmapped_area(struct vm_unmapped_area_info * info)2889 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2890 {
2891 unsigned long length, gap;
2892 unsigned long low_limit, high_limit;
2893 struct vm_area_struct *tmp;
2894 VMA_ITERATOR(vmi, current->mm, 0);
2895
2896 /* Adjust search length to account for worst case alignment overhead */
2897 length = info->length + info->align_mask + info->start_gap;
2898 if (length < info->length)
2899 return -ENOMEM;
2900
2901 low_limit = info->low_limit;
2902 if (low_limit < mmap_min_addr)
2903 low_limit = mmap_min_addr;
2904 high_limit = info->high_limit;
2905 retry:
2906 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2907 return -ENOMEM;
2908
2909 /*
2910 * Adjust for the gap first so it doesn't interfere with the
2911 * later alignment. The first step is the minimum needed to
2912 * fulill the start gap, the next steps is the minimum to align
2913 * that. It is the minimum needed to fulill both.
2914 */
2915 gap = vma_iter_addr(&vmi) + info->start_gap;
2916 gap += (info->align_offset - gap) & info->align_mask;
2917 tmp = vma_next(&vmi);
2918 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2919 if (vm_start_gap(tmp) < gap + length - 1) {
2920 low_limit = tmp->vm_end;
2921 vma_iter_reset(&vmi);
2922 goto retry;
2923 }
2924 } else {
2925 tmp = vma_prev(&vmi);
2926 if (tmp && vm_end_gap(tmp) > gap) {
2927 low_limit = vm_end_gap(tmp);
2928 vma_iter_reset(&vmi);
2929 goto retry;
2930 }
2931 }
2932
2933 return gap;
2934 }
2935
2936 /**
2937 * unmapped_area_topdown() - Find an area between the low_limit and the
2938 * high_limit with the correct alignment and offset at the highest available
2939 * address, all from @info. Note: current->mm is used for the search.
2940 *
2941 * @info: The unmapped area information including the range [low_limit -
2942 * high_limit), the alignment offset and mask.
2943 *
2944 * Return: A memory address or -ENOMEM.
2945 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)2946 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2947 {
2948 unsigned long length, gap, gap_end;
2949 unsigned long low_limit, high_limit;
2950 struct vm_area_struct *tmp;
2951 VMA_ITERATOR(vmi, current->mm, 0);
2952
2953 /* Adjust search length to account for worst case alignment overhead */
2954 length = info->length + info->align_mask + info->start_gap;
2955 if (length < info->length)
2956 return -ENOMEM;
2957
2958 low_limit = info->low_limit;
2959 if (low_limit < mmap_min_addr)
2960 low_limit = mmap_min_addr;
2961 high_limit = info->high_limit;
2962 retry:
2963 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
2964 return -ENOMEM;
2965
2966 gap = vma_iter_end(&vmi) - info->length;
2967 gap -= (gap - info->align_offset) & info->align_mask;
2968 gap_end = vma_iter_end(&vmi);
2969 tmp = vma_next(&vmi);
2970 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2971 if (vm_start_gap(tmp) < gap_end) {
2972 high_limit = vm_start_gap(tmp);
2973 vma_iter_reset(&vmi);
2974 goto retry;
2975 }
2976 } else {
2977 tmp = vma_prev(&vmi);
2978 if (tmp && vm_end_gap(tmp) > gap) {
2979 high_limit = tmp->vm_start;
2980 vma_iter_reset(&vmi);
2981 goto retry;
2982 }
2983 }
2984
2985 return gap;
2986 }
2987
2988 /*
2989 * Verify that the stack growth is acceptable and
2990 * update accounting. This is shared with both the
2991 * grow-up and grow-down cases.
2992 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2993 static int acct_stack_growth(struct vm_area_struct *vma,
2994 unsigned long size, unsigned long grow)
2995 {
2996 struct mm_struct *mm = vma->vm_mm;
2997 unsigned long new_start;
2998
2999 /* address space limit tests */
3000 if (!may_expand_vm(mm, vma->vm_flags, grow))
3001 return -ENOMEM;
3002
3003 /* Stack limit test */
3004 if (size > rlimit(RLIMIT_STACK))
3005 return -ENOMEM;
3006
3007 /* mlock limit tests */
3008 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
3009 return -ENOMEM;
3010
3011 /* Check to ensure the stack will not grow into a hugetlb-only region */
3012 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
3013 vma->vm_end - size;
3014 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
3015 return -EFAULT;
3016
3017 /*
3018 * Overcommit.. This must be the final test, as it will
3019 * update security statistics.
3020 */
3021 if (security_vm_enough_memory_mm(mm, grow))
3022 return -ENOMEM;
3023
3024 return 0;
3025 }
3026
3027 #if defined(CONFIG_STACK_GROWSUP)
3028 /*
3029 * PA-RISC uses this for its stack.
3030 * vma is the last one with address > vma->vm_end. Have to extend vma.
3031 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)3032 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
3033 {
3034 struct mm_struct *mm = vma->vm_mm;
3035 struct vm_area_struct *next;
3036 unsigned long gap_addr;
3037 int error = 0;
3038 VMA_ITERATOR(vmi, mm, vma->vm_start);
3039
3040 if (!(vma->vm_flags & VM_GROWSUP))
3041 return -EFAULT;
3042
3043 mmap_assert_write_locked(mm);
3044
3045 /* Guard against exceeding limits of the address space. */
3046 address &= PAGE_MASK;
3047 if (address >= (TASK_SIZE & PAGE_MASK))
3048 return -ENOMEM;
3049 address += PAGE_SIZE;
3050
3051 /* Enforce stack_guard_gap */
3052 gap_addr = address + stack_guard_gap;
3053
3054 /* Guard against overflow */
3055 if (gap_addr < address || gap_addr > TASK_SIZE)
3056 gap_addr = TASK_SIZE;
3057
3058 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
3059 if (next && vma_is_accessible(next)) {
3060 if (!(next->vm_flags & VM_GROWSUP))
3061 return -ENOMEM;
3062 /* Check that both stack segments have the same anon_vma? */
3063 }
3064
3065 if (next)
3066 vma_iter_prev_range_limit(&vmi, address);
3067
3068 vma_iter_config(&vmi, vma->vm_start, address);
3069 if (vma_iter_prealloc(&vmi, vma))
3070 return -ENOMEM;
3071
3072 /* We must make sure the anon_vma is allocated. */
3073 if (unlikely(anon_vma_prepare(vma))) {
3074 vma_iter_free(&vmi);
3075 return -ENOMEM;
3076 }
3077
3078 /* Lock the VMA before expanding to prevent concurrent page faults */
3079 vma_start_write(vma);
3080 /* We update the anon VMA tree. */
3081 anon_vma_lock_write(vma->anon_vma);
3082
3083 /* Somebody else might have raced and expanded it already */
3084 if (address > vma->vm_end) {
3085 unsigned long size, grow;
3086
3087 size = address - vma->vm_start;
3088 grow = (address - vma->vm_end) >> PAGE_SHIFT;
3089
3090 error = -ENOMEM;
3091 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
3092 error = acct_stack_growth(vma, size, grow);
3093 if (!error) {
3094 if (vma->vm_flags & VM_LOCKED)
3095 mm->locked_vm += grow;
3096 vm_stat_account(mm, vma->vm_flags, grow);
3097 anon_vma_interval_tree_pre_update_vma(vma);
3098 vma->vm_end = address;
3099 /* Overwrite old entry in mtree. */
3100 vma_iter_store_overwrite(&vmi, vma);
3101 anon_vma_interval_tree_post_update_vma(vma);
3102
3103 perf_event_mmap(vma);
3104 }
3105 }
3106 }
3107 anon_vma_unlock_write(vma->anon_vma);
3108 vma_iter_free(&vmi);
3109 validate_mm(mm);
3110 return error;
3111 }
3112 #endif /* CONFIG_STACK_GROWSUP */
3113
3114 /*
3115 * vma is the first one with address < vma->vm_start. Have to extend vma.
3116 * mmap_lock held for writing.
3117 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)3118 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
3119 {
3120 struct mm_struct *mm = vma->vm_mm;
3121 struct vm_area_struct *prev;
3122 int error = 0;
3123 VMA_ITERATOR(vmi, mm, vma->vm_start);
3124
3125 if (!(vma->vm_flags & VM_GROWSDOWN))
3126 return -EFAULT;
3127
3128 mmap_assert_write_locked(mm);
3129
3130 address &= PAGE_MASK;
3131 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
3132 return -EPERM;
3133
3134 /* Enforce stack_guard_gap */
3135 prev = vma_prev(&vmi);
3136 /* Check that both stack segments have the same anon_vma? */
3137 if (prev) {
3138 if (!(prev->vm_flags & VM_GROWSDOWN) &&
3139 vma_is_accessible(prev) &&
3140 (address - prev->vm_end < stack_guard_gap))
3141 return -ENOMEM;
3142 }
3143
3144 if (prev)
3145 vma_iter_next_range_limit(&vmi, vma->vm_start);
3146
3147 vma_iter_config(&vmi, address, vma->vm_end);
3148 if (vma_iter_prealloc(&vmi, vma))
3149 return -ENOMEM;
3150
3151 /* We must make sure the anon_vma is allocated. */
3152 if (unlikely(anon_vma_prepare(vma))) {
3153 vma_iter_free(&vmi);
3154 return -ENOMEM;
3155 }
3156
3157 /* Lock the VMA before expanding to prevent concurrent page faults */
3158 vma_start_write(vma);
3159 /* We update the anon VMA tree. */
3160 anon_vma_lock_write(vma->anon_vma);
3161
3162 /* Somebody else might have raced and expanded it already */
3163 if (address < vma->vm_start) {
3164 unsigned long size, grow;
3165
3166 size = vma->vm_end - address;
3167 grow = (vma->vm_start - address) >> PAGE_SHIFT;
3168
3169 error = -ENOMEM;
3170 if (grow <= vma->vm_pgoff) {
3171 error = acct_stack_growth(vma, size, grow);
3172 if (!error) {
3173 if (vma->vm_flags & VM_LOCKED)
3174 mm->locked_vm += grow;
3175 vm_stat_account(mm, vma->vm_flags, grow);
3176 anon_vma_interval_tree_pre_update_vma(vma);
3177 vma->vm_start = address;
3178 vma->vm_pgoff -= grow;
3179 /* Overwrite old entry in mtree. */
3180 vma_iter_store_overwrite(&vmi, vma);
3181 anon_vma_interval_tree_post_update_vma(vma);
3182
3183 perf_event_mmap(vma);
3184 }
3185 }
3186 }
3187 anon_vma_unlock_write(vma->anon_vma);
3188 vma_iter_free(&vmi);
3189 validate_mm(mm);
3190 return error;
3191 }
3192
__vm_munmap(unsigned long start,size_t len,bool unlock)3193 int __vm_munmap(unsigned long start, size_t len, bool unlock)
3194 {
3195 int ret;
3196 struct mm_struct *mm = current->mm;
3197 LIST_HEAD(uf);
3198 VMA_ITERATOR(vmi, mm, start);
3199
3200 if (mmap_write_lock_killable(mm))
3201 return -EINTR;
3202
3203 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3204 if (ret || !unlock)
3205 mmap_write_unlock(mm);
3206
3207 userfaultfd_unmap_complete(mm, &uf);
3208 return ret;
3209 }
3210
3211 /* Insert vm structure into process list sorted by address
3212 * and into the inode's i_mmap tree. If vm_file is non-NULL
3213 * then i_mmap_rwsem is taken here.
3214 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3215 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3216 {
3217 unsigned long charged = vma_pages(vma);
3218
3219
3220 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3221 return -ENOMEM;
3222
3223 if ((vma->vm_flags & VM_ACCOUNT) &&
3224 security_vm_enough_memory_mm(mm, charged))
3225 return -ENOMEM;
3226
3227 /*
3228 * The vm_pgoff of a purely anonymous vma should be irrelevant
3229 * until its first write fault, when page's anon_vma and index
3230 * are set. But now set the vm_pgoff it will almost certainly
3231 * end up with (unless mremap moves it elsewhere before that
3232 * first wfault), so /proc/pid/maps tells a consistent story.
3233 *
3234 * By setting it to reflect the virtual start address of the
3235 * vma, merges and splits can happen in a seamless way, just
3236 * using the existing file pgoff checks and manipulations.
3237 * Similarly in do_mmap and in do_brk_flags.
3238 */
3239 if (vma_is_anonymous(vma)) {
3240 BUG_ON(vma->anon_vma);
3241 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3242 }
3243
3244 if (vma_link(mm, vma)) {
3245 if (vma->vm_flags & VM_ACCOUNT)
3246 vm_unacct_memory(charged);
3247 return -ENOMEM;
3248 }
3249
3250 return 0;
3251 }
3252