1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 pgprot_t page_prot; 21 22 /* User-defined fields, perhaps updated by .mmap_prepare(). */ 23 const struct vm_operations_struct *vm_ops; 24 void *vm_private_data; 25 26 unsigned long charged; 27 28 struct vm_area_struct *prev; 29 struct vm_area_struct *next; 30 31 /* Unmapping state. */ 32 struct vma_munmap_struct vms; 33 struct ma_state mas_detach; 34 struct maple_tree mt_detach; 35 }; 36 37 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 38 struct mmap_state name = { \ 39 .mm = mm_, \ 40 .vmi = vmi_, \ 41 .addr = addr_, \ 42 .end = (addr_) + (len_), \ 43 .pgoff = pgoff_, \ 44 .pglen = PHYS_PFN(len_), \ 45 .flags = flags_, \ 46 .file = file_, \ 47 .page_prot = vm_get_page_prot(flags_), \ 48 } 49 50 #define VMG_MMAP_STATE(name, map_, vma_) \ 51 struct vma_merge_struct name = { \ 52 .mm = (map_)->mm, \ 53 .vmi = (map_)->vmi, \ 54 .start = (map_)->addr, \ 55 .end = (map_)->end, \ 56 .flags = (map_)->flags, \ 57 .pgoff = (map_)->pgoff, \ 58 .file = (map_)->file, \ 59 .prev = (map_)->prev, \ 60 .middle = vma_, \ 61 .next = (vma_) ? NULL : (map_)->next, \ 62 .state = VMA_MERGE_START, \ 63 } 64 65 /* 66 * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain 67 * more than one anon_vma_chain connecting it to more than one anon_vma. A merge 68 * would mean a wider range of folios sharing the root anon_vma lock, and thus 69 * potential lock contention, we do not wish to encourage merging such that this 70 * scales to a problem. 71 */ 72 static bool vma_had_uncowed_parents(struct vm_area_struct *vma) 73 { 74 /* 75 * The list_is_singular() test is to avoid merging VMA cloned from 76 * parents. This can improve scalability caused by anon_vma lock. 77 */ 78 return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain); 79 } 80 81 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 82 { 83 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 84 85 if (!mpol_equal(vmg->policy, vma_policy(vma))) 86 return false; 87 /* 88 * VM_SOFTDIRTY should not prevent from VMA merging, if we 89 * match the flags but dirty bit -- the caller should mark 90 * merged VMA as dirty. If dirty bit won't be excluded from 91 * comparison, we increase pressure on the memory system forcing 92 * the kernel to generate new VMAs when old one could be 93 * extended instead. 94 */ 95 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 96 return false; 97 if (vma->vm_file != vmg->file) 98 return false; 99 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 100 return false; 101 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 102 return false; 103 return true; 104 } 105 106 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) 107 { 108 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; 109 struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */ 110 struct anon_vma *tgt_anon = tgt->anon_vma; 111 struct anon_vma *src_anon = vmg->anon_vma; 112 113 /* 114 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we 115 * will remove the existing VMA's anon_vma's so there's no scalability 116 * concerns. 117 */ 118 VM_WARN_ON(src && src_anon != src->anon_vma); 119 120 /* Case 1 - we will dup_anon_vma() from src into tgt. */ 121 if (!tgt_anon && src_anon) 122 return !vma_had_uncowed_parents(src); 123 /* Case 2 - we will simply use tgt's anon_vma. */ 124 if (tgt_anon && !src_anon) 125 return !vma_had_uncowed_parents(tgt); 126 /* Case 3 - the anon_vma's are already shared. */ 127 return src_anon == tgt_anon; 128 } 129 130 /* 131 * init_multi_vma_prep() - Initializer for struct vma_prepare 132 * @vp: The vma_prepare struct 133 * @vma: The vma that will be altered once locked 134 * @vmg: The merge state that will be used to determine adjustment and VMA 135 * removal. 136 */ 137 static void init_multi_vma_prep(struct vma_prepare *vp, 138 struct vm_area_struct *vma, 139 struct vma_merge_struct *vmg) 140 { 141 struct vm_area_struct *adjust; 142 struct vm_area_struct **remove = &vp->remove; 143 144 memset(vp, 0, sizeof(struct vma_prepare)); 145 vp->vma = vma; 146 vp->anon_vma = vma->anon_vma; 147 148 if (vmg && vmg->__remove_middle) { 149 *remove = vmg->middle; 150 remove = &vp->remove2; 151 } 152 if (vmg && vmg->__remove_next) 153 *remove = vmg->next; 154 155 if (vmg && vmg->__adjust_middle_start) 156 adjust = vmg->middle; 157 else if (vmg && vmg->__adjust_next_start) 158 adjust = vmg->next; 159 else 160 adjust = NULL; 161 162 vp->adj_next = adjust; 163 if (!vp->anon_vma && adjust) 164 vp->anon_vma = adjust->anon_vma; 165 166 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 167 vp->anon_vma != adjust->anon_vma); 168 169 vp->file = vma->vm_file; 170 if (vp->file) 171 vp->mapping = vma->vm_file->f_mapping; 172 173 if (vmg && vmg->skip_vma_uprobe) 174 vp->skip_vma_uprobe = true; 175 } 176 177 /* 178 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 179 * in front of (at a lower virtual address and file offset than) the vma. 180 * 181 * We cannot merge two vmas if they have differently assigned (non-NULL) 182 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 183 * 184 * We don't check here for the merged mmap wrapping around the end of pagecache 185 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 186 * wrap, nor mmaps which cover the final page at index -1UL. 187 * 188 * We assume the vma may be removed as part of the merge. 189 */ 190 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 191 { 192 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 193 194 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 195 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { 196 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 197 return true; 198 } 199 200 return false; 201 } 202 203 /* 204 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 205 * beyond (at a higher virtual address and file offset than) the vma. 206 * 207 * We cannot merge two vmas if they have differently assigned (non-NULL) 208 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 209 * 210 * We assume that vma is not removed as part of the merge. 211 */ 212 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 213 { 214 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 215 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { 216 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 217 return true; 218 } 219 return false; 220 } 221 222 static void __vma_link_file(struct vm_area_struct *vma, 223 struct address_space *mapping) 224 { 225 if (vma_is_shared_maywrite(vma)) 226 mapping_allow_writable(mapping); 227 228 flush_dcache_mmap_lock(mapping); 229 vma_interval_tree_insert(vma, &mapping->i_mmap); 230 flush_dcache_mmap_unlock(mapping); 231 } 232 233 /* 234 * Requires inode->i_mapping->i_mmap_rwsem 235 */ 236 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 237 struct address_space *mapping) 238 { 239 if (vma_is_shared_maywrite(vma)) 240 mapping_unmap_writable(mapping); 241 242 flush_dcache_mmap_lock(mapping); 243 vma_interval_tree_remove(vma, &mapping->i_mmap); 244 flush_dcache_mmap_unlock(mapping); 245 } 246 247 /* 248 * vma has some anon_vma assigned, and is already inserted on that 249 * anon_vma's interval trees. 250 * 251 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 252 * vma must be removed from the anon_vma's interval trees using 253 * anon_vma_interval_tree_pre_update_vma(). 254 * 255 * After the update, the vma will be reinserted using 256 * anon_vma_interval_tree_post_update_vma(). 257 * 258 * The entire update must be protected by exclusive mmap_lock and by 259 * the root anon_vma's mutex. 260 */ 261 static void 262 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 263 { 264 struct anon_vma_chain *avc; 265 266 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 267 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 268 } 269 270 static void 271 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 272 { 273 struct anon_vma_chain *avc; 274 275 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 276 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 277 } 278 279 /* 280 * vma_prepare() - Helper function for handling locking VMAs prior to altering 281 * @vp: The initialized vma_prepare struct 282 */ 283 static void vma_prepare(struct vma_prepare *vp) 284 { 285 if (vp->file) { 286 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 287 288 if (vp->adj_next) 289 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 290 vp->adj_next->vm_end); 291 292 i_mmap_lock_write(vp->mapping); 293 if (vp->insert && vp->insert->vm_file) { 294 /* 295 * Put into interval tree now, so instantiated pages 296 * are visible to arm/parisc __flush_dcache_page 297 * throughout; but we cannot insert into address 298 * space until vma start or end is updated. 299 */ 300 __vma_link_file(vp->insert, 301 vp->insert->vm_file->f_mapping); 302 } 303 } 304 305 if (vp->anon_vma) { 306 anon_vma_lock_write(vp->anon_vma); 307 anon_vma_interval_tree_pre_update_vma(vp->vma); 308 if (vp->adj_next) 309 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 310 } 311 312 if (vp->file) { 313 flush_dcache_mmap_lock(vp->mapping); 314 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 315 if (vp->adj_next) 316 vma_interval_tree_remove(vp->adj_next, 317 &vp->mapping->i_mmap); 318 } 319 320 } 321 322 /* 323 * vma_complete- Helper function for handling the unlocking after altering VMAs, 324 * or for inserting a VMA. 325 * 326 * @vp: The vma_prepare struct 327 * @vmi: The vma iterator 328 * @mm: The mm_struct 329 */ 330 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 331 struct mm_struct *mm) 332 { 333 if (vp->file) { 334 if (vp->adj_next) 335 vma_interval_tree_insert(vp->adj_next, 336 &vp->mapping->i_mmap); 337 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 338 flush_dcache_mmap_unlock(vp->mapping); 339 } 340 341 if (vp->remove && vp->file) { 342 __remove_shared_vm_struct(vp->remove, vp->mapping); 343 if (vp->remove2) 344 __remove_shared_vm_struct(vp->remove2, vp->mapping); 345 } else if (vp->insert) { 346 /* 347 * split_vma has split insert from vma, and needs 348 * us to insert it before dropping the locks 349 * (it may either follow vma or precede it). 350 */ 351 vma_iter_store_new(vmi, vp->insert); 352 mm->map_count++; 353 } 354 355 if (vp->anon_vma) { 356 anon_vma_interval_tree_post_update_vma(vp->vma); 357 if (vp->adj_next) 358 anon_vma_interval_tree_post_update_vma(vp->adj_next); 359 anon_vma_unlock_write(vp->anon_vma); 360 } 361 362 if (vp->file) { 363 i_mmap_unlock_write(vp->mapping); 364 365 if (!vp->skip_vma_uprobe) { 366 uprobe_mmap(vp->vma); 367 368 if (vp->adj_next) 369 uprobe_mmap(vp->adj_next); 370 } 371 } 372 373 if (vp->remove) { 374 again: 375 vma_mark_detached(vp->remove); 376 if (vp->file) { 377 uprobe_munmap(vp->remove, vp->remove->vm_start, 378 vp->remove->vm_end); 379 fput(vp->file); 380 } 381 if (vp->remove->anon_vma) 382 anon_vma_merge(vp->vma, vp->remove); 383 mm->map_count--; 384 mpol_put(vma_policy(vp->remove)); 385 if (!vp->remove2) 386 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 387 vm_area_free(vp->remove); 388 389 /* 390 * In mprotect's case 6 (see comments on vma_merge), 391 * we are removing both mid and next vmas 392 */ 393 if (vp->remove2) { 394 vp->remove = vp->remove2; 395 vp->remove2 = NULL; 396 goto again; 397 } 398 } 399 if (vp->insert && vp->file) 400 uprobe_mmap(vp->insert); 401 } 402 403 /* 404 * init_vma_prep() - Initializer wrapper for vma_prepare struct 405 * @vp: The vma_prepare struct 406 * @vma: The vma that will be altered once locked 407 */ 408 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 409 { 410 init_multi_vma_prep(vp, vma, NULL); 411 } 412 413 /* 414 * Can the proposed VMA be merged with the left (previous) VMA taking into 415 * account the start position of the proposed range. 416 */ 417 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 418 419 { 420 return vmg->prev && vmg->prev->vm_end == vmg->start && 421 can_vma_merge_after(vmg); 422 } 423 424 /* 425 * Can the proposed VMA be merged with the right (next) VMA taking into 426 * account the end position of the proposed range. 427 * 428 * In addition, if we can merge with the left VMA, ensure that left and right 429 * anon_vma's are also compatible. 430 */ 431 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 432 bool can_merge_left) 433 { 434 struct vm_area_struct *next = vmg->next; 435 struct vm_area_struct *prev; 436 437 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) 438 return false; 439 440 if (!can_merge_left) 441 return true; 442 443 /* 444 * If we can merge with prev (left) and next (right), indicating that 445 * each VMA's anon_vma is compatible with the proposed anon_vma, this 446 * does not mean prev and next are compatible with EACH OTHER. 447 * 448 * We therefore check this in addition to mergeability to either side. 449 */ 450 prev = vmg->prev; 451 return !prev->anon_vma || !next->anon_vma || 452 prev->anon_vma == next->anon_vma; 453 } 454 455 /* 456 * Close a vm structure and free it. 457 */ 458 void remove_vma(struct vm_area_struct *vma) 459 { 460 might_sleep(); 461 vma_close(vma); 462 if (vma->vm_file) 463 fput(vma->vm_file); 464 mpol_put(vma_policy(vma)); 465 vm_area_free(vma); 466 } 467 468 /* 469 * Get rid of page table information in the indicated region. 470 * 471 * Called with the mm semaphore held. 472 */ 473 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 474 struct vm_area_struct *prev, struct vm_area_struct *next) 475 { 476 struct mm_struct *mm = vma->vm_mm; 477 struct mmu_gather tlb; 478 479 tlb_gather_mmu(&tlb, mm); 480 update_hiwater_rss(mm); 481 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 482 /* mm_wr_locked = */ true); 483 mas_set(mas, vma->vm_end); 484 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 485 next ? next->vm_start : USER_PGTABLES_CEILING, 486 /* mm_wr_locked = */ true); 487 tlb_finish_mmu(&tlb); 488 } 489 490 /* 491 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 492 * has already been checked or doesn't make sense to fail. 493 * VMA Iterator will point to the original VMA. 494 */ 495 static __must_check int 496 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 497 unsigned long addr, int new_below) 498 { 499 struct vma_prepare vp; 500 struct vm_area_struct *new; 501 int err; 502 503 WARN_ON(vma->vm_start >= addr); 504 WARN_ON(vma->vm_end <= addr); 505 506 if (vma->vm_ops && vma->vm_ops->may_split) { 507 err = vma->vm_ops->may_split(vma, addr); 508 if (err) 509 return err; 510 } 511 512 new = vm_area_dup(vma); 513 if (!new) 514 return -ENOMEM; 515 516 if (new_below) { 517 new->vm_end = addr; 518 } else { 519 new->vm_start = addr; 520 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 521 } 522 523 err = -ENOMEM; 524 vma_iter_config(vmi, new->vm_start, new->vm_end); 525 if (vma_iter_prealloc(vmi, new)) 526 goto out_free_vma; 527 528 err = vma_dup_policy(vma, new); 529 if (err) 530 goto out_free_vmi; 531 532 err = anon_vma_clone(new, vma); 533 if (err) 534 goto out_free_mpol; 535 536 if (new->vm_file) 537 get_file(new->vm_file); 538 539 if (new->vm_ops && new->vm_ops->open) 540 new->vm_ops->open(new); 541 542 vma_start_write(vma); 543 vma_start_write(new); 544 545 init_vma_prep(&vp, vma); 546 vp.insert = new; 547 vma_prepare(&vp); 548 549 /* 550 * Get rid of huge pages and shared page tables straddling the split 551 * boundary. 552 */ 553 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 554 if (is_vm_hugetlb_page(vma)) 555 hugetlb_split(vma, addr); 556 557 if (new_below) { 558 vma->vm_start = addr; 559 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 560 } else { 561 vma->vm_end = addr; 562 } 563 564 /* vma_complete stores the new vma */ 565 vma_complete(&vp, vmi, vma->vm_mm); 566 validate_mm(vma->vm_mm); 567 568 /* Success. */ 569 if (new_below) 570 vma_next(vmi); 571 else 572 vma_prev(vmi); 573 574 return 0; 575 576 out_free_mpol: 577 mpol_put(vma_policy(new)); 578 out_free_vmi: 579 vma_iter_free(vmi); 580 out_free_vma: 581 vm_area_free(new); 582 return err; 583 } 584 585 /* 586 * Split a vma into two pieces at address 'addr', a new vma is allocated 587 * either for the first part or the tail. 588 */ 589 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 590 unsigned long addr, int new_below) 591 { 592 if (vma->vm_mm->map_count >= sysctl_max_map_count) 593 return -ENOMEM; 594 595 return __split_vma(vmi, vma, addr, new_below); 596 } 597 598 /* 599 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the 600 * instance that the destination VMA has no anon_vma but the source does. 601 * 602 * @dst: The destination VMA 603 * @src: The source VMA 604 * @dup: Pointer to the destination VMA when successful. 605 * 606 * Returns: 0 on success. 607 */ 608 static int dup_anon_vma(struct vm_area_struct *dst, 609 struct vm_area_struct *src, struct vm_area_struct **dup) 610 { 611 /* 612 * There are three cases to consider for correctly propagating 613 * anon_vma's on merge. 614 * 615 * The first is trivial - neither VMA has anon_vma, we need not do 616 * anything. 617 * 618 * The second where both have anon_vma is also a no-op, as they must 619 * then be the same, so there is simply nothing to copy. 620 * 621 * Here we cover the third - if the destination VMA has no anon_vma, 622 * that is it is unfaulted, we need to ensure that the newly merged 623 * range is referenced by the anon_vma's of the source. 624 */ 625 if (src->anon_vma && !dst->anon_vma) { 626 int ret; 627 628 vma_assert_write_locked(dst); 629 dst->anon_vma = src->anon_vma; 630 ret = anon_vma_clone(dst, src); 631 if (ret) 632 return ret; 633 634 *dup = dst; 635 } 636 637 return 0; 638 } 639 640 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 641 void validate_mm(struct mm_struct *mm) 642 { 643 int bug = 0; 644 int i = 0; 645 struct vm_area_struct *vma; 646 VMA_ITERATOR(vmi, mm, 0); 647 648 mt_validate(&mm->mm_mt); 649 for_each_vma(vmi, vma) { 650 #ifdef CONFIG_DEBUG_VM_RB 651 struct anon_vma *anon_vma = vma->anon_vma; 652 struct anon_vma_chain *avc; 653 #endif 654 unsigned long vmi_start, vmi_end; 655 bool warn = 0; 656 657 vmi_start = vma_iter_addr(&vmi); 658 vmi_end = vma_iter_end(&vmi); 659 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 660 warn = 1; 661 662 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 663 warn = 1; 664 665 if (warn) { 666 pr_emerg("issue in %s\n", current->comm); 667 dump_stack(); 668 dump_vma(vma); 669 pr_emerg("tree range: %px start %lx end %lx\n", vma, 670 vmi_start, vmi_end - 1); 671 vma_iter_dump_tree(&vmi); 672 } 673 674 #ifdef CONFIG_DEBUG_VM_RB 675 if (anon_vma) { 676 anon_vma_lock_read(anon_vma); 677 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 678 anon_vma_interval_tree_verify(avc); 679 anon_vma_unlock_read(anon_vma); 680 } 681 #endif 682 /* Check for a infinite loop */ 683 if (++i > mm->map_count + 10) { 684 i = -1; 685 break; 686 } 687 } 688 if (i != mm->map_count) { 689 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 690 bug = 1; 691 } 692 VM_BUG_ON_MM(bug, mm); 693 } 694 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 695 696 /* 697 * Based on the vmg flag indicating whether we need to adjust the vm_start field 698 * for the middle or next VMA, we calculate what the range of the newly adjusted 699 * VMA ought to be, and set the VMA's range accordingly. 700 */ 701 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 702 { 703 struct vm_area_struct *adjust; 704 pgoff_t pgoff; 705 706 if (vmg->__adjust_middle_start) { 707 adjust = vmg->middle; 708 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 709 } else if (vmg->__adjust_next_start) { 710 adjust = vmg->next; 711 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 712 } else { 713 return; 714 } 715 716 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 717 } 718 719 /* 720 * Actually perform the VMA merge operation. 721 * 722 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not 723 * modify any VMAs or cause inconsistent state should an OOM condition arise. 724 * 725 * Returns 0 on success, or an error value on failure. 726 */ 727 static int commit_merge(struct vma_merge_struct *vmg) 728 { 729 struct vm_area_struct *vma; 730 struct vma_prepare vp; 731 732 if (vmg->__adjust_next_start) { 733 /* We manipulate middle and adjust next, which is the target. */ 734 vma = vmg->middle; 735 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 736 } else { 737 vma = vmg->target; 738 /* Note: vma iterator must be pointing to 'start'. */ 739 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 740 } 741 742 init_multi_vma_prep(&vp, vma, vmg); 743 744 /* 745 * If vmg->give_up_on_oom is set, we're safe, because we don't actually 746 * manipulate any VMAs until we succeed at preallocation. 747 * 748 * Past this point, we will not return an error. 749 */ 750 if (vma_iter_prealloc(vmg->vmi, vma)) 751 return -ENOMEM; 752 753 vma_prepare(&vp); 754 /* 755 * THP pages may need to do additional splits if we increase 756 * middle->vm_start. 757 */ 758 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 759 vmg->__adjust_middle_start ? vmg->middle : NULL); 760 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 761 vmg_adjust_set_range(vmg); 762 vma_iter_store_overwrite(vmg->vmi, vmg->target); 763 764 vma_complete(&vp, vmg->vmi, vma->vm_mm); 765 766 return 0; 767 } 768 769 /* We can only remove VMAs when merging if they do not have a close hook. */ 770 static bool can_merge_remove_vma(struct vm_area_struct *vma) 771 { 772 return !vma->vm_ops || !vma->vm_ops->close; 773 } 774 775 /* 776 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 777 * attributes modified. 778 * 779 * @vmg: Describes the modifications being made to a VMA and associated 780 * metadata. 781 * 782 * When the attributes of a range within a VMA change, then it might be possible 783 * for immediately adjacent VMAs to be merged into that VMA due to having 784 * identical properties. 785 * 786 * This function checks for the existence of any such mergeable VMAs and updates 787 * the maple tree describing the @vmg->middle->vm_mm address space to account 788 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 789 * merge. 790 * 791 * As part of this operation, if a merge occurs, the @vmg object will have its 792 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 793 * calls to this function should reset these fields. 794 * 795 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 796 * 797 * ASSUMPTIONS: 798 * - The caller must assign the VMA to be modifed to @vmg->middle. 799 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 800 * - The caller must not set @vmg->next, as we determine this. 801 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 802 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 803 */ 804 static __must_check struct vm_area_struct *vma_merge_existing_range( 805 struct vma_merge_struct *vmg) 806 { 807 struct vm_area_struct *middle = vmg->middle; 808 struct vm_area_struct *prev = vmg->prev; 809 struct vm_area_struct *next; 810 struct vm_area_struct *anon_dup = NULL; 811 unsigned long start = vmg->start; 812 unsigned long end = vmg->end; 813 bool left_side = middle && start == middle->vm_start; 814 bool right_side = middle && end == middle->vm_end; 815 int err = 0; 816 bool merge_left, merge_right, merge_both; 817 818 mmap_assert_write_locked(vmg->mm); 819 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 820 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 821 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 822 VM_WARN_ON_VMG(start >= end, vmg); 823 824 /* 825 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 826 * not, we must span a portion of the VMA. 827 */ 828 VM_WARN_ON_VMG(middle && 829 ((middle != prev && vmg->start != middle->vm_start) || 830 vmg->end > middle->vm_end), vmg); 831 /* The vmi must be positioned within vmg->middle. */ 832 VM_WARN_ON_VMG(middle && 833 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 834 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 835 836 vmg->state = VMA_MERGE_NOMERGE; 837 838 /* 839 * If a special mapping or if the range being modified is neither at the 840 * furthermost left or right side of the VMA, then we have no chance of 841 * merging and should abort. 842 */ 843 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 844 return NULL; 845 846 if (left_side) 847 merge_left = can_vma_merge_left(vmg); 848 else 849 merge_left = false; 850 851 if (right_side) { 852 next = vmg->next = vma_iter_next_range(vmg->vmi); 853 vma_iter_prev_range(vmg->vmi); 854 855 merge_right = can_vma_merge_right(vmg, merge_left); 856 } else { 857 merge_right = false; 858 next = NULL; 859 } 860 861 if (merge_left) /* If merging prev, position iterator there. */ 862 vma_prev(vmg->vmi); 863 else if (!merge_right) /* If we have nothing to merge, abort. */ 864 return NULL; 865 866 merge_both = merge_left && merge_right; 867 /* If we span the entire VMA, a merge implies it will be deleted. */ 868 vmg->__remove_middle = left_side && right_side; 869 870 /* 871 * If we need to remove middle in its entirety but are unable to do so, 872 * we have no sensible recourse but to abort the merge. 873 */ 874 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 875 return NULL; 876 877 /* 878 * If we merge both VMAs, then next is also deleted. This implies 879 * merge_will_delete_vma also. 880 */ 881 vmg->__remove_next = merge_both; 882 883 /* 884 * If we cannot delete next, then we can reduce the operation to merging 885 * prev and middle (thereby deleting middle). 886 */ 887 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 888 vmg->__remove_next = false; 889 merge_right = false; 890 merge_both = false; 891 } 892 893 /* No matter what happens, we will be adjusting middle. */ 894 vma_start_write(middle); 895 896 if (merge_right) { 897 vma_start_write(next); 898 vmg->target = next; 899 } 900 901 if (merge_left) { 902 vma_start_write(prev); 903 vmg->target = prev; 904 } 905 906 if (merge_both) { 907 /* 908 * |<-------------------->| 909 * |-------********-------| 910 * prev middle next 911 * extend delete delete 912 */ 913 914 vmg->start = prev->vm_start; 915 vmg->end = next->vm_end; 916 vmg->pgoff = prev->vm_pgoff; 917 918 /* 919 * We already ensured anon_vma compatibility above, so now it's 920 * simply a case of, if prev has no anon_vma object, which of 921 * next or middle contains the anon_vma we must duplicate. 922 */ 923 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 924 &anon_dup); 925 } else if (merge_left) { 926 /* 927 * |<------------>| OR 928 * |<----------------->| 929 * |-------************* 930 * prev middle 931 * extend shrink/delete 932 */ 933 934 vmg->start = prev->vm_start; 935 vmg->pgoff = prev->vm_pgoff; 936 937 if (!vmg->__remove_middle) 938 vmg->__adjust_middle_start = true; 939 940 err = dup_anon_vma(prev, middle, &anon_dup); 941 } else { /* merge_right */ 942 /* 943 * |<------------->| OR 944 * |<----------------->| 945 * *************-------| 946 * middle next 947 * shrink/delete extend 948 */ 949 950 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 951 952 VM_WARN_ON_VMG(!merge_right, vmg); 953 /* If we are offset into a VMA, then prev must be middle. */ 954 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 955 956 if (vmg->__remove_middle) { 957 vmg->end = next->vm_end; 958 vmg->pgoff = next->vm_pgoff - pglen; 959 } else { 960 /* We shrink middle and expand next. */ 961 vmg->__adjust_next_start = true; 962 vmg->start = middle->vm_start; 963 vmg->end = start; 964 vmg->pgoff = middle->vm_pgoff; 965 } 966 967 err = dup_anon_vma(next, middle, &anon_dup); 968 } 969 970 if (err || commit_merge(vmg)) 971 goto abort; 972 973 khugepaged_enter_vma(vmg->target, vmg->flags); 974 vmg->state = VMA_MERGE_SUCCESS; 975 return vmg->target; 976 977 abort: 978 vma_iter_set(vmg->vmi, start); 979 vma_iter_load(vmg->vmi); 980 981 if (anon_dup) 982 unlink_anon_vmas(anon_dup); 983 984 /* 985 * This means we have failed to clone anon_vma's correctly, but no 986 * actual changes to VMAs have occurred, so no harm no foul - if the 987 * user doesn't want this reported and instead just wants to give up on 988 * the merge, allow it. 989 */ 990 if (!vmg->give_up_on_oom) 991 vmg->state = VMA_MERGE_ERROR_NOMEM; 992 return NULL; 993 } 994 995 /* 996 * vma_merge_new_range - Attempt to merge a new VMA into address space 997 * 998 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 999 * (exclusive), which we try to merge with any adjacent VMAs if possible. 1000 * 1001 * We are about to add a VMA to the address space starting at @vmg->start and 1002 * ending at @vmg->end. There are three different possible scenarios: 1003 * 1004 * 1. There is a VMA with identical properties immediately adjacent to the 1005 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 1006 * EXPAND that VMA: 1007 * 1008 * Proposed: |-----| or |-----| 1009 * Existing: |----| |----| 1010 * 1011 * 2. There are VMAs with identical properties immediately adjacent to the 1012 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 1013 * EXPAND the former and REMOVE the latter: 1014 * 1015 * Proposed: |-----| 1016 * Existing: |----| |----| 1017 * 1018 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 1019 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 1020 * 1021 * In instances where we can merge, this function returns the expanded VMA which 1022 * will have its range adjusted accordingly and the underlying maple tree also 1023 * adjusted. 1024 * 1025 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 1026 * to the VMA we expanded. 1027 * 1028 * This function adjusts @vmg to provide @vmg->next if not already specified, 1029 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 1030 * 1031 * ASSUMPTIONS: 1032 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 1033 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 1034 other than VMAs that will be unmapped should the operation succeed. 1035 * - The caller must have specified the previous vma in @vmg->prev. 1036 * - The caller must have specified the next vma in @vmg->next. 1037 * - The caller must have positioned the vmi at or before the gap. 1038 */ 1039 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 1040 { 1041 struct vm_area_struct *prev = vmg->prev; 1042 struct vm_area_struct *next = vmg->next; 1043 unsigned long end = vmg->end; 1044 bool can_merge_left, can_merge_right; 1045 1046 mmap_assert_write_locked(vmg->mm); 1047 VM_WARN_ON_VMG(vmg->middle, vmg); 1048 /* vmi must point at or before the gap. */ 1049 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 1050 1051 vmg->state = VMA_MERGE_NOMERGE; 1052 1053 /* Special VMAs are unmergeable, also if no prev/next. */ 1054 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 1055 return NULL; 1056 1057 can_merge_left = can_vma_merge_left(vmg); 1058 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1059 1060 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1061 if (can_merge_right) { 1062 vmg->end = next->vm_end; 1063 vmg->middle = next; 1064 } 1065 1066 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1067 if (can_merge_left) { 1068 vmg->start = prev->vm_start; 1069 vmg->middle = prev; 1070 vmg->pgoff = prev->vm_pgoff; 1071 1072 /* 1073 * If this merge would result in removal of the next VMA but we 1074 * are not permitted to do so, reduce the operation to merging 1075 * prev and vma. 1076 */ 1077 if (can_merge_right && !can_merge_remove_vma(next)) 1078 vmg->end = end; 1079 1080 /* In expand-only case we are already positioned at prev. */ 1081 if (!vmg->just_expand) { 1082 /* Equivalent to going to the previous range. */ 1083 vma_prev(vmg->vmi); 1084 } 1085 } 1086 1087 /* 1088 * Now try to expand adjacent VMA(s). This takes care of removing the 1089 * following VMA if we have VMAs on both sides. 1090 */ 1091 if (vmg->middle && !vma_expand(vmg)) { 1092 khugepaged_enter_vma(vmg->middle, vmg->flags); 1093 vmg->state = VMA_MERGE_SUCCESS; 1094 return vmg->middle; 1095 } 1096 1097 return NULL; 1098 } 1099 1100 /* 1101 * vma_expand - Expand an existing VMA 1102 * 1103 * @vmg: Describes a VMA expansion operation. 1104 * 1105 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1106 * Will expand over vmg->next if it's different from vmg->middle and vmg->end == 1107 * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with 1108 * vmg->next needs to be handled by the caller. 1109 * 1110 * Returns: 0 on success. 1111 * 1112 * ASSUMPTIONS: 1113 * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. 1114 * - The caller must have set @vmg->middle and @vmg->next. 1115 */ 1116 int vma_expand(struct vma_merge_struct *vmg) 1117 { 1118 struct vm_area_struct *anon_dup = NULL; 1119 bool remove_next = false; 1120 struct vm_area_struct *middle = vmg->middle; 1121 struct vm_area_struct *next = vmg->next; 1122 1123 mmap_assert_write_locked(vmg->mm); 1124 1125 vma_start_write(middle); 1126 if (next && (middle != next) && (vmg->end == next->vm_end)) { 1127 int ret; 1128 1129 remove_next = true; 1130 /* This should already have been checked by this point. */ 1131 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1132 vma_start_write(next); 1133 /* 1134 * In this case we don't report OOM, so vmg->give_up_on_mm is 1135 * safe. 1136 */ 1137 ret = dup_anon_vma(middle, next, &anon_dup); 1138 if (ret) 1139 return ret; 1140 } 1141 1142 /* Not merging but overwriting any part of next is not handled. */ 1143 VM_WARN_ON_VMG(next && !remove_next && 1144 next != middle && vmg->end > next->vm_start, vmg); 1145 /* Only handles expanding */ 1146 VM_WARN_ON_VMG(middle->vm_start < vmg->start || 1147 middle->vm_end > vmg->end, vmg); 1148 1149 vmg->target = middle; 1150 if (remove_next) 1151 vmg->__remove_next = true; 1152 1153 if (commit_merge(vmg)) 1154 goto nomem; 1155 1156 return 0; 1157 1158 nomem: 1159 if (anon_dup) 1160 unlink_anon_vmas(anon_dup); 1161 /* 1162 * If the user requests that we just give upon OOM, we are safe to do so 1163 * here, as commit merge provides this contract to us. Nothing has been 1164 * changed - no harm no foul, just don't report it. 1165 */ 1166 if (!vmg->give_up_on_oom) 1167 vmg->state = VMA_MERGE_ERROR_NOMEM; 1168 return -ENOMEM; 1169 } 1170 1171 /* 1172 * vma_shrink() - Reduce an existing VMAs memory area 1173 * @vmi: The vma iterator 1174 * @vma: The VMA to modify 1175 * @start: The new start 1176 * @end: The new end 1177 * 1178 * Returns: 0 on success, -ENOMEM otherwise 1179 */ 1180 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1181 unsigned long start, unsigned long end, pgoff_t pgoff) 1182 { 1183 struct vma_prepare vp; 1184 1185 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1186 1187 if (vma->vm_start < start) 1188 vma_iter_config(vmi, vma->vm_start, start); 1189 else 1190 vma_iter_config(vmi, end, vma->vm_end); 1191 1192 if (vma_iter_prealloc(vmi, NULL)) 1193 return -ENOMEM; 1194 1195 vma_start_write(vma); 1196 1197 init_vma_prep(&vp, vma); 1198 vma_prepare(&vp); 1199 vma_adjust_trans_huge(vma, start, end, NULL); 1200 1201 vma_iter_clear(vmi); 1202 vma_set_range(vma, start, end, pgoff); 1203 vma_complete(&vp, vmi, vma->vm_mm); 1204 validate_mm(vma->vm_mm); 1205 return 0; 1206 } 1207 1208 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1209 struct ma_state *mas_detach, bool mm_wr_locked) 1210 { 1211 struct mmu_gather tlb; 1212 1213 if (!vms->clear_ptes) /* Nothing to do */ 1214 return; 1215 1216 /* 1217 * We can free page tables without write-locking mmap_lock because VMAs 1218 * were isolated before we downgraded mmap_lock. 1219 */ 1220 mas_set(mas_detach, 1); 1221 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1222 update_hiwater_rss(vms->vma->vm_mm); 1223 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1224 vms->vma_count, mm_wr_locked); 1225 1226 mas_set(mas_detach, 1); 1227 /* start and end may be different if there is no prev or next vma. */ 1228 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1229 vms->unmap_end, mm_wr_locked); 1230 tlb_finish_mmu(&tlb); 1231 vms->clear_ptes = false; 1232 } 1233 1234 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1235 struct ma_state *mas_detach) 1236 { 1237 struct vm_area_struct *vma; 1238 1239 if (!vms->nr_pages) 1240 return; 1241 1242 vms_clear_ptes(vms, mas_detach, true); 1243 mas_set(mas_detach, 0); 1244 mas_for_each(mas_detach, vma, ULONG_MAX) 1245 vma_close(vma); 1246 } 1247 1248 /* 1249 * vms_complete_munmap_vmas() - Finish the munmap() operation 1250 * @vms: The vma munmap struct 1251 * @mas_detach: The maple state of the detached vmas 1252 * 1253 * This updates the mm_struct, unmaps the region, frees the resources 1254 * used for the munmap() and may downgrade the lock - if requested. Everything 1255 * needed to be done once the vma maple tree is updated. 1256 */ 1257 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1258 struct ma_state *mas_detach) 1259 { 1260 struct vm_area_struct *vma; 1261 struct mm_struct *mm; 1262 1263 mm = current->mm; 1264 mm->map_count -= vms->vma_count; 1265 mm->locked_vm -= vms->locked_vm; 1266 if (vms->unlock) 1267 mmap_write_downgrade(mm); 1268 1269 if (!vms->nr_pages) 1270 return; 1271 1272 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1273 /* Update high watermark before we lower total_vm */ 1274 update_hiwater_vm(mm); 1275 /* Stat accounting */ 1276 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1277 /* Paranoid bookkeeping */ 1278 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1279 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1280 VM_WARN_ON(vms->data_vm > mm->data_vm); 1281 mm->exec_vm -= vms->exec_vm; 1282 mm->stack_vm -= vms->stack_vm; 1283 mm->data_vm -= vms->data_vm; 1284 1285 /* Remove and clean up vmas */ 1286 mas_set(mas_detach, 0); 1287 mas_for_each(mas_detach, vma, ULONG_MAX) 1288 remove_vma(vma); 1289 1290 vm_unacct_memory(vms->nr_accounted); 1291 validate_mm(mm); 1292 if (vms->unlock) 1293 mmap_read_unlock(mm); 1294 1295 __mt_destroy(mas_detach->tree); 1296 } 1297 1298 /* 1299 * reattach_vmas() - Undo any munmap work and free resources 1300 * @mas_detach: The maple state with the detached maple tree 1301 * 1302 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1303 */ 1304 static void reattach_vmas(struct ma_state *mas_detach) 1305 { 1306 struct vm_area_struct *vma; 1307 1308 mas_set(mas_detach, 0); 1309 mas_for_each(mas_detach, vma, ULONG_MAX) 1310 vma_mark_attached(vma); 1311 1312 __mt_destroy(mas_detach->tree); 1313 } 1314 1315 /* 1316 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1317 * for removal at a later date. Handles splitting first and last if necessary 1318 * and marking the vmas as isolated. 1319 * 1320 * @vms: The vma munmap struct 1321 * @mas_detach: The maple state tracking the detached tree 1322 * 1323 * Return: 0 on success, error otherwise 1324 */ 1325 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1326 struct ma_state *mas_detach) 1327 { 1328 struct vm_area_struct *next = NULL; 1329 int error; 1330 1331 /* 1332 * If we need to split any vma, do it now to save pain later. 1333 * Does it split the first one? 1334 */ 1335 if (vms->start > vms->vma->vm_start) { 1336 1337 /* 1338 * Make sure that map_count on return from munmap() will 1339 * not exceed its limit; but let map_count go just above 1340 * its limit temporarily, to help free resources as expected. 1341 */ 1342 if (vms->end < vms->vma->vm_end && 1343 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1344 error = -ENOMEM; 1345 goto map_count_exceeded; 1346 } 1347 1348 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1349 if (!can_modify_vma(vms->vma)) { 1350 error = -EPERM; 1351 goto start_split_failed; 1352 } 1353 1354 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1355 if (error) 1356 goto start_split_failed; 1357 } 1358 vms->prev = vma_prev(vms->vmi); 1359 if (vms->prev) 1360 vms->unmap_start = vms->prev->vm_end; 1361 1362 /* 1363 * Detach a range of VMAs from the mm. Using next as a temp variable as 1364 * it is always overwritten. 1365 */ 1366 for_each_vma_range(*(vms->vmi), next, vms->end) { 1367 long nrpages; 1368 1369 if (!can_modify_vma(next)) { 1370 error = -EPERM; 1371 goto modify_vma_failed; 1372 } 1373 /* Does it split the end? */ 1374 if (next->vm_end > vms->end) { 1375 error = __split_vma(vms->vmi, next, vms->end, 0); 1376 if (error) 1377 goto end_split_failed; 1378 } 1379 vma_start_write(next); 1380 mas_set(mas_detach, vms->vma_count++); 1381 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1382 if (error) 1383 goto munmap_gather_failed; 1384 1385 vma_mark_detached(next); 1386 nrpages = vma_pages(next); 1387 1388 vms->nr_pages += nrpages; 1389 if (next->vm_flags & VM_LOCKED) 1390 vms->locked_vm += nrpages; 1391 1392 if (next->vm_flags & VM_ACCOUNT) 1393 vms->nr_accounted += nrpages; 1394 1395 if (is_exec_mapping(next->vm_flags)) 1396 vms->exec_vm += nrpages; 1397 else if (is_stack_mapping(next->vm_flags)) 1398 vms->stack_vm += nrpages; 1399 else if (is_data_mapping(next->vm_flags)) 1400 vms->data_vm += nrpages; 1401 1402 if (vms->uf) { 1403 /* 1404 * If userfaultfd_unmap_prep returns an error the vmas 1405 * will remain split, but userland will get a 1406 * highly unexpected error anyway. This is no 1407 * different than the case where the first of the two 1408 * __split_vma fails, but we don't undo the first 1409 * split, despite we could. This is unlikely enough 1410 * failure that it's not worth optimizing it for. 1411 */ 1412 error = userfaultfd_unmap_prep(next, vms->start, 1413 vms->end, vms->uf); 1414 if (error) 1415 goto userfaultfd_error; 1416 } 1417 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1418 BUG_ON(next->vm_start < vms->start); 1419 BUG_ON(next->vm_start > vms->end); 1420 #endif 1421 } 1422 1423 vms->next = vma_next(vms->vmi); 1424 if (vms->next) 1425 vms->unmap_end = vms->next->vm_start; 1426 1427 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1428 /* Make sure no VMAs are about to be lost. */ 1429 { 1430 MA_STATE(test, mas_detach->tree, 0, 0); 1431 struct vm_area_struct *vma_mas, *vma_test; 1432 int test_count = 0; 1433 1434 vma_iter_set(vms->vmi, vms->start); 1435 rcu_read_lock(); 1436 vma_test = mas_find(&test, vms->vma_count - 1); 1437 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1438 BUG_ON(vma_mas != vma_test); 1439 test_count++; 1440 vma_test = mas_next(&test, vms->vma_count - 1); 1441 } 1442 rcu_read_unlock(); 1443 BUG_ON(vms->vma_count != test_count); 1444 } 1445 #endif 1446 1447 while (vma_iter_addr(vms->vmi) > vms->start) 1448 vma_iter_prev_range(vms->vmi); 1449 1450 vms->clear_ptes = true; 1451 return 0; 1452 1453 userfaultfd_error: 1454 munmap_gather_failed: 1455 end_split_failed: 1456 modify_vma_failed: 1457 reattach_vmas(mas_detach); 1458 start_split_failed: 1459 map_count_exceeded: 1460 return error; 1461 } 1462 1463 /* 1464 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1465 * @vms: The vma munmap struct 1466 * @vmi: The vma iterator 1467 * @vma: The first vm_area_struct to munmap 1468 * @start: The aligned start address to munmap 1469 * @end: The aligned end address to munmap 1470 * @uf: The userfaultfd list_head 1471 * @unlock: Unlock after the operation. Only unlocked on success 1472 */ 1473 static void init_vma_munmap(struct vma_munmap_struct *vms, 1474 struct vma_iterator *vmi, struct vm_area_struct *vma, 1475 unsigned long start, unsigned long end, struct list_head *uf, 1476 bool unlock) 1477 { 1478 vms->vmi = vmi; 1479 vms->vma = vma; 1480 if (vma) { 1481 vms->start = start; 1482 vms->end = end; 1483 } else { 1484 vms->start = vms->end = 0; 1485 } 1486 vms->unlock = unlock; 1487 vms->uf = uf; 1488 vms->vma_count = 0; 1489 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1490 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1491 vms->unmap_start = FIRST_USER_ADDRESS; 1492 vms->unmap_end = USER_PGTABLES_CEILING; 1493 vms->clear_ptes = false; 1494 } 1495 1496 /* 1497 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1498 * @vmi: The vma iterator 1499 * @vma: The starting vm_area_struct 1500 * @mm: The mm_struct 1501 * @start: The aligned start address to munmap. 1502 * @end: The aligned end address to munmap. 1503 * @uf: The userfaultfd list_head 1504 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1505 * success. 1506 * 1507 * Return: 0 on success and drops the lock if so directed, error and leaves the 1508 * lock held otherwise. 1509 */ 1510 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1511 struct mm_struct *mm, unsigned long start, unsigned long end, 1512 struct list_head *uf, bool unlock) 1513 { 1514 struct maple_tree mt_detach; 1515 MA_STATE(mas_detach, &mt_detach, 0, 0); 1516 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1517 mt_on_stack(mt_detach); 1518 struct vma_munmap_struct vms; 1519 int error; 1520 1521 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1522 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1523 if (error) 1524 goto gather_failed; 1525 1526 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1527 if (error) 1528 goto clear_tree_failed; 1529 1530 /* Point of no return */ 1531 vms_complete_munmap_vmas(&vms, &mas_detach); 1532 return 0; 1533 1534 clear_tree_failed: 1535 reattach_vmas(&mas_detach); 1536 gather_failed: 1537 validate_mm(mm); 1538 return error; 1539 } 1540 1541 /* 1542 * do_vmi_munmap() - munmap a given range. 1543 * @vmi: The vma iterator 1544 * @mm: The mm_struct 1545 * @start: The start address to munmap 1546 * @len: The length of the range to munmap 1547 * @uf: The userfaultfd list_head 1548 * @unlock: set to true if the user wants to drop the mmap_lock on success 1549 * 1550 * This function takes a @mas that is either pointing to the previous VMA or set 1551 * to MA_START and sets it up to remove the mapping(s). The @len will be 1552 * aligned. 1553 * 1554 * Return: 0 on success and drops the lock if so directed, error and leaves the 1555 * lock held otherwise. 1556 */ 1557 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1558 unsigned long start, size_t len, struct list_head *uf, 1559 bool unlock) 1560 { 1561 unsigned long end; 1562 struct vm_area_struct *vma; 1563 1564 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1565 return -EINVAL; 1566 1567 end = start + PAGE_ALIGN(len); 1568 if (end == start) 1569 return -EINVAL; 1570 1571 /* Find the first overlapping VMA */ 1572 vma = vma_find(vmi, end); 1573 if (!vma) { 1574 if (unlock) 1575 mmap_write_unlock(mm); 1576 return 0; 1577 } 1578 1579 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1580 } 1581 1582 /* 1583 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1584 * context and anonymous VMA name within the range [start, end). 1585 * 1586 * As a result, we might be able to merge the newly modified VMA range with an 1587 * adjacent VMA with identical properties. 1588 * 1589 * If no merge is possible and the range does not span the entirety of the VMA, 1590 * we then need to split the VMA to accommodate the change. 1591 * 1592 * The function returns either the merged VMA, the original VMA if a split was 1593 * required instead, or an error if the split failed. 1594 */ 1595 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1596 { 1597 struct vm_area_struct *vma = vmg->middle; 1598 unsigned long start = vmg->start; 1599 unsigned long end = vmg->end; 1600 struct vm_area_struct *merged; 1601 1602 /* First, try to merge. */ 1603 merged = vma_merge_existing_range(vmg); 1604 if (merged) 1605 return merged; 1606 if (vmg_nomem(vmg)) 1607 return ERR_PTR(-ENOMEM); 1608 1609 /* 1610 * Split can fail for reasons other than OOM, so if the user requests 1611 * this it's probably a mistake. 1612 */ 1613 VM_WARN_ON(vmg->give_up_on_oom && 1614 (vma->vm_start != start || vma->vm_end != end)); 1615 1616 /* Split any preceding portion of the VMA. */ 1617 if (vma->vm_start < start) { 1618 int err = split_vma(vmg->vmi, vma, start, 1); 1619 1620 if (err) 1621 return ERR_PTR(err); 1622 } 1623 1624 /* Split any trailing portion of the VMA. */ 1625 if (vma->vm_end > end) { 1626 int err = split_vma(vmg->vmi, vma, end, 0); 1627 1628 if (err) 1629 return ERR_PTR(err); 1630 } 1631 1632 return vma; 1633 } 1634 1635 struct vm_area_struct *vma_modify_flags( 1636 struct vma_iterator *vmi, struct vm_area_struct *prev, 1637 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1638 unsigned long new_flags) 1639 { 1640 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1641 1642 vmg.flags = new_flags; 1643 1644 return vma_modify(&vmg); 1645 } 1646 1647 struct vm_area_struct 1648 *vma_modify_flags_name(struct vma_iterator *vmi, 1649 struct vm_area_struct *prev, 1650 struct vm_area_struct *vma, 1651 unsigned long start, 1652 unsigned long end, 1653 unsigned long new_flags, 1654 struct anon_vma_name *new_name) 1655 { 1656 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1657 1658 vmg.flags = new_flags; 1659 vmg.anon_name = new_name; 1660 1661 return vma_modify(&vmg); 1662 } 1663 1664 struct vm_area_struct 1665 *vma_modify_policy(struct vma_iterator *vmi, 1666 struct vm_area_struct *prev, 1667 struct vm_area_struct *vma, 1668 unsigned long start, unsigned long end, 1669 struct mempolicy *new_pol) 1670 { 1671 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1672 1673 vmg.policy = new_pol; 1674 1675 return vma_modify(&vmg); 1676 } 1677 1678 struct vm_area_struct 1679 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1680 struct vm_area_struct *prev, 1681 struct vm_area_struct *vma, 1682 unsigned long start, unsigned long end, 1683 unsigned long new_flags, 1684 struct vm_userfaultfd_ctx new_ctx, 1685 bool give_up_on_oom) 1686 { 1687 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1688 1689 vmg.flags = new_flags; 1690 vmg.uffd_ctx = new_ctx; 1691 if (give_up_on_oom) 1692 vmg.give_up_on_oom = true; 1693 1694 return vma_modify(&vmg); 1695 } 1696 1697 /* 1698 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1699 * VMA with identical properties. 1700 */ 1701 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1702 struct vm_area_struct *vma, 1703 unsigned long delta) 1704 { 1705 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1706 1707 vmg.next = vma_iter_next_rewind(vmi, NULL); 1708 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1709 1710 return vma_merge_new_range(&vmg); 1711 } 1712 1713 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1714 { 1715 vb->count = 0; 1716 } 1717 1718 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1719 { 1720 struct address_space *mapping; 1721 int i; 1722 1723 mapping = vb->vmas[0]->vm_file->f_mapping; 1724 i_mmap_lock_write(mapping); 1725 for (i = 0; i < vb->count; i++) { 1726 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1727 __remove_shared_vm_struct(vb->vmas[i], mapping); 1728 } 1729 i_mmap_unlock_write(mapping); 1730 1731 unlink_file_vma_batch_init(vb); 1732 } 1733 1734 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1735 struct vm_area_struct *vma) 1736 { 1737 if (vma->vm_file == NULL) 1738 return; 1739 1740 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1741 vb->count == ARRAY_SIZE(vb->vmas)) 1742 unlink_file_vma_batch_process(vb); 1743 1744 vb->vmas[vb->count] = vma; 1745 vb->count++; 1746 } 1747 1748 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1749 { 1750 if (vb->count > 0) 1751 unlink_file_vma_batch_process(vb); 1752 } 1753 1754 /* 1755 * Unlink a file-based vm structure from its interval tree, to hide 1756 * vma from rmap and vmtruncate before freeing its page tables. 1757 */ 1758 void unlink_file_vma(struct vm_area_struct *vma) 1759 { 1760 struct file *file = vma->vm_file; 1761 1762 if (file) { 1763 struct address_space *mapping = file->f_mapping; 1764 1765 i_mmap_lock_write(mapping); 1766 __remove_shared_vm_struct(vma, mapping); 1767 i_mmap_unlock_write(mapping); 1768 } 1769 } 1770 1771 void vma_link_file(struct vm_area_struct *vma) 1772 { 1773 struct file *file = vma->vm_file; 1774 struct address_space *mapping; 1775 1776 if (file) { 1777 mapping = file->f_mapping; 1778 i_mmap_lock_write(mapping); 1779 __vma_link_file(vma, mapping); 1780 i_mmap_unlock_write(mapping); 1781 } 1782 } 1783 1784 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1785 { 1786 VMA_ITERATOR(vmi, mm, 0); 1787 1788 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1789 if (vma_iter_prealloc(&vmi, vma)) 1790 return -ENOMEM; 1791 1792 vma_start_write(vma); 1793 vma_iter_store_new(&vmi, vma); 1794 vma_link_file(vma); 1795 mm->map_count++; 1796 validate_mm(mm); 1797 return 0; 1798 } 1799 1800 /* 1801 * Copy the vma structure to a new location in the same mm, 1802 * prior to moving page table entries, to effect an mremap move. 1803 */ 1804 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1805 unsigned long addr, unsigned long len, pgoff_t pgoff, 1806 bool *need_rmap_locks) 1807 { 1808 struct vm_area_struct *vma = *vmap; 1809 unsigned long vma_start = vma->vm_start; 1810 struct mm_struct *mm = vma->vm_mm; 1811 struct vm_area_struct *new_vma; 1812 bool faulted_in_anon_vma = true; 1813 VMA_ITERATOR(vmi, mm, addr); 1814 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1815 1816 /* 1817 * If anonymous vma has not yet been faulted, update new pgoff 1818 * to match new location, to increase its chance of merging. 1819 */ 1820 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1821 pgoff = addr >> PAGE_SHIFT; 1822 faulted_in_anon_vma = false; 1823 } 1824 1825 /* 1826 * If the VMA we are copying might contain a uprobe PTE, ensure 1827 * that we do not establish one upon merge. Otherwise, when mremap() 1828 * moves page tables, it will orphan the newly created PTE. 1829 */ 1830 if (vma->vm_file) 1831 vmg.skip_vma_uprobe = true; 1832 1833 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1834 if (new_vma && new_vma->vm_start < addr + len) 1835 return NULL; /* should never get here */ 1836 1837 vmg.middle = NULL; /* New VMA range. */ 1838 vmg.pgoff = pgoff; 1839 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1840 new_vma = vma_merge_new_range(&vmg); 1841 1842 if (new_vma) { 1843 /* 1844 * Source vma may have been merged into new_vma 1845 */ 1846 if (unlikely(vma_start >= new_vma->vm_start && 1847 vma_start < new_vma->vm_end)) { 1848 /* 1849 * The only way we can get a vma_merge with 1850 * self during an mremap is if the vma hasn't 1851 * been faulted in yet and we were allowed to 1852 * reset the dst vma->vm_pgoff to the 1853 * destination address of the mremap to allow 1854 * the merge to happen. mremap must change the 1855 * vm_pgoff linearity between src and dst vmas 1856 * (in turn preventing a vma_merge) to be 1857 * safe. It is only safe to keep the vm_pgoff 1858 * linear if there are no pages mapped yet. 1859 */ 1860 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1861 *vmap = vma = new_vma; 1862 } 1863 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1864 } else { 1865 new_vma = vm_area_dup(vma); 1866 if (!new_vma) 1867 goto out; 1868 vma_set_range(new_vma, addr, addr + len, pgoff); 1869 if (vma_dup_policy(vma, new_vma)) 1870 goto out_free_vma; 1871 if (anon_vma_clone(new_vma, vma)) 1872 goto out_free_mempol; 1873 if (new_vma->vm_file) 1874 get_file(new_vma->vm_file); 1875 if (new_vma->vm_ops && new_vma->vm_ops->open) 1876 new_vma->vm_ops->open(new_vma); 1877 if (vma_link(mm, new_vma)) 1878 goto out_vma_link; 1879 *need_rmap_locks = false; 1880 } 1881 return new_vma; 1882 1883 out_vma_link: 1884 fixup_hugetlb_reservations(new_vma); 1885 vma_close(new_vma); 1886 1887 if (new_vma->vm_file) 1888 fput(new_vma->vm_file); 1889 1890 unlink_anon_vmas(new_vma); 1891 out_free_mempol: 1892 mpol_put(vma_policy(new_vma)); 1893 out_free_vma: 1894 vm_area_free(new_vma); 1895 out: 1896 return NULL; 1897 } 1898 1899 /* 1900 * Rough compatibility check to quickly see if it's even worth looking 1901 * at sharing an anon_vma. 1902 * 1903 * They need to have the same vm_file, and the flags can only differ 1904 * in things that mprotect may change. 1905 * 1906 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1907 * we can merge the two vma's. For example, we refuse to merge a vma if 1908 * there is a vm_ops->close() function, because that indicates that the 1909 * driver is doing some kind of reference counting. But that doesn't 1910 * really matter for the anon_vma sharing case. 1911 */ 1912 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1913 { 1914 return a->vm_end == b->vm_start && 1915 mpol_equal(vma_policy(a), vma_policy(b)) && 1916 a->vm_file == b->vm_file && 1917 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1918 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1919 } 1920 1921 /* 1922 * Do some basic sanity checking to see if we can re-use the anon_vma 1923 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1924 * the same as 'old', the other will be the new one that is trying 1925 * to share the anon_vma. 1926 * 1927 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1928 * the anon_vma of 'old' is concurrently in the process of being set up 1929 * by another page fault trying to merge _that_. But that's ok: if it 1930 * is being set up, that automatically means that it will be a singleton 1931 * acceptable for merging, so we can do all of this optimistically. But 1932 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1933 * 1934 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1935 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1936 * is to return an anon_vma that is "complex" due to having gone through 1937 * a fork). 1938 * 1939 * We also make sure that the two vma's are compatible (adjacent, 1940 * and with the same memory policies). That's all stable, even with just 1941 * a read lock on the mmap_lock. 1942 */ 1943 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1944 struct vm_area_struct *a, 1945 struct vm_area_struct *b) 1946 { 1947 if (anon_vma_compatible(a, b)) { 1948 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1949 1950 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1951 return anon_vma; 1952 } 1953 return NULL; 1954 } 1955 1956 /* 1957 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1958 * neighbouring vmas for a suitable anon_vma, before it goes off 1959 * to allocate a new anon_vma. It checks because a repetitive 1960 * sequence of mprotects and faults may otherwise lead to distinct 1961 * anon_vmas being allocated, preventing vma merge in subsequent 1962 * mprotect. 1963 */ 1964 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1965 { 1966 struct anon_vma *anon_vma = NULL; 1967 struct vm_area_struct *prev, *next; 1968 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1969 1970 /* Try next first. */ 1971 next = vma_iter_load(&vmi); 1972 if (next) { 1973 anon_vma = reusable_anon_vma(next, vma, next); 1974 if (anon_vma) 1975 return anon_vma; 1976 } 1977 1978 prev = vma_prev(&vmi); 1979 VM_BUG_ON_VMA(prev != vma, vma); 1980 prev = vma_prev(&vmi); 1981 /* Try prev next. */ 1982 if (prev) 1983 anon_vma = reusable_anon_vma(prev, prev, vma); 1984 1985 /* 1986 * We might reach here with anon_vma == NULL if we can't find 1987 * any reusable anon_vma. 1988 * There's no absolute need to look only at touching neighbours: 1989 * we could search further afield for "compatible" anon_vmas. 1990 * But it would probably just be a waste of time searching, 1991 * or lead to too many vmas hanging off the same anon_vma. 1992 * We're trying to allow mprotect remerging later on, 1993 * not trying to minimize memory used for anon_vmas. 1994 */ 1995 return anon_vma; 1996 } 1997 1998 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1999 { 2000 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 2001 } 2002 2003 static bool vma_is_shared_writable(struct vm_area_struct *vma) 2004 { 2005 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 2006 (VM_WRITE | VM_SHARED); 2007 } 2008 2009 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 2010 { 2011 /* No managed pages to writeback. */ 2012 if (vma->vm_flags & VM_PFNMAP) 2013 return false; 2014 2015 return vma->vm_file && vma->vm_file->f_mapping && 2016 mapping_can_writeback(vma->vm_file->f_mapping); 2017 } 2018 2019 /* 2020 * Does this VMA require the underlying folios to have their dirty state 2021 * tracked? 2022 */ 2023 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 2024 { 2025 /* Only shared, writable VMAs require dirty tracking. */ 2026 if (!vma_is_shared_writable(vma)) 2027 return false; 2028 2029 /* Does the filesystem need to be notified? */ 2030 if (vm_ops_needs_writenotify(vma->vm_ops)) 2031 return true; 2032 2033 /* 2034 * Even if the filesystem doesn't indicate a need for writenotify, if it 2035 * can writeback, dirty tracking is still required. 2036 */ 2037 return vma_fs_can_writeback(vma); 2038 } 2039 2040 /* 2041 * Some shared mappings will want the pages marked read-only 2042 * to track write events. If so, we'll downgrade vm_page_prot 2043 * to the private version (using protection_map[] without the 2044 * VM_SHARED bit). 2045 */ 2046 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 2047 { 2048 /* If it was private or non-writable, the write bit is already clear */ 2049 if (!vma_is_shared_writable(vma)) 2050 return false; 2051 2052 /* The backer wishes to know when pages are first written to? */ 2053 if (vm_ops_needs_writenotify(vma->vm_ops)) 2054 return true; 2055 2056 /* The open routine did something to the protections that pgprot_modify 2057 * won't preserve? */ 2058 if (pgprot_val(vm_page_prot) != 2059 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 2060 return false; 2061 2062 /* 2063 * Do we need to track softdirty? hugetlb does not support softdirty 2064 * tracking yet. 2065 */ 2066 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 2067 return true; 2068 2069 /* Do we need write faults for uffd-wp tracking? */ 2070 if (userfaultfd_wp(vma)) 2071 return true; 2072 2073 /* Can the mapping track the dirty pages? */ 2074 return vma_fs_can_writeback(vma); 2075 } 2076 2077 static DEFINE_MUTEX(mm_all_locks_mutex); 2078 2079 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2080 { 2081 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2082 /* 2083 * The LSB of head.next can't change from under us 2084 * because we hold the mm_all_locks_mutex. 2085 */ 2086 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 2087 /* 2088 * We can safely modify head.next after taking the 2089 * anon_vma->root->rwsem. If some other vma in this mm shares 2090 * the same anon_vma we won't take it again. 2091 * 2092 * No need of atomic instructions here, head.next 2093 * can't change from under us thanks to the 2094 * anon_vma->root->rwsem. 2095 */ 2096 if (__test_and_set_bit(0, (unsigned long *) 2097 &anon_vma->root->rb_root.rb_root.rb_node)) 2098 BUG(); 2099 } 2100 } 2101 2102 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2103 { 2104 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2105 /* 2106 * AS_MM_ALL_LOCKS can't change from under us because 2107 * we hold the mm_all_locks_mutex. 2108 * 2109 * Operations on ->flags have to be atomic because 2110 * even if AS_MM_ALL_LOCKS is stable thanks to the 2111 * mm_all_locks_mutex, there may be other cpus 2112 * changing other bitflags in parallel to us. 2113 */ 2114 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2115 BUG(); 2116 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2117 } 2118 } 2119 2120 /* 2121 * This operation locks against the VM for all pte/vma/mm related 2122 * operations that could ever happen on a certain mm. This includes 2123 * vmtruncate, try_to_unmap, and all page faults. 2124 * 2125 * The caller must take the mmap_lock in write mode before calling 2126 * mm_take_all_locks(). The caller isn't allowed to release the 2127 * mmap_lock until mm_drop_all_locks() returns. 2128 * 2129 * mmap_lock in write mode is required in order to block all operations 2130 * that could modify pagetables and free pages without need of 2131 * altering the vma layout. It's also needed in write mode to avoid new 2132 * anon_vmas to be associated with existing vmas. 2133 * 2134 * A single task can't take more than one mm_take_all_locks() in a row 2135 * or it would deadlock. 2136 * 2137 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2138 * mapping->flags avoid to take the same lock twice, if more than one 2139 * vma in this mm is backed by the same anon_vma or address_space. 2140 * 2141 * We take locks in following order, accordingly to comment at beginning 2142 * of mm/rmap.c: 2143 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2144 * hugetlb mapping); 2145 * - all vmas marked locked 2146 * - all i_mmap_rwsem locks; 2147 * - all anon_vma->rwseml 2148 * 2149 * We can take all locks within these types randomly because the VM code 2150 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2151 * mm_all_locks_mutex. 2152 * 2153 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2154 * that may have to take thousand of locks. 2155 * 2156 * mm_take_all_locks() can fail if it's interrupted by signals. 2157 */ 2158 int mm_take_all_locks(struct mm_struct *mm) 2159 { 2160 struct vm_area_struct *vma; 2161 struct anon_vma_chain *avc; 2162 VMA_ITERATOR(vmi, mm, 0); 2163 2164 mmap_assert_write_locked(mm); 2165 2166 mutex_lock(&mm_all_locks_mutex); 2167 2168 /* 2169 * vma_start_write() does not have a complement in mm_drop_all_locks() 2170 * because vma_start_write() is always asymmetrical; it marks a VMA as 2171 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2172 * is reached. 2173 */ 2174 for_each_vma(vmi, vma) { 2175 if (signal_pending(current)) 2176 goto out_unlock; 2177 vma_start_write(vma); 2178 } 2179 2180 vma_iter_init(&vmi, mm, 0); 2181 for_each_vma(vmi, vma) { 2182 if (signal_pending(current)) 2183 goto out_unlock; 2184 if (vma->vm_file && vma->vm_file->f_mapping && 2185 is_vm_hugetlb_page(vma)) 2186 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2187 } 2188 2189 vma_iter_init(&vmi, mm, 0); 2190 for_each_vma(vmi, vma) { 2191 if (signal_pending(current)) 2192 goto out_unlock; 2193 if (vma->vm_file && vma->vm_file->f_mapping && 2194 !is_vm_hugetlb_page(vma)) 2195 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2196 } 2197 2198 vma_iter_init(&vmi, mm, 0); 2199 for_each_vma(vmi, vma) { 2200 if (signal_pending(current)) 2201 goto out_unlock; 2202 if (vma->anon_vma) 2203 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2204 vm_lock_anon_vma(mm, avc->anon_vma); 2205 } 2206 2207 return 0; 2208 2209 out_unlock: 2210 mm_drop_all_locks(mm); 2211 return -EINTR; 2212 } 2213 2214 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2215 { 2216 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2217 /* 2218 * The LSB of head.next can't change to 0 from under 2219 * us because we hold the mm_all_locks_mutex. 2220 * 2221 * We must however clear the bitflag before unlocking 2222 * the vma so the users using the anon_vma->rb_root will 2223 * never see our bitflag. 2224 * 2225 * No need of atomic instructions here, head.next 2226 * can't change from under us until we release the 2227 * anon_vma->root->rwsem. 2228 */ 2229 if (!__test_and_clear_bit(0, (unsigned long *) 2230 &anon_vma->root->rb_root.rb_root.rb_node)) 2231 BUG(); 2232 anon_vma_unlock_write(anon_vma); 2233 } 2234 } 2235 2236 static void vm_unlock_mapping(struct address_space *mapping) 2237 { 2238 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2239 /* 2240 * AS_MM_ALL_LOCKS can't change to 0 from under us 2241 * because we hold the mm_all_locks_mutex. 2242 */ 2243 i_mmap_unlock_write(mapping); 2244 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2245 &mapping->flags)) 2246 BUG(); 2247 } 2248 } 2249 2250 /* 2251 * The mmap_lock cannot be released by the caller until 2252 * mm_drop_all_locks() returns. 2253 */ 2254 void mm_drop_all_locks(struct mm_struct *mm) 2255 { 2256 struct vm_area_struct *vma; 2257 struct anon_vma_chain *avc; 2258 VMA_ITERATOR(vmi, mm, 0); 2259 2260 mmap_assert_write_locked(mm); 2261 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2262 2263 for_each_vma(vmi, vma) { 2264 if (vma->anon_vma) 2265 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2266 vm_unlock_anon_vma(avc->anon_vma); 2267 if (vma->vm_file && vma->vm_file->f_mapping) 2268 vm_unlock_mapping(vma->vm_file->f_mapping); 2269 } 2270 2271 mutex_unlock(&mm_all_locks_mutex); 2272 } 2273 2274 /* 2275 * We account for memory if it's a private writeable mapping, 2276 * not hugepages and VM_NORESERVE wasn't set. 2277 */ 2278 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2279 { 2280 /* 2281 * hugetlb has its own accounting separate from the core VM 2282 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2283 */ 2284 if (file && is_file_hugepages(file)) 2285 return false; 2286 2287 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2288 } 2289 2290 /* 2291 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2292 * operation. 2293 * @vms: The vma unmap structure 2294 * @mas_detach: The maple state with the detached maple tree 2295 * 2296 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2297 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2298 * have been called), then a NULL is written over the vmas and the vmas are 2299 * removed (munmap() completed). 2300 */ 2301 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2302 struct ma_state *mas_detach) 2303 { 2304 struct ma_state *mas = &vms->vmi->mas; 2305 2306 if (!vms->nr_pages) 2307 return; 2308 2309 if (vms->clear_ptes) 2310 return reattach_vmas(mas_detach); 2311 2312 /* 2313 * Aborting cannot just call the vm_ops open() because they are often 2314 * not symmetrical and state data has been lost. Resort to the old 2315 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2316 */ 2317 mas_set_range(mas, vms->start, vms->end - 1); 2318 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2319 /* Clean up the insertion of the unfortunate gap */ 2320 vms_complete_munmap_vmas(vms, mas_detach); 2321 } 2322 2323 /* 2324 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2325 * unmapped once the map operation is completed, check limits, account mapping 2326 * and clean up any pre-existing VMAs. 2327 * 2328 * @map: Mapping state. 2329 * @uf: Userfaultfd context list. 2330 * 2331 * Returns: 0 on success, error code otherwise. 2332 */ 2333 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2334 { 2335 int error; 2336 struct vma_iterator *vmi = map->vmi; 2337 struct vma_munmap_struct *vms = &map->vms; 2338 2339 /* Find the first overlapping VMA and initialise unmap state. */ 2340 vms->vma = vma_find(vmi, map->end); 2341 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2342 /* unlock = */ false); 2343 2344 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2345 if (vms->vma) { 2346 mt_init_flags(&map->mt_detach, 2347 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2348 mt_on_stack(map->mt_detach); 2349 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2350 /* Prepare to unmap any existing mapping in the area */ 2351 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2352 if (error) { 2353 /* On error VMAs will already have been reattached. */ 2354 vms->nr_pages = 0; 2355 return error; 2356 } 2357 2358 map->next = vms->next; 2359 map->prev = vms->prev; 2360 } else { 2361 map->next = vma_iter_next_rewind(vmi, &map->prev); 2362 } 2363 2364 /* Check against address space limit. */ 2365 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2366 return -ENOMEM; 2367 2368 /* Private writable mapping: check memory availability. */ 2369 if (accountable_mapping(map->file, map->flags)) { 2370 map->charged = map->pglen; 2371 map->charged -= vms->nr_accounted; 2372 if (map->charged) { 2373 error = security_vm_enough_memory_mm(map->mm, map->charged); 2374 if (error) 2375 return error; 2376 } 2377 2378 vms->nr_accounted = 0; 2379 map->flags |= VM_ACCOUNT; 2380 } 2381 2382 /* 2383 * Clear PTEs while the vma is still in the tree so that rmap 2384 * cannot race with the freeing later in the truncate scenario. 2385 * This is also needed for mmap_file(), which is why vm_ops 2386 * close function is called. 2387 */ 2388 vms_clean_up_area(vms, &map->mas_detach); 2389 2390 return 0; 2391 } 2392 2393 2394 static int __mmap_new_file_vma(struct mmap_state *map, 2395 struct vm_area_struct *vma) 2396 { 2397 struct vma_iterator *vmi = map->vmi; 2398 int error; 2399 2400 vma->vm_file = get_file(map->file); 2401 2402 if (!map->file->f_op->mmap) 2403 return 0; 2404 2405 error = mmap_file(vma->vm_file, vma); 2406 if (error) { 2407 fput(vma->vm_file); 2408 vma->vm_file = NULL; 2409 2410 vma_iter_set(vmi, vma->vm_end); 2411 /* Undo any partial mapping done by a device driver. */ 2412 unmap_region(&vmi->mas, vma, map->prev, map->next); 2413 2414 return error; 2415 } 2416 2417 /* Drivers cannot alter the address of the VMA. */ 2418 WARN_ON_ONCE(map->addr != vma->vm_start); 2419 /* 2420 * Drivers should not permit writability when previously it was 2421 * disallowed. 2422 */ 2423 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2424 !(map->flags & VM_MAYWRITE) && 2425 (vma->vm_flags & VM_MAYWRITE)); 2426 2427 map->flags = vma->vm_flags; 2428 2429 return 0; 2430 } 2431 2432 /* 2433 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2434 * possible. 2435 * 2436 * @map: Mapping state. 2437 * @vmap: Output pointer for the new VMA. 2438 * 2439 * Returns: Zero on success, or an error. 2440 */ 2441 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2442 { 2443 struct vma_iterator *vmi = map->vmi; 2444 int error = 0; 2445 struct vm_area_struct *vma; 2446 2447 /* 2448 * Determine the object being mapped and call the appropriate 2449 * specific mapper. the address has already been validated, but 2450 * not unmapped, but the maps are removed from the list. 2451 */ 2452 vma = vm_area_alloc(map->mm); 2453 if (!vma) 2454 return -ENOMEM; 2455 2456 vma_iter_config(vmi, map->addr, map->end); 2457 vma_set_range(vma, map->addr, map->end, map->pgoff); 2458 vm_flags_init(vma, map->flags); 2459 vma->vm_page_prot = map->page_prot; 2460 2461 if (vma_iter_prealloc(vmi, vma)) { 2462 error = -ENOMEM; 2463 goto free_vma; 2464 } 2465 2466 if (map->file) 2467 error = __mmap_new_file_vma(map, vma); 2468 else if (map->flags & VM_SHARED) 2469 error = shmem_zero_setup(vma); 2470 else 2471 vma_set_anonymous(vma); 2472 2473 if (error) 2474 goto free_iter_vma; 2475 2476 #ifdef CONFIG_SPARC64 2477 /* TODO: Fix SPARC ADI! */ 2478 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2479 #endif 2480 2481 /* Lock the VMA since it is modified after insertion into VMA tree */ 2482 vma_start_write(vma); 2483 vma_iter_store_new(vmi, vma); 2484 map->mm->map_count++; 2485 vma_link_file(vma); 2486 2487 /* 2488 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2489 * call covers the non-merge case. 2490 */ 2491 if (!vma_is_anonymous(vma)) 2492 khugepaged_enter_vma(vma, map->flags); 2493 ksm_add_vma(vma); 2494 *vmap = vma; 2495 return 0; 2496 2497 free_iter_vma: 2498 vma_iter_free(vmi); 2499 free_vma: 2500 vm_area_free(vma); 2501 return error; 2502 } 2503 2504 /* 2505 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2506 * statistics, handle locking and finalise the VMA. 2507 * 2508 * @map: Mapping state. 2509 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2510 */ 2511 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2512 { 2513 struct mm_struct *mm = map->mm; 2514 unsigned long vm_flags = vma->vm_flags; 2515 2516 perf_event_mmap(vma); 2517 2518 /* Unmap any existing mapping in the area. */ 2519 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2520 2521 vm_stat_account(mm, vma->vm_flags, map->pglen); 2522 if (vm_flags & VM_LOCKED) { 2523 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2524 is_vm_hugetlb_page(vma) || 2525 vma == get_gate_vma(mm)) 2526 vm_flags_clear(vma, VM_LOCKED_MASK); 2527 else 2528 mm->locked_vm += map->pglen; 2529 } 2530 2531 if (vma->vm_file) 2532 uprobe_mmap(vma); 2533 2534 /* 2535 * New (or expanded) vma always get soft dirty status. 2536 * Otherwise user-space soft-dirty page tracker won't 2537 * be able to distinguish situation when vma area unmapped, 2538 * then new mapped in-place (which must be aimed as 2539 * a completely new data area). 2540 */ 2541 vm_flags_set(vma, VM_SOFTDIRTY); 2542 2543 vma_set_page_prot(vma); 2544 } 2545 2546 /* 2547 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that 2548 * specifies it. 2549 * 2550 * This is called prior to any merge attempt, and updates whitelisted fields 2551 * that are permitted to be updated by the caller. 2552 * 2553 * All but user-defined fields will be pre-populated with original values. 2554 * 2555 * Returns 0 on success, or an error code otherwise. 2556 */ 2557 static int call_mmap_prepare(struct mmap_state *map) 2558 { 2559 int err; 2560 struct vm_area_desc desc = { 2561 .mm = map->mm, 2562 .start = map->addr, 2563 .end = map->end, 2564 2565 .pgoff = map->pgoff, 2566 .file = map->file, 2567 .vm_flags = map->flags, 2568 .page_prot = map->page_prot, 2569 }; 2570 2571 /* Invoke the hook. */ 2572 err = __call_mmap_prepare(map->file, &desc); 2573 if (err) 2574 return err; 2575 2576 /* Update fields permitted to be changed. */ 2577 map->pgoff = desc.pgoff; 2578 map->file = desc.file; 2579 map->flags = desc.vm_flags; 2580 map->page_prot = desc.page_prot; 2581 /* User-defined fields. */ 2582 map->vm_ops = desc.vm_ops; 2583 map->vm_private_data = desc.private_data; 2584 2585 return 0; 2586 } 2587 2588 static void set_vma_user_defined_fields(struct vm_area_struct *vma, 2589 struct mmap_state *map) 2590 { 2591 if (map->vm_ops) 2592 vma->vm_ops = map->vm_ops; 2593 vma->vm_private_data = map->vm_private_data; 2594 } 2595 2596 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2597 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2598 struct list_head *uf) 2599 { 2600 struct mm_struct *mm = current->mm; 2601 struct vm_area_struct *vma = NULL; 2602 int error; 2603 bool have_mmap_prepare = file && file->f_op->mmap_prepare; 2604 VMA_ITERATOR(vmi, mm, addr); 2605 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2606 2607 error = __mmap_prepare(&map, uf); 2608 if (!error && have_mmap_prepare) 2609 error = call_mmap_prepare(&map); 2610 if (error) 2611 goto abort_munmap; 2612 2613 /* Attempt to merge with adjacent VMAs... */ 2614 if (map.prev || map.next) { 2615 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2616 2617 vma = vma_merge_new_range(&vmg); 2618 } 2619 2620 /* ...but if we can't, allocate a new VMA. */ 2621 if (!vma) { 2622 error = __mmap_new_vma(&map, &vma); 2623 if (error) 2624 goto unacct_error; 2625 } 2626 2627 if (have_mmap_prepare) 2628 set_vma_user_defined_fields(vma, &map); 2629 2630 __mmap_complete(&map, vma); 2631 2632 return addr; 2633 2634 /* Accounting was done by __mmap_prepare(). */ 2635 unacct_error: 2636 if (map.charged) 2637 vm_unacct_memory(map.charged); 2638 abort_munmap: 2639 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2640 return error; 2641 } 2642 2643 /** 2644 * mmap_region() - Actually perform the userland mapping of a VMA into 2645 * current->mm with known, aligned and overflow-checked @addr and @len, and 2646 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2647 * 2648 * This is an internal memory management function, and should not be used 2649 * directly. 2650 * 2651 * The caller must write-lock current->mm->mmap_lock. 2652 * 2653 * @file: If a file-backed mapping, a pointer to the struct file describing the 2654 * file to be mapped, otherwise NULL. 2655 * @addr: The page-aligned address at which to perform the mapping. 2656 * @len: The page-aligned, non-zero, length of the mapping. 2657 * @vm_flags: The VMA flags which should be applied to the mapping. 2658 * @pgoff: If @file is specified, the page offset into the file, if not then 2659 * the virtual page offset in memory of the anonymous mapping. 2660 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2661 * events. 2662 * 2663 * Returns: Either an error, or the address at which the requested mapping has 2664 * been performed. 2665 */ 2666 unsigned long mmap_region(struct file *file, unsigned long addr, 2667 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2668 struct list_head *uf) 2669 { 2670 unsigned long ret; 2671 bool writable_file_mapping = false; 2672 2673 mmap_assert_write_locked(current->mm); 2674 2675 /* Check to see if MDWE is applicable. */ 2676 if (map_deny_write_exec(vm_flags, vm_flags)) 2677 return -EACCES; 2678 2679 /* Allow architectures to sanity-check the vm_flags. */ 2680 if (!arch_validate_flags(vm_flags)) 2681 return -EINVAL; 2682 2683 /* Map writable and ensure this isn't a sealed memfd. */ 2684 if (file && is_shared_maywrite(vm_flags)) { 2685 int error = mapping_map_writable(file->f_mapping); 2686 2687 if (error) 2688 return error; 2689 writable_file_mapping = true; 2690 } 2691 2692 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2693 2694 /* Clear our write mapping regardless of error. */ 2695 if (writable_file_mapping) 2696 mapping_unmap_writable(file->f_mapping); 2697 2698 validate_mm(current->mm); 2699 return ret; 2700 } 2701 2702 /* 2703 * do_brk_flags() - Increase the brk vma if the flags match. 2704 * @vmi: The vma iterator 2705 * @addr: The start address 2706 * @len: The length of the increase 2707 * @vma: The vma, 2708 * @flags: The VMA Flags 2709 * 2710 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2711 * do not match then create a new anonymous VMA. Eventually we may be able to 2712 * do some brk-specific accounting here. 2713 */ 2714 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2715 unsigned long addr, unsigned long len, unsigned long flags) 2716 { 2717 struct mm_struct *mm = current->mm; 2718 2719 /* 2720 * Check against address space limits by the changed size 2721 * Note: This happens *after* clearing old mappings in some code paths. 2722 */ 2723 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2724 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2725 return -ENOMEM; 2726 2727 if (mm->map_count > sysctl_max_map_count) 2728 return -ENOMEM; 2729 2730 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2731 return -ENOMEM; 2732 2733 /* 2734 * Expand the existing vma if possible; Note that singular lists do not 2735 * occur after forking, so the expand will only happen on new VMAs. 2736 */ 2737 if (vma && vma->vm_end == addr) { 2738 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 2739 2740 vmg.prev = vma; 2741 /* vmi is positioned at prev, which this mode expects. */ 2742 vmg.just_expand = true; 2743 2744 if (vma_merge_new_range(&vmg)) 2745 goto out; 2746 else if (vmg_nomem(&vmg)) 2747 goto unacct_fail; 2748 } 2749 2750 if (vma) 2751 vma_iter_next_range(vmi); 2752 /* create a vma struct for an anonymous mapping */ 2753 vma = vm_area_alloc(mm); 2754 if (!vma) 2755 goto unacct_fail; 2756 2757 vma_set_anonymous(vma); 2758 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2759 vm_flags_init(vma, flags); 2760 vma->vm_page_prot = vm_get_page_prot(flags); 2761 vma_start_write(vma); 2762 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2763 goto mas_store_fail; 2764 2765 mm->map_count++; 2766 validate_mm(mm); 2767 ksm_add_vma(vma); 2768 out: 2769 perf_event_mmap(vma); 2770 mm->total_vm += len >> PAGE_SHIFT; 2771 mm->data_vm += len >> PAGE_SHIFT; 2772 if (flags & VM_LOCKED) 2773 mm->locked_vm += (len >> PAGE_SHIFT); 2774 vm_flags_set(vma, VM_SOFTDIRTY); 2775 return 0; 2776 2777 mas_store_fail: 2778 vm_area_free(vma); 2779 unacct_fail: 2780 vm_unacct_memory(len >> PAGE_SHIFT); 2781 return -ENOMEM; 2782 } 2783 2784 /** 2785 * unmapped_area() - Find an area between the low_limit and the high_limit with 2786 * the correct alignment and offset, all from @info. Note: current->mm is used 2787 * for the search. 2788 * 2789 * @info: The unmapped area information including the range [low_limit - 2790 * high_limit), the alignment offset and mask. 2791 * 2792 * Return: A memory address or -ENOMEM. 2793 */ 2794 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2795 { 2796 unsigned long length, gap; 2797 unsigned long low_limit, high_limit; 2798 struct vm_area_struct *tmp; 2799 VMA_ITERATOR(vmi, current->mm, 0); 2800 2801 /* Adjust search length to account for worst case alignment overhead */ 2802 length = info->length + info->align_mask + info->start_gap; 2803 if (length < info->length) 2804 return -ENOMEM; 2805 2806 low_limit = info->low_limit; 2807 if (low_limit < mmap_min_addr) 2808 low_limit = mmap_min_addr; 2809 high_limit = info->high_limit; 2810 retry: 2811 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2812 return -ENOMEM; 2813 2814 /* 2815 * Adjust for the gap first so it doesn't interfere with the 2816 * later alignment. The first step is the minimum needed to 2817 * fulill the start gap, the next steps is the minimum to align 2818 * that. It is the minimum needed to fulill both. 2819 */ 2820 gap = vma_iter_addr(&vmi) + info->start_gap; 2821 gap += (info->align_offset - gap) & info->align_mask; 2822 tmp = vma_next(&vmi); 2823 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2824 if (vm_start_gap(tmp) < gap + length - 1) { 2825 low_limit = tmp->vm_end; 2826 vma_iter_reset(&vmi); 2827 goto retry; 2828 } 2829 } else { 2830 tmp = vma_prev(&vmi); 2831 if (tmp && vm_end_gap(tmp) > gap) { 2832 low_limit = vm_end_gap(tmp); 2833 vma_iter_reset(&vmi); 2834 goto retry; 2835 } 2836 } 2837 2838 return gap; 2839 } 2840 2841 /** 2842 * unmapped_area_topdown() - Find an area between the low_limit and the 2843 * high_limit with the correct alignment and offset at the highest available 2844 * address, all from @info. Note: current->mm is used for the search. 2845 * 2846 * @info: The unmapped area information including the range [low_limit - 2847 * high_limit), the alignment offset and mask. 2848 * 2849 * Return: A memory address or -ENOMEM. 2850 */ 2851 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2852 { 2853 unsigned long length, gap, gap_end; 2854 unsigned long low_limit, high_limit; 2855 struct vm_area_struct *tmp; 2856 VMA_ITERATOR(vmi, current->mm, 0); 2857 2858 /* Adjust search length to account for worst case alignment overhead */ 2859 length = info->length + info->align_mask + info->start_gap; 2860 if (length < info->length) 2861 return -ENOMEM; 2862 2863 low_limit = info->low_limit; 2864 if (low_limit < mmap_min_addr) 2865 low_limit = mmap_min_addr; 2866 high_limit = info->high_limit; 2867 retry: 2868 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2869 return -ENOMEM; 2870 2871 gap = vma_iter_end(&vmi) - info->length; 2872 gap -= (gap - info->align_offset) & info->align_mask; 2873 gap_end = vma_iter_end(&vmi); 2874 tmp = vma_next(&vmi); 2875 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2876 if (vm_start_gap(tmp) < gap_end) { 2877 high_limit = vm_start_gap(tmp); 2878 vma_iter_reset(&vmi); 2879 goto retry; 2880 } 2881 } else { 2882 tmp = vma_prev(&vmi); 2883 if (tmp && vm_end_gap(tmp) > gap) { 2884 high_limit = tmp->vm_start; 2885 vma_iter_reset(&vmi); 2886 goto retry; 2887 } 2888 } 2889 2890 return gap; 2891 } 2892 2893 /* 2894 * Verify that the stack growth is acceptable and 2895 * update accounting. This is shared with both the 2896 * grow-up and grow-down cases. 2897 */ 2898 static int acct_stack_growth(struct vm_area_struct *vma, 2899 unsigned long size, unsigned long grow) 2900 { 2901 struct mm_struct *mm = vma->vm_mm; 2902 unsigned long new_start; 2903 2904 /* address space limit tests */ 2905 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2906 return -ENOMEM; 2907 2908 /* Stack limit test */ 2909 if (size > rlimit(RLIMIT_STACK)) 2910 return -ENOMEM; 2911 2912 /* mlock limit tests */ 2913 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2914 return -ENOMEM; 2915 2916 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2917 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2918 vma->vm_end - size; 2919 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2920 return -EFAULT; 2921 2922 /* 2923 * Overcommit.. This must be the final test, as it will 2924 * update security statistics. 2925 */ 2926 if (security_vm_enough_memory_mm(mm, grow)) 2927 return -ENOMEM; 2928 2929 return 0; 2930 } 2931 2932 #if defined(CONFIG_STACK_GROWSUP) 2933 /* 2934 * PA-RISC uses this for its stack. 2935 * vma is the last one with address > vma->vm_end. Have to extend vma. 2936 */ 2937 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2938 { 2939 struct mm_struct *mm = vma->vm_mm; 2940 struct vm_area_struct *next; 2941 unsigned long gap_addr; 2942 int error = 0; 2943 VMA_ITERATOR(vmi, mm, vma->vm_start); 2944 2945 if (!(vma->vm_flags & VM_GROWSUP)) 2946 return -EFAULT; 2947 2948 mmap_assert_write_locked(mm); 2949 2950 /* Guard against exceeding limits of the address space. */ 2951 address &= PAGE_MASK; 2952 if (address >= (TASK_SIZE & PAGE_MASK)) 2953 return -ENOMEM; 2954 address += PAGE_SIZE; 2955 2956 /* Enforce stack_guard_gap */ 2957 gap_addr = address + stack_guard_gap; 2958 2959 /* Guard against overflow */ 2960 if (gap_addr < address || gap_addr > TASK_SIZE) 2961 gap_addr = TASK_SIZE; 2962 2963 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2964 if (next && vma_is_accessible(next)) { 2965 if (!(next->vm_flags & VM_GROWSUP)) 2966 return -ENOMEM; 2967 /* Check that both stack segments have the same anon_vma? */ 2968 } 2969 2970 if (next) 2971 vma_iter_prev_range_limit(&vmi, address); 2972 2973 vma_iter_config(&vmi, vma->vm_start, address); 2974 if (vma_iter_prealloc(&vmi, vma)) 2975 return -ENOMEM; 2976 2977 /* We must make sure the anon_vma is allocated. */ 2978 if (unlikely(anon_vma_prepare(vma))) { 2979 vma_iter_free(&vmi); 2980 return -ENOMEM; 2981 } 2982 2983 /* Lock the VMA before expanding to prevent concurrent page faults */ 2984 vma_start_write(vma); 2985 /* We update the anon VMA tree. */ 2986 anon_vma_lock_write(vma->anon_vma); 2987 2988 /* Somebody else might have raced and expanded it already */ 2989 if (address > vma->vm_end) { 2990 unsigned long size, grow; 2991 2992 size = address - vma->vm_start; 2993 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2994 2995 error = -ENOMEM; 2996 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2997 error = acct_stack_growth(vma, size, grow); 2998 if (!error) { 2999 if (vma->vm_flags & VM_LOCKED) 3000 mm->locked_vm += grow; 3001 vm_stat_account(mm, vma->vm_flags, grow); 3002 anon_vma_interval_tree_pre_update_vma(vma); 3003 vma->vm_end = address; 3004 /* Overwrite old entry in mtree. */ 3005 vma_iter_store_overwrite(&vmi, vma); 3006 anon_vma_interval_tree_post_update_vma(vma); 3007 3008 perf_event_mmap(vma); 3009 } 3010 } 3011 } 3012 anon_vma_unlock_write(vma->anon_vma); 3013 vma_iter_free(&vmi); 3014 validate_mm(mm); 3015 return error; 3016 } 3017 #endif /* CONFIG_STACK_GROWSUP */ 3018 3019 /* 3020 * vma is the first one with address < vma->vm_start. Have to extend vma. 3021 * mmap_lock held for writing. 3022 */ 3023 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 3024 { 3025 struct mm_struct *mm = vma->vm_mm; 3026 struct vm_area_struct *prev; 3027 int error = 0; 3028 VMA_ITERATOR(vmi, mm, vma->vm_start); 3029 3030 if (!(vma->vm_flags & VM_GROWSDOWN)) 3031 return -EFAULT; 3032 3033 mmap_assert_write_locked(mm); 3034 3035 address &= PAGE_MASK; 3036 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 3037 return -EPERM; 3038 3039 /* Enforce stack_guard_gap */ 3040 prev = vma_prev(&vmi); 3041 /* Check that both stack segments have the same anon_vma? */ 3042 if (prev) { 3043 if (!(prev->vm_flags & VM_GROWSDOWN) && 3044 vma_is_accessible(prev) && 3045 (address - prev->vm_end < stack_guard_gap)) 3046 return -ENOMEM; 3047 } 3048 3049 if (prev) 3050 vma_iter_next_range_limit(&vmi, vma->vm_start); 3051 3052 vma_iter_config(&vmi, address, vma->vm_end); 3053 if (vma_iter_prealloc(&vmi, vma)) 3054 return -ENOMEM; 3055 3056 /* We must make sure the anon_vma is allocated. */ 3057 if (unlikely(anon_vma_prepare(vma))) { 3058 vma_iter_free(&vmi); 3059 return -ENOMEM; 3060 } 3061 3062 /* Lock the VMA before expanding to prevent concurrent page faults */ 3063 vma_start_write(vma); 3064 /* We update the anon VMA tree. */ 3065 anon_vma_lock_write(vma->anon_vma); 3066 3067 /* Somebody else might have raced and expanded it already */ 3068 if (address < vma->vm_start) { 3069 unsigned long size, grow; 3070 3071 size = vma->vm_end - address; 3072 grow = (vma->vm_start - address) >> PAGE_SHIFT; 3073 3074 error = -ENOMEM; 3075 if (grow <= vma->vm_pgoff) { 3076 error = acct_stack_growth(vma, size, grow); 3077 if (!error) { 3078 if (vma->vm_flags & VM_LOCKED) 3079 mm->locked_vm += grow; 3080 vm_stat_account(mm, vma->vm_flags, grow); 3081 anon_vma_interval_tree_pre_update_vma(vma); 3082 vma->vm_start = address; 3083 vma->vm_pgoff -= grow; 3084 /* Overwrite old entry in mtree. */ 3085 vma_iter_store_overwrite(&vmi, vma); 3086 anon_vma_interval_tree_post_update_vma(vma); 3087 3088 perf_event_mmap(vma); 3089 } 3090 } 3091 } 3092 anon_vma_unlock_write(vma->anon_vma); 3093 vma_iter_free(&vmi); 3094 validate_mm(mm); 3095 return error; 3096 } 3097 3098 int __vm_munmap(unsigned long start, size_t len, bool unlock) 3099 { 3100 int ret; 3101 struct mm_struct *mm = current->mm; 3102 LIST_HEAD(uf); 3103 VMA_ITERATOR(vmi, mm, start); 3104 3105 if (mmap_write_lock_killable(mm)) 3106 return -EINTR; 3107 3108 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 3109 if (ret || !unlock) 3110 mmap_write_unlock(mm); 3111 3112 userfaultfd_unmap_complete(mm, &uf); 3113 return ret; 3114 } 3115 3116 /* Insert vm structure into process list sorted by address 3117 * and into the inode's i_mmap tree. If vm_file is non-NULL 3118 * then i_mmap_rwsem is taken here. 3119 */ 3120 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 3121 { 3122 unsigned long charged = vma_pages(vma); 3123 3124 3125 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end)) 3126 return -ENOMEM; 3127 3128 if ((vma->vm_flags & VM_ACCOUNT) && 3129 security_vm_enough_memory_mm(mm, charged)) 3130 return -ENOMEM; 3131 3132 /* 3133 * The vm_pgoff of a purely anonymous vma should be irrelevant 3134 * until its first write fault, when page's anon_vma and index 3135 * are set. But now set the vm_pgoff it will almost certainly 3136 * end up with (unless mremap moves it elsewhere before that 3137 * first wfault), so /proc/pid/maps tells a consistent story. 3138 * 3139 * By setting it to reflect the virtual start address of the 3140 * vma, merges and splits can happen in a seamless way, just 3141 * using the existing file pgoff checks and manipulations. 3142 * Similarly in do_mmap and in do_brk_flags. 3143 */ 3144 if (vma_is_anonymous(vma)) { 3145 BUG_ON(vma->anon_vma); 3146 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 3147 } 3148 3149 if (vma_link(mm, vma)) { 3150 if (vma->vm_flags & VM_ACCOUNT) 3151 vm_unacct_memory(charged); 3152 return -ENOMEM; 3153 } 3154 3155 return 0; 3156 } 3157