xref: /linux/mm/util.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/security.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mman.h>
15 #include <linux/hugetlb.h>
16 #include <linux/vmalloc.h>
17 #include <linux/userfaultfd_k.h>
18 
19 #include <linux/uaccess.h>
20 
21 #include "internal.h"
22 
23 /**
24  * kfree_const - conditionally free memory
25  * @x: pointer to the memory
26  *
27  * Function calls kfree only if @x is not in .rodata section.
28  */
29 void kfree_const(const void *x)
30 {
31 	if (!is_kernel_rodata((unsigned long)x))
32 		kfree(x);
33 }
34 EXPORT_SYMBOL(kfree_const);
35 
36 /**
37  * kstrdup - allocate space for and copy an existing string
38  * @s: the string to duplicate
39  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
40  *
41  * Return: newly allocated copy of @s or %NULL in case of error
42  */
43 char *kstrdup(const char *s, gfp_t gfp)
44 {
45 	size_t len;
46 	char *buf;
47 
48 	if (!s)
49 		return NULL;
50 
51 	len = strlen(s) + 1;
52 	buf = kmalloc_track_caller(len, gfp);
53 	if (buf)
54 		memcpy(buf, s, len);
55 	return buf;
56 }
57 EXPORT_SYMBOL(kstrdup);
58 
59 /**
60  * kstrdup_const - conditionally duplicate an existing const string
61  * @s: the string to duplicate
62  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
63  *
64  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
65  *
66  * Return: source string if it is in .rodata section otherwise
67  * fallback to kstrdup.
68  */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 	if (is_kernel_rodata((unsigned long)s))
72 		return s;
73 
74 	return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77 
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  *
84  * Note: Use kmemdup_nul() instead if the size is known exactly.
85  *
86  * Return: newly allocated copy of @s or %NULL in case of error
87  */
88 char *kstrndup(const char *s, size_t max, gfp_t gfp)
89 {
90 	size_t len;
91 	char *buf;
92 
93 	if (!s)
94 		return NULL;
95 
96 	len = strnlen(s, max);
97 	buf = kmalloc_track_caller(len+1, gfp);
98 	if (buf) {
99 		memcpy(buf, s, len);
100 		buf[len] = '\0';
101 	}
102 	return buf;
103 }
104 EXPORT_SYMBOL(kstrndup);
105 
106 /**
107  * kmemdup - duplicate region of memory
108  *
109  * @src: memory region to duplicate
110  * @len: memory region length
111  * @gfp: GFP mask to use
112  *
113  * Return: newly allocated copy of @src or %NULL in case of error
114  */
115 void *kmemdup(const void *src, size_t len, gfp_t gfp)
116 {
117 	void *p;
118 
119 	p = kmalloc_track_caller(len, gfp);
120 	if (p)
121 		memcpy(p, src, len);
122 	return p;
123 }
124 EXPORT_SYMBOL(kmemdup);
125 
126 /**
127  * kmemdup_nul - Create a NUL-terminated string from unterminated data
128  * @s: The data to stringify
129  * @len: The size of the data
130  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
131  *
132  * Return: newly allocated copy of @s with NUL-termination or %NULL in
133  * case of error
134  */
135 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
136 {
137 	char *buf;
138 
139 	if (!s)
140 		return NULL;
141 
142 	buf = kmalloc_track_caller(len + 1, gfp);
143 	if (buf) {
144 		memcpy(buf, s, len);
145 		buf[len] = '\0';
146 	}
147 	return buf;
148 }
149 EXPORT_SYMBOL(kmemdup_nul);
150 
151 /**
152  * memdup_user - duplicate memory region from user space
153  *
154  * @src: source address in user space
155  * @len: number of bytes to copy
156  *
157  * Return: an ERR_PTR() on failure.  Result is physically
158  * contiguous, to be freed by kfree().
159  */
160 void *memdup_user(const void __user *src, size_t len)
161 {
162 	void *p;
163 
164 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
165 	if (!p)
166 		return ERR_PTR(-ENOMEM);
167 
168 	if (copy_from_user(p, src, len)) {
169 		kfree(p);
170 		return ERR_PTR(-EFAULT);
171 	}
172 
173 	return p;
174 }
175 EXPORT_SYMBOL(memdup_user);
176 
177 /**
178  * vmemdup_user - duplicate memory region from user space
179  *
180  * @src: source address in user space
181  * @len: number of bytes to copy
182  *
183  * Return: an ERR_PTR() on failure.  Result may be not
184  * physically contiguous.  Use kvfree() to free.
185  */
186 void *vmemdup_user(const void __user *src, size_t len)
187 {
188 	void *p;
189 
190 	p = kvmalloc(len, GFP_USER);
191 	if (!p)
192 		return ERR_PTR(-ENOMEM);
193 
194 	if (copy_from_user(p, src, len)) {
195 		kvfree(p);
196 		return ERR_PTR(-EFAULT);
197 	}
198 
199 	return p;
200 }
201 EXPORT_SYMBOL(vmemdup_user);
202 
203 /**
204  * strndup_user - duplicate an existing string from user space
205  * @s: The string to duplicate
206  * @n: Maximum number of bytes to copy, including the trailing NUL.
207  *
208  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
209  */
210 char *strndup_user(const char __user *s, long n)
211 {
212 	char *p;
213 	long length;
214 
215 	length = strnlen_user(s, n);
216 
217 	if (!length)
218 		return ERR_PTR(-EFAULT);
219 
220 	if (length > n)
221 		return ERR_PTR(-EINVAL);
222 
223 	p = memdup_user(s, length);
224 
225 	if (IS_ERR(p))
226 		return p;
227 
228 	p[length - 1] = '\0';
229 
230 	return p;
231 }
232 EXPORT_SYMBOL(strndup_user);
233 
234 /**
235  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
236  *
237  * @src: source address in user space
238  * @len: number of bytes to copy
239  *
240  * Return: an ERR_PTR() on failure.
241  */
242 void *memdup_user_nul(const void __user *src, size_t len)
243 {
244 	char *p;
245 
246 	/*
247 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
248 	 * cause pagefault, which makes it pointless to use GFP_NOFS
249 	 * or GFP_ATOMIC.
250 	 */
251 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
252 	if (!p)
253 		return ERR_PTR(-ENOMEM);
254 
255 	if (copy_from_user(p, src, len)) {
256 		kfree(p);
257 		return ERR_PTR(-EFAULT);
258 	}
259 	p[len] = '\0';
260 
261 	return p;
262 }
263 EXPORT_SYMBOL(memdup_user_nul);
264 
265 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
266 		struct vm_area_struct *prev, struct rb_node *rb_parent)
267 {
268 	struct vm_area_struct *next;
269 
270 	vma->vm_prev = prev;
271 	if (prev) {
272 		next = prev->vm_next;
273 		prev->vm_next = vma;
274 	} else {
275 		mm->mmap = vma;
276 		if (rb_parent)
277 			next = rb_entry(rb_parent,
278 					struct vm_area_struct, vm_rb);
279 		else
280 			next = NULL;
281 	}
282 	vma->vm_next = next;
283 	if (next)
284 		next->vm_prev = vma;
285 }
286 
287 /* Check if the vma is being used as a stack by this task */
288 int vma_is_stack_for_current(struct vm_area_struct *vma)
289 {
290 	struct task_struct * __maybe_unused t = current;
291 
292 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
293 }
294 
295 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
296 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
297 {
298 	mm->mmap_base = TASK_UNMAPPED_BASE;
299 	mm->get_unmapped_area = arch_get_unmapped_area;
300 }
301 #endif
302 
303 /*
304  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
305  * back to the regular GUP.
306  * Note a difference with get_user_pages_fast: this always returns the
307  * number of pages pinned, 0 if no pages were pinned.
308  * If the architecture does not support this function, simply return with no
309  * pages pinned.
310  */
311 int __weak __get_user_pages_fast(unsigned long start,
312 				 int nr_pages, int write, struct page **pages)
313 {
314 	return 0;
315 }
316 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
317 
318 /**
319  * get_user_pages_fast() - pin user pages in memory
320  * @start:	starting user address
321  * @nr_pages:	number of pages from start to pin
322  * @gup_flags:	flags modifying pin behaviour
323  * @pages:	array that receives pointers to the pages pinned.
324  *		Should be at least nr_pages long.
325  *
326  * get_user_pages_fast provides equivalent functionality to get_user_pages,
327  * operating on current and current->mm, with force=0 and vma=NULL. However
328  * unlike get_user_pages, it must be called without mmap_sem held.
329  *
330  * get_user_pages_fast may take mmap_sem and page table locks, so no
331  * assumptions can be made about lack of locking. get_user_pages_fast is to be
332  * implemented in a way that is advantageous (vs get_user_pages()) when the
333  * user memory area is already faulted in and present in ptes. However if the
334  * pages have to be faulted in, it may turn out to be slightly slower so
335  * callers need to carefully consider what to use. On many architectures,
336  * get_user_pages_fast simply falls back to get_user_pages.
337  *
338  * Return: number of pages pinned. This may be fewer than the number
339  * requested. If nr_pages is 0 or negative, returns 0. If no pages
340  * were pinned, returns -errno.
341  */
342 int __weak get_user_pages_fast(unsigned long start,
343 				int nr_pages, unsigned int gup_flags,
344 				struct page **pages)
345 {
346 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
347 }
348 EXPORT_SYMBOL_GPL(get_user_pages_fast);
349 
350 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
351 	unsigned long len, unsigned long prot,
352 	unsigned long flag, unsigned long pgoff)
353 {
354 	unsigned long ret;
355 	struct mm_struct *mm = current->mm;
356 	unsigned long populate;
357 	LIST_HEAD(uf);
358 
359 	ret = security_mmap_file(file, prot, flag);
360 	if (!ret) {
361 		if (down_write_killable(&mm->mmap_sem))
362 			return -EINTR;
363 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
364 				    &populate, &uf);
365 		up_write(&mm->mmap_sem);
366 		userfaultfd_unmap_complete(mm, &uf);
367 		if (populate)
368 			mm_populate(ret, populate);
369 	}
370 	return ret;
371 }
372 
373 unsigned long vm_mmap(struct file *file, unsigned long addr,
374 	unsigned long len, unsigned long prot,
375 	unsigned long flag, unsigned long offset)
376 {
377 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
378 		return -EINVAL;
379 	if (unlikely(offset_in_page(offset)))
380 		return -EINVAL;
381 
382 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
383 }
384 EXPORT_SYMBOL(vm_mmap);
385 
386 /**
387  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
388  * failure, fall back to non-contiguous (vmalloc) allocation.
389  * @size: size of the request.
390  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
391  * @node: numa node to allocate from
392  *
393  * Uses kmalloc to get the memory but if the allocation fails then falls back
394  * to the vmalloc allocator. Use kvfree for freeing the memory.
395  *
396  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
397  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
398  * preferable to the vmalloc fallback, due to visible performance drawbacks.
399  *
400  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
401  * fall back to vmalloc.
402  *
403  * Return: pointer to the allocated memory of %NULL in case of failure
404  */
405 void *kvmalloc_node(size_t size, gfp_t flags, int node)
406 {
407 	gfp_t kmalloc_flags = flags;
408 	void *ret;
409 
410 	/*
411 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
412 	 * so the given set of flags has to be compatible.
413 	 */
414 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
415 		return kmalloc_node(size, flags, node);
416 
417 	/*
418 	 * We want to attempt a large physically contiguous block first because
419 	 * it is less likely to fragment multiple larger blocks and therefore
420 	 * contribute to a long term fragmentation less than vmalloc fallback.
421 	 * However make sure that larger requests are not too disruptive - no
422 	 * OOM killer and no allocation failure warnings as we have a fallback.
423 	 */
424 	if (size > PAGE_SIZE) {
425 		kmalloc_flags |= __GFP_NOWARN;
426 
427 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
428 			kmalloc_flags |= __GFP_NORETRY;
429 	}
430 
431 	ret = kmalloc_node(size, kmalloc_flags, node);
432 
433 	/*
434 	 * It doesn't really make sense to fallback to vmalloc for sub page
435 	 * requests
436 	 */
437 	if (ret || size <= PAGE_SIZE)
438 		return ret;
439 
440 	return __vmalloc_node_flags_caller(size, node, flags,
441 			__builtin_return_address(0));
442 }
443 EXPORT_SYMBOL(kvmalloc_node);
444 
445 /**
446  * kvfree() - Free memory.
447  * @addr: Pointer to allocated memory.
448  *
449  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
450  * It is slightly more efficient to use kfree() or vfree() if you are certain
451  * that you know which one to use.
452  *
453  * Context: Either preemptible task context or not-NMI interrupt.
454  */
455 void kvfree(const void *addr)
456 {
457 	if (is_vmalloc_addr(addr))
458 		vfree(addr);
459 	else
460 		kfree(addr);
461 }
462 EXPORT_SYMBOL(kvfree);
463 
464 static inline void *__page_rmapping(struct page *page)
465 {
466 	unsigned long mapping;
467 
468 	mapping = (unsigned long)page->mapping;
469 	mapping &= ~PAGE_MAPPING_FLAGS;
470 
471 	return (void *)mapping;
472 }
473 
474 /* Neutral page->mapping pointer to address_space or anon_vma or other */
475 void *page_rmapping(struct page *page)
476 {
477 	page = compound_head(page);
478 	return __page_rmapping(page);
479 }
480 
481 /*
482  * Return true if this page is mapped into pagetables.
483  * For compound page it returns true if any subpage of compound page is mapped.
484  */
485 bool page_mapped(struct page *page)
486 {
487 	int i;
488 
489 	if (likely(!PageCompound(page)))
490 		return atomic_read(&page->_mapcount) >= 0;
491 	page = compound_head(page);
492 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
493 		return true;
494 	if (PageHuge(page))
495 		return false;
496 	for (i = 0; i < (1 << compound_order(page)); i++) {
497 		if (atomic_read(&page[i]._mapcount) >= 0)
498 			return true;
499 	}
500 	return false;
501 }
502 EXPORT_SYMBOL(page_mapped);
503 
504 struct anon_vma *page_anon_vma(struct page *page)
505 {
506 	unsigned long mapping;
507 
508 	page = compound_head(page);
509 	mapping = (unsigned long)page->mapping;
510 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
511 		return NULL;
512 	return __page_rmapping(page);
513 }
514 
515 struct address_space *page_mapping(struct page *page)
516 {
517 	struct address_space *mapping;
518 
519 	page = compound_head(page);
520 
521 	/* This happens if someone calls flush_dcache_page on slab page */
522 	if (unlikely(PageSlab(page)))
523 		return NULL;
524 
525 	if (unlikely(PageSwapCache(page))) {
526 		swp_entry_t entry;
527 
528 		entry.val = page_private(page);
529 		return swap_address_space(entry);
530 	}
531 
532 	mapping = page->mapping;
533 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
534 		return NULL;
535 
536 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
537 }
538 EXPORT_SYMBOL(page_mapping);
539 
540 /*
541  * For file cache pages, return the address_space, otherwise return NULL
542  */
543 struct address_space *page_mapping_file(struct page *page)
544 {
545 	if (unlikely(PageSwapCache(page)))
546 		return NULL;
547 	return page_mapping(page);
548 }
549 
550 /* Slow path of page_mapcount() for compound pages */
551 int __page_mapcount(struct page *page)
552 {
553 	int ret;
554 
555 	ret = atomic_read(&page->_mapcount) + 1;
556 	/*
557 	 * For file THP page->_mapcount contains total number of mapping
558 	 * of the page: no need to look into compound_mapcount.
559 	 */
560 	if (!PageAnon(page) && !PageHuge(page))
561 		return ret;
562 	page = compound_head(page);
563 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
564 	if (PageDoubleMap(page))
565 		ret--;
566 	return ret;
567 }
568 EXPORT_SYMBOL_GPL(__page_mapcount);
569 
570 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
571 int sysctl_overcommit_ratio __read_mostly = 50;
572 unsigned long sysctl_overcommit_kbytes __read_mostly;
573 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
574 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
575 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
576 
577 int overcommit_ratio_handler(struct ctl_table *table, int write,
578 			     void __user *buffer, size_t *lenp,
579 			     loff_t *ppos)
580 {
581 	int ret;
582 
583 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
584 	if (ret == 0 && write)
585 		sysctl_overcommit_kbytes = 0;
586 	return ret;
587 }
588 
589 int overcommit_kbytes_handler(struct ctl_table *table, int write,
590 			     void __user *buffer, size_t *lenp,
591 			     loff_t *ppos)
592 {
593 	int ret;
594 
595 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
596 	if (ret == 0 && write)
597 		sysctl_overcommit_ratio = 0;
598 	return ret;
599 }
600 
601 /*
602  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
603  */
604 unsigned long vm_commit_limit(void)
605 {
606 	unsigned long allowed;
607 
608 	if (sysctl_overcommit_kbytes)
609 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
610 	else
611 		allowed = ((totalram_pages() - hugetlb_total_pages())
612 			   * sysctl_overcommit_ratio / 100);
613 	allowed += total_swap_pages;
614 
615 	return allowed;
616 }
617 
618 /*
619  * Make sure vm_committed_as in one cacheline and not cacheline shared with
620  * other variables. It can be updated by several CPUs frequently.
621  */
622 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
623 
624 /*
625  * The global memory commitment made in the system can be a metric
626  * that can be used to drive ballooning decisions when Linux is hosted
627  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
628  * balancing memory across competing virtual machines that are hosted.
629  * Several metrics drive this policy engine including the guest reported
630  * memory commitment.
631  */
632 unsigned long vm_memory_committed(void)
633 {
634 	return percpu_counter_read_positive(&vm_committed_as);
635 }
636 EXPORT_SYMBOL_GPL(vm_memory_committed);
637 
638 /*
639  * Check that a process has enough memory to allocate a new virtual
640  * mapping. 0 means there is enough memory for the allocation to
641  * succeed and -ENOMEM implies there is not.
642  *
643  * We currently support three overcommit policies, which are set via the
644  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
645  *
646  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
647  * Additional code 2002 Jul 20 by Robert Love.
648  *
649  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
650  *
651  * Note this is a helper function intended to be used by LSMs which
652  * wish to use this logic.
653  */
654 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
655 {
656 	long allowed;
657 
658 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
659 			-(s64)vm_committed_as_batch * num_online_cpus(),
660 			"memory commitment underflow");
661 
662 	vm_acct_memory(pages);
663 
664 	/*
665 	 * Sometimes we want to use more memory than we have
666 	 */
667 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
668 		return 0;
669 
670 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
671 		if (pages > totalram_pages() + total_swap_pages)
672 			goto error;
673 		return 0;
674 	}
675 
676 	allowed = vm_commit_limit();
677 	/*
678 	 * Reserve some for root
679 	 */
680 	if (!cap_sys_admin)
681 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
682 
683 	/*
684 	 * Don't let a single process grow so big a user can't recover
685 	 */
686 	if (mm) {
687 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
688 
689 		allowed -= min_t(long, mm->total_vm / 32, reserve);
690 	}
691 
692 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
693 		return 0;
694 error:
695 	vm_unacct_memory(pages);
696 
697 	return -ENOMEM;
698 }
699 
700 /**
701  * get_cmdline() - copy the cmdline value to a buffer.
702  * @task:     the task whose cmdline value to copy.
703  * @buffer:   the buffer to copy to.
704  * @buflen:   the length of the buffer. Larger cmdline values are truncated
705  *            to this length.
706  *
707  * Return: the size of the cmdline field copied. Note that the copy does
708  * not guarantee an ending NULL byte.
709  */
710 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
711 {
712 	int res = 0;
713 	unsigned int len;
714 	struct mm_struct *mm = get_task_mm(task);
715 	unsigned long arg_start, arg_end, env_start, env_end;
716 	if (!mm)
717 		goto out;
718 	if (!mm->arg_end)
719 		goto out_mm;	/* Shh! No looking before we're done */
720 
721 	spin_lock(&mm->arg_lock);
722 	arg_start = mm->arg_start;
723 	arg_end = mm->arg_end;
724 	env_start = mm->env_start;
725 	env_end = mm->env_end;
726 	spin_unlock(&mm->arg_lock);
727 
728 	len = arg_end - arg_start;
729 
730 	if (len > buflen)
731 		len = buflen;
732 
733 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
734 
735 	/*
736 	 * If the nul at the end of args has been overwritten, then
737 	 * assume application is using setproctitle(3).
738 	 */
739 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
740 		len = strnlen(buffer, res);
741 		if (len < res) {
742 			res = len;
743 		} else {
744 			len = env_end - env_start;
745 			if (len > buflen - res)
746 				len = buflen - res;
747 			res += access_process_vm(task, env_start,
748 						 buffer+res, len,
749 						 FOLL_FORCE);
750 			res = strnlen(buffer, res);
751 		}
752 	}
753 out_mm:
754 	mmput(mm);
755 out:
756 	return res;
757 }
758