xref: /linux/mm/util.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #include "swap.h"
31 
32 /**
33  * kfree_const - conditionally free memory
34  * @x: pointer to the memory
35  *
36  * Function calls kfree only if @x is not in .rodata section.
37  */
38 void kfree_const(const void *x)
39 {
40 	if (!is_kernel_rodata((unsigned long)x))
41 		kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  *
50  * Return: newly allocated copy of @s or %NULL in case of error
51  */
52 noinline
53 char *kstrdup(const char *s, gfp_t gfp)
54 {
55 	size_t len;
56 	char *buf;
57 
58 	if (!s)
59 		return NULL;
60 
61 	len = strlen(s) + 1;
62 	buf = kmalloc_track_caller(len, gfp);
63 	if (buf)
64 		memcpy(buf, s, len);
65 	return buf;
66 }
67 EXPORT_SYMBOL(kstrdup);
68 
69 /**
70  * kstrdup_const - conditionally duplicate an existing const string
71  * @s: the string to duplicate
72  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73  *
74  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75  * must not be passed to krealloc().
76  *
77  * Return: source string if it is in .rodata section otherwise
78  * fallback to kstrdup.
79  */
80 const char *kstrdup_const(const char *s, gfp_t gfp)
81 {
82 	if (is_kernel_rodata((unsigned long)s))
83 		return s;
84 
85 	return kstrdup(s, gfp);
86 }
87 EXPORT_SYMBOL(kstrdup_const);
88 
89 /**
90  * kstrndup - allocate space for and copy an existing string
91  * @s: the string to duplicate
92  * @max: read at most @max chars from @s
93  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
94  *
95  * Note: Use kmemdup_nul() instead if the size is known exactly.
96  *
97  * Return: newly allocated copy of @s or %NULL in case of error
98  */
99 char *kstrndup(const char *s, size_t max, gfp_t gfp)
100 {
101 	size_t len;
102 	char *buf;
103 
104 	if (!s)
105 		return NULL;
106 
107 	len = strnlen(s, max);
108 	buf = kmalloc_track_caller(len+1, gfp);
109 	if (buf) {
110 		memcpy(buf, s, len);
111 		buf[len] = '\0';
112 	}
113 	return buf;
114 }
115 EXPORT_SYMBOL(kstrndup);
116 
117 /**
118  * kmemdup - duplicate region of memory
119  *
120  * @src: memory region to duplicate
121  * @len: memory region length
122  * @gfp: GFP mask to use
123  *
124  * Return: newly allocated copy of @src or %NULL in case of error,
125  * result is physically contiguous. Use kfree() to free.
126  */
127 void *kmemdup(const void *src, size_t len, gfp_t gfp)
128 {
129 	void *p;
130 
131 	p = kmalloc_track_caller(len, gfp);
132 	if (p)
133 		memcpy(p, src, len);
134 	return p;
135 }
136 EXPORT_SYMBOL(kmemdup);
137 
138 /**
139  * kmemdup_array - duplicate a given array.
140  *
141  * @src: array to duplicate.
142  * @element_size: size of each element of array.
143  * @count: number of elements to duplicate from array.
144  * @gfp: GFP mask to use.
145  *
146  * Return: duplicated array of @src or %NULL in case of error,
147  * result is physically contiguous. Use kfree() to free.
148  */
149 void *kmemdup_array(const void *src, size_t element_size, size_t count, gfp_t gfp)
150 {
151 	return kmemdup(src, size_mul(element_size, count), gfp);
152 }
153 EXPORT_SYMBOL(kmemdup_array);
154 
155 /**
156  * kvmemdup - duplicate region of memory
157  *
158  * @src: memory region to duplicate
159  * @len: memory region length
160  * @gfp: GFP mask to use
161  *
162  * Return: newly allocated copy of @src or %NULL in case of error,
163  * result may be not physically contiguous. Use kvfree() to free.
164  */
165 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
166 {
167 	void *p;
168 
169 	p = kvmalloc(len, gfp);
170 	if (p)
171 		memcpy(p, src, len);
172 	return p;
173 }
174 EXPORT_SYMBOL(kvmemdup);
175 
176 /**
177  * kmemdup_nul - Create a NUL-terminated string from unterminated data
178  * @s: The data to stringify
179  * @len: The size of the data
180  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
181  *
182  * Return: newly allocated copy of @s with NUL-termination or %NULL in
183  * case of error
184  */
185 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
186 {
187 	char *buf;
188 
189 	if (!s)
190 		return NULL;
191 
192 	buf = kmalloc_track_caller(len + 1, gfp);
193 	if (buf) {
194 		memcpy(buf, s, len);
195 		buf[len] = '\0';
196 	}
197 	return buf;
198 }
199 EXPORT_SYMBOL(kmemdup_nul);
200 
201 /**
202  * memdup_user - duplicate memory region from user space
203  *
204  * @src: source address in user space
205  * @len: number of bytes to copy
206  *
207  * Return: an ERR_PTR() on failure.  Result is physically
208  * contiguous, to be freed by kfree().
209  */
210 void *memdup_user(const void __user *src, size_t len)
211 {
212 	void *p;
213 
214 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
215 	if (!p)
216 		return ERR_PTR(-ENOMEM);
217 
218 	if (copy_from_user(p, src, len)) {
219 		kfree(p);
220 		return ERR_PTR(-EFAULT);
221 	}
222 
223 	return p;
224 }
225 EXPORT_SYMBOL(memdup_user);
226 
227 /**
228  * vmemdup_user - duplicate memory region from user space
229  *
230  * @src: source address in user space
231  * @len: number of bytes to copy
232  *
233  * Return: an ERR_PTR() on failure.  Result may be not
234  * physically contiguous.  Use kvfree() to free.
235  */
236 void *vmemdup_user(const void __user *src, size_t len)
237 {
238 	void *p;
239 
240 	p = kvmalloc(len, GFP_USER);
241 	if (!p)
242 		return ERR_PTR(-ENOMEM);
243 
244 	if (copy_from_user(p, src, len)) {
245 		kvfree(p);
246 		return ERR_PTR(-EFAULT);
247 	}
248 
249 	return p;
250 }
251 EXPORT_SYMBOL(vmemdup_user);
252 
253 /**
254  * strndup_user - duplicate an existing string from user space
255  * @s: The string to duplicate
256  * @n: Maximum number of bytes to copy, including the trailing NUL.
257  *
258  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
259  */
260 char *strndup_user(const char __user *s, long n)
261 {
262 	char *p;
263 	long length;
264 
265 	length = strnlen_user(s, n);
266 
267 	if (!length)
268 		return ERR_PTR(-EFAULT);
269 
270 	if (length > n)
271 		return ERR_PTR(-EINVAL);
272 
273 	p = memdup_user(s, length);
274 
275 	if (IS_ERR(p))
276 		return p;
277 
278 	p[length - 1] = '\0';
279 
280 	return p;
281 }
282 EXPORT_SYMBOL(strndup_user);
283 
284 /**
285  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
286  *
287  * @src: source address in user space
288  * @len: number of bytes to copy
289  *
290  * Return: an ERR_PTR() on failure.
291  */
292 void *memdup_user_nul(const void __user *src, size_t len)
293 {
294 	char *p;
295 
296 	/*
297 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
298 	 * cause pagefault, which makes it pointless to use GFP_NOFS
299 	 * or GFP_ATOMIC.
300 	 */
301 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
302 	if (!p)
303 		return ERR_PTR(-ENOMEM);
304 
305 	if (copy_from_user(p, src, len)) {
306 		kfree(p);
307 		return ERR_PTR(-EFAULT);
308 	}
309 	p[len] = '\0';
310 
311 	return p;
312 }
313 EXPORT_SYMBOL(memdup_user_nul);
314 
315 /* Check if the vma is being used as a stack by this task */
316 int vma_is_stack_for_current(struct vm_area_struct *vma)
317 {
318 	struct task_struct * __maybe_unused t = current;
319 
320 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
321 }
322 
323 /*
324  * Change backing file, only valid to use during initial VMA setup.
325  */
326 void vma_set_file(struct vm_area_struct *vma, struct file *file)
327 {
328 	/* Changing an anonymous vma with this is illegal */
329 	get_file(file);
330 	swap(vma->vm_file, file);
331 	fput(file);
332 }
333 EXPORT_SYMBOL(vma_set_file);
334 
335 #ifndef STACK_RND_MASK
336 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
337 #endif
338 
339 unsigned long randomize_stack_top(unsigned long stack_top)
340 {
341 	unsigned long random_variable = 0;
342 
343 	if (current->flags & PF_RANDOMIZE) {
344 		random_variable = get_random_long();
345 		random_variable &= STACK_RND_MASK;
346 		random_variable <<= PAGE_SHIFT;
347 	}
348 #ifdef CONFIG_STACK_GROWSUP
349 	return PAGE_ALIGN(stack_top) + random_variable;
350 #else
351 	return PAGE_ALIGN(stack_top) - random_variable;
352 #endif
353 }
354 
355 /**
356  * randomize_page - Generate a random, page aligned address
357  * @start:	The smallest acceptable address the caller will take.
358  * @range:	The size of the area, starting at @start, within which the
359  *		random address must fall.
360  *
361  * If @start + @range would overflow, @range is capped.
362  *
363  * NOTE: Historical use of randomize_range, which this replaces, presumed that
364  * @start was already page aligned.  We now align it regardless.
365  *
366  * Return: A page aligned address within [start, start + range).  On error,
367  * @start is returned.
368  */
369 unsigned long randomize_page(unsigned long start, unsigned long range)
370 {
371 	if (!PAGE_ALIGNED(start)) {
372 		range -= PAGE_ALIGN(start) - start;
373 		start = PAGE_ALIGN(start);
374 	}
375 
376 	if (start > ULONG_MAX - range)
377 		range = ULONG_MAX - start;
378 
379 	range >>= PAGE_SHIFT;
380 
381 	if (range == 0)
382 		return start;
383 
384 	return start + (get_random_long() % range << PAGE_SHIFT);
385 }
386 
387 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
388 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
389 {
390 	/* Is the current task 32bit ? */
391 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
392 		return randomize_page(mm->brk, SZ_32M);
393 
394 	return randomize_page(mm->brk, SZ_1G);
395 }
396 
397 unsigned long arch_mmap_rnd(void)
398 {
399 	unsigned long rnd;
400 
401 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
402 	if (is_compat_task())
403 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
404 	else
405 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
406 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
407 
408 	return rnd << PAGE_SHIFT;
409 }
410 
411 static int mmap_is_legacy(struct rlimit *rlim_stack)
412 {
413 	if (current->personality & ADDR_COMPAT_LAYOUT)
414 		return 1;
415 
416 	/* On parisc the stack always grows up - so a unlimited stack should
417 	 * not be an indicator to use the legacy memory layout. */
418 	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
419 		!IS_ENABLED(CONFIG_STACK_GROWSUP))
420 		return 1;
421 
422 	return sysctl_legacy_va_layout;
423 }
424 
425 /*
426  * Leave enough space between the mmap area and the stack to honour ulimit in
427  * the face of randomisation.
428  */
429 #define MIN_GAP		(SZ_128M)
430 #define MAX_GAP		(STACK_TOP / 6 * 5)
431 
432 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
433 {
434 #ifdef CONFIG_STACK_GROWSUP
435 	/*
436 	 * For an upwards growing stack the calculation is much simpler.
437 	 * Memory for the maximum stack size is reserved at the top of the
438 	 * task. mmap_base starts directly below the stack and grows
439 	 * downwards.
440 	 */
441 	return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
442 #else
443 	unsigned long gap = rlim_stack->rlim_cur;
444 	unsigned long pad = stack_guard_gap;
445 
446 	/* Account for stack randomization if necessary */
447 	if (current->flags & PF_RANDOMIZE)
448 		pad += (STACK_RND_MASK << PAGE_SHIFT);
449 
450 	/* Values close to RLIM_INFINITY can overflow. */
451 	if (gap + pad > gap)
452 		gap += pad;
453 
454 	if (gap < MIN_GAP)
455 		gap = MIN_GAP;
456 	else if (gap > MAX_GAP)
457 		gap = MAX_GAP;
458 
459 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
460 #endif
461 }
462 
463 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
464 {
465 	unsigned long random_factor = 0UL;
466 
467 	if (current->flags & PF_RANDOMIZE)
468 		random_factor = arch_mmap_rnd();
469 
470 	if (mmap_is_legacy(rlim_stack)) {
471 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
472 		mm->get_unmapped_area = arch_get_unmapped_area;
473 	} else {
474 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
475 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
476 	}
477 }
478 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
479 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
480 {
481 	mm->mmap_base = TASK_UNMAPPED_BASE;
482 	mm->get_unmapped_area = arch_get_unmapped_area;
483 }
484 #endif
485 
486 /**
487  * __account_locked_vm - account locked pages to an mm's locked_vm
488  * @mm:          mm to account against
489  * @pages:       number of pages to account
490  * @inc:         %true if @pages should be considered positive, %false if not
491  * @task:        task used to check RLIMIT_MEMLOCK
492  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
493  *
494  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
495  * that mmap_lock is held as writer.
496  *
497  * Return:
498  * * 0       on success
499  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
500  */
501 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
502 			struct task_struct *task, bool bypass_rlim)
503 {
504 	unsigned long locked_vm, limit;
505 	int ret = 0;
506 
507 	mmap_assert_write_locked(mm);
508 
509 	locked_vm = mm->locked_vm;
510 	if (inc) {
511 		if (!bypass_rlim) {
512 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
513 			if (locked_vm + pages > limit)
514 				ret = -ENOMEM;
515 		}
516 		if (!ret)
517 			mm->locked_vm = locked_vm + pages;
518 	} else {
519 		WARN_ON_ONCE(pages > locked_vm);
520 		mm->locked_vm = locked_vm - pages;
521 	}
522 
523 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
524 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
525 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
526 		 ret ? " - exceeded" : "");
527 
528 	return ret;
529 }
530 EXPORT_SYMBOL_GPL(__account_locked_vm);
531 
532 /**
533  * account_locked_vm - account locked pages to an mm's locked_vm
534  * @mm:          mm to account against, may be NULL
535  * @pages:       number of pages to account
536  * @inc:         %true if @pages should be considered positive, %false if not
537  *
538  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
539  *
540  * Return:
541  * * 0       on success, or if mm is NULL
542  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
543  */
544 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
545 {
546 	int ret;
547 
548 	if (pages == 0 || !mm)
549 		return 0;
550 
551 	mmap_write_lock(mm);
552 	ret = __account_locked_vm(mm, pages, inc, current,
553 				  capable(CAP_IPC_LOCK));
554 	mmap_write_unlock(mm);
555 
556 	return ret;
557 }
558 EXPORT_SYMBOL_GPL(account_locked_vm);
559 
560 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
561 	unsigned long len, unsigned long prot,
562 	unsigned long flag, unsigned long pgoff)
563 {
564 	unsigned long ret;
565 	struct mm_struct *mm = current->mm;
566 	unsigned long populate;
567 	LIST_HEAD(uf);
568 
569 	ret = security_mmap_file(file, prot, flag);
570 	if (!ret) {
571 		if (mmap_write_lock_killable(mm))
572 			return -EINTR;
573 		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
574 			      &uf);
575 		mmap_write_unlock(mm);
576 		userfaultfd_unmap_complete(mm, &uf);
577 		if (populate)
578 			mm_populate(ret, populate);
579 	}
580 	return ret;
581 }
582 
583 unsigned long vm_mmap(struct file *file, unsigned long addr,
584 	unsigned long len, unsigned long prot,
585 	unsigned long flag, unsigned long offset)
586 {
587 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
588 		return -EINVAL;
589 	if (unlikely(offset_in_page(offset)))
590 		return -EINVAL;
591 
592 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
593 }
594 EXPORT_SYMBOL(vm_mmap);
595 
596 /**
597  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
598  * failure, fall back to non-contiguous (vmalloc) allocation.
599  * @size: size of the request.
600  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
601  * @node: numa node to allocate from
602  *
603  * Uses kmalloc to get the memory but if the allocation fails then falls back
604  * to the vmalloc allocator. Use kvfree for freeing the memory.
605  *
606  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
607  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
608  * preferable to the vmalloc fallback, due to visible performance drawbacks.
609  *
610  * Return: pointer to the allocated memory of %NULL in case of failure
611  */
612 void *kvmalloc_node(size_t size, gfp_t flags, int node)
613 {
614 	gfp_t kmalloc_flags = flags;
615 	void *ret;
616 
617 	/*
618 	 * We want to attempt a large physically contiguous block first because
619 	 * it is less likely to fragment multiple larger blocks and therefore
620 	 * contribute to a long term fragmentation less than vmalloc fallback.
621 	 * However make sure that larger requests are not too disruptive - no
622 	 * OOM killer and no allocation failure warnings as we have a fallback.
623 	 */
624 	if (size > PAGE_SIZE) {
625 		kmalloc_flags |= __GFP_NOWARN;
626 
627 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
628 			kmalloc_flags |= __GFP_NORETRY;
629 
630 		/* nofail semantic is implemented by the vmalloc fallback */
631 		kmalloc_flags &= ~__GFP_NOFAIL;
632 	}
633 
634 	ret = kmalloc_node(size, kmalloc_flags, node);
635 
636 	/*
637 	 * It doesn't really make sense to fallback to vmalloc for sub page
638 	 * requests
639 	 */
640 	if (ret || size <= PAGE_SIZE)
641 		return ret;
642 
643 	/* non-sleeping allocations are not supported by vmalloc */
644 	if (!gfpflags_allow_blocking(flags))
645 		return NULL;
646 
647 	/* Don't even allow crazy sizes */
648 	if (unlikely(size > INT_MAX)) {
649 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
650 		return NULL;
651 	}
652 
653 	/*
654 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
655 	 * since the callers already cannot assume anything
656 	 * about the resulting pointer, and cannot play
657 	 * protection games.
658 	 */
659 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
660 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
661 			node, __builtin_return_address(0));
662 }
663 EXPORT_SYMBOL(kvmalloc_node);
664 
665 /**
666  * kvfree() - Free memory.
667  * @addr: Pointer to allocated memory.
668  *
669  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
670  * It is slightly more efficient to use kfree() or vfree() if you are certain
671  * that you know which one to use.
672  *
673  * Context: Either preemptible task context or not-NMI interrupt.
674  */
675 void kvfree(const void *addr)
676 {
677 	if (is_vmalloc_addr(addr))
678 		vfree(addr);
679 	else
680 		kfree(addr);
681 }
682 EXPORT_SYMBOL(kvfree);
683 
684 /**
685  * kvfree_sensitive - Free a data object containing sensitive information.
686  * @addr: address of the data object to be freed.
687  * @len: length of the data object.
688  *
689  * Use the special memzero_explicit() function to clear the content of a
690  * kvmalloc'ed object containing sensitive data to make sure that the
691  * compiler won't optimize out the data clearing.
692  */
693 void kvfree_sensitive(const void *addr, size_t len)
694 {
695 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
696 		memzero_explicit((void *)addr, len);
697 		kvfree(addr);
698 	}
699 }
700 EXPORT_SYMBOL(kvfree_sensitive);
701 
702 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
703 {
704 	void *newp;
705 
706 	if (oldsize >= newsize)
707 		return (void *)p;
708 	newp = kvmalloc(newsize, flags);
709 	if (!newp)
710 		return NULL;
711 	memcpy(newp, p, oldsize);
712 	kvfree(p);
713 	return newp;
714 }
715 EXPORT_SYMBOL(kvrealloc);
716 
717 /**
718  * __vmalloc_array - allocate memory for a virtually contiguous array.
719  * @n: number of elements.
720  * @size: element size.
721  * @flags: the type of memory to allocate (see kmalloc).
722  */
723 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
724 {
725 	size_t bytes;
726 
727 	if (unlikely(check_mul_overflow(n, size, &bytes)))
728 		return NULL;
729 	return __vmalloc(bytes, flags);
730 }
731 EXPORT_SYMBOL(__vmalloc_array);
732 
733 /**
734  * vmalloc_array - allocate memory for a virtually contiguous array.
735  * @n: number of elements.
736  * @size: element size.
737  */
738 void *vmalloc_array(size_t n, size_t size)
739 {
740 	return __vmalloc_array(n, size, GFP_KERNEL);
741 }
742 EXPORT_SYMBOL(vmalloc_array);
743 
744 /**
745  * __vcalloc - allocate and zero memory for a virtually contiguous array.
746  * @n: number of elements.
747  * @size: element size.
748  * @flags: the type of memory to allocate (see kmalloc).
749  */
750 void *__vcalloc(size_t n, size_t size, gfp_t flags)
751 {
752 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
753 }
754 EXPORT_SYMBOL(__vcalloc);
755 
756 /**
757  * vcalloc - allocate and zero memory for a virtually contiguous array.
758  * @n: number of elements.
759  * @size: element size.
760  */
761 void *vcalloc(size_t n, size_t size)
762 {
763 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
764 }
765 EXPORT_SYMBOL(vcalloc);
766 
767 struct anon_vma *folio_anon_vma(struct folio *folio)
768 {
769 	unsigned long mapping = (unsigned long)folio->mapping;
770 
771 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
772 		return NULL;
773 	return (void *)(mapping - PAGE_MAPPING_ANON);
774 }
775 
776 /**
777  * folio_mapping - Find the mapping where this folio is stored.
778  * @folio: The folio.
779  *
780  * For folios which are in the page cache, return the mapping that this
781  * page belongs to.  Folios in the swap cache return the swap mapping
782  * this page is stored in (which is different from the mapping for the
783  * swap file or swap device where the data is stored).
784  *
785  * You can call this for folios which aren't in the swap cache or page
786  * cache and it will return NULL.
787  */
788 struct address_space *folio_mapping(struct folio *folio)
789 {
790 	struct address_space *mapping;
791 
792 	/* This happens if someone calls flush_dcache_page on slab page */
793 	if (unlikely(folio_test_slab(folio)))
794 		return NULL;
795 
796 	if (unlikely(folio_test_swapcache(folio)))
797 		return swap_address_space(folio->swap);
798 
799 	mapping = folio->mapping;
800 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
801 		return NULL;
802 
803 	return mapping;
804 }
805 EXPORT_SYMBOL(folio_mapping);
806 
807 /**
808  * folio_copy - Copy the contents of one folio to another.
809  * @dst: Folio to copy to.
810  * @src: Folio to copy from.
811  *
812  * The bytes in the folio represented by @src are copied to @dst.
813  * Assumes the caller has validated that @dst is at least as large as @src.
814  * Can be called in atomic context for order-0 folios, but if the folio is
815  * larger, it may sleep.
816  */
817 void folio_copy(struct folio *dst, struct folio *src)
818 {
819 	long i = 0;
820 	long nr = folio_nr_pages(src);
821 
822 	for (;;) {
823 		copy_highpage(folio_page(dst, i), folio_page(src, i));
824 		if (++i == nr)
825 			break;
826 		cond_resched();
827 	}
828 }
829 EXPORT_SYMBOL(folio_copy);
830 
831 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
832 int sysctl_overcommit_ratio __read_mostly = 50;
833 unsigned long sysctl_overcommit_kbytes __read_mostly;
834 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
835 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
836 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
837 
838 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
839 		size_t *lenp, loff_t *ppos)
840 {
841 	int ret;
842 
843 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
844 	if (ret == 0 && write)
845 		sysctl_overcommit_kbytes = 0;
846 	return ret;
847 }
848 
849 static void sync_overcommit_as(struct work_struct *dummy)
850 {
851 	percpu_counter_sync(&vm_committed_as);
852 }
853 
854 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
855 		size_t *lenp, loff_t *ppos)
856 {
857 	struct ctl_table t;
858 	int new_policy = -1;
859 	int ret;
860 
861 	/*
862 	 * The deviation of sync_overcommit_as could be big with loose policy
863 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
864 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
865 	 * with the strict "NEVER", and to avoid possible race condition (even
866 	 * though user usually won't too frequently do the switching to policy
867 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
868 	 *	1. changing the batch
869 	 *	2. sync percpu count on each CPU
870 	 *	3. switch the policy
871 	 */
872 	if (write) {
873 		t = *table;
874 		t.data = &new_policy;
875 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
876 		if (ret || new_policy == -1)
877 			return ret;
878 
879 		mm_compute_batch(new_policy);
880 		if (new_policy == OVERCOMMIT_NEVER)
881 			schedule_on_each_cpu(sync_overcommit_as);
882 		sysctl_overcommit_memory = new_policy;
883 	} else {
884 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
885 	}
886 
887 	return ret;
888 }
889 
890 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
891 		size_t *lenp, loff_t *ppos)
892 {
893 	int ret;
894 
895 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
896 	if (ret == 0 && write)
897 		sysctl_overcommit_ratio = 0;
898 	return ret;
899 }
900 
901 /*
902  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
903  */
904 unsigned long vm_commit_limit(void)
905 {
906 	unsigned long allowed;
907 
908 	if (sysctl_overcommit_kbytes)
909 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
910 	else
911 		allowed = ((totalram_pages() - hugetlb_total_pages())
912 			   * sysctl_overcommit_ratio / 100);
913 	allowed += total_swap_pages;
914 
915 	return allowed;
916 }
917 
918 /*
919  * Make sure vm_committed_as in one cacheline and not cacheline shared with
920  * other variables. It can be updated by several CPUs frequently.
921  */
922 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
923 
924 /*
925  * The global memory commitment made in the system can be a metric
926  * that can be used to drive ballooning decisions when Linux is hosted
927  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
928  * balancing memory across competing virtual machines that are hosted.
929  * Several metrics drive this policy engine including the guest reported
930  * memory commitment.
931  *
932  * The time cost of this is very low for small platforms, and for big
933  * platform like a 2S/36C/72T Skylake server, in worst case where
934  * vm_committed_as's spinlock is under severe contention, the time cost
935  * could be about 30~40 microseconds.
936  */
937 unsigned long vm_memory_committed(void)
938 {
939 	return percpu_counter_sum_positive(&vm_committed_as);
940 }
941 EXPORT_SYMBOL_GPL(vm_memory_committed);
942 
943 /*
944  * Check that a process has enough memory to allocate a new virtual
945  * mapping. 0 means there is enough memory for the allocation to
946  * succeed and -ENOMEM implies there is not.
947  *
948  * We currently support three overcommit policies, which are set via the
949  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
950  *
951  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
952  * Additional code 2002 Jul 20 by Robert Love.
953  *
954  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
955  *
956  * Note this is a helper function intended to be used by LSMs which
957  * wish to use this logic.
958  */
959 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
960 {
961 	long allowed;
962 	unsigned long bytes_failed;
963 
964 	vm_acct_memory(pages);
965 
966 	/*
967 	 * Sometimes we want to use more memory than we have
968 	 */
969 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
970 		return 0;
971 
972 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
973 		if (pages > totalram_pages() + total_swap_pages)
974 			goto error;
975 		return 0;
976 	}
977 
978 	allowed = vm_commit_limit();
979 	/*
980 	 * Reserve some for root
981 	 */
982 	if (!cap_sys_admin)
983 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
984 
985 	/*
986 	 * Don't let a single process grow so big a user can't recover
987 	 */
988 	if (mm) {
989 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
990 
991 		allowed -= min_t(long, mm->total_vm / 32, reserve);
992 	}
993 
994 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
995 		return 0;
996 error:
997 	bytes_failed = pages << PAGE_SHIFT;
998 	pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
999 			    __func__, current->pid, current->comm, bytes_failed);
1000 	vm_unacct_memory(pages);
1001 
1002 	return -ENOMEM;
1003 }
1004 
1005 /**
1006  * get_cmdline() - copy the cmdline value to a buffer.
1007  * @task:     the task whose cmdline value to copy.
1008  * @buffer:   the buffer to copy to.
1009  * @buflen:   the length of the buffer. Larger cmdline values are truncated
1010  *            to this length.
1011  *
1012  * Return: the size of the cmdline field copied. Note that the copy does
1013  * not guarantee an ending NULL byte.
1014  */
1015 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1016 {
1017 	int res = 0;
1018 	unsigned int len;
1019 	struct mm_struct *mm = get_task_mm(task);
1020 	unsigned long arg_start, arg_end, env_start, env_end;
1021 	if (!mm)
1022 		goto out;
1023 	if (!mm->arg_end)
1024 		goto out_mm;	/* Shh! No looking before we're done */
1025 
1026 	spin_lock(&mm->arg_lock);
1027 	arg_start = mm->arg_start;
1028 	arg_end = mm->arg_end;
1029 	env_start = mm->env_start;
1030 	env_end = mm->env_end;
1031 	spin_unlock(&mm->arg_lock);
1032 
1033 	len = arg_end - arg_start;
1034 
1035 	if (len > buflen)
1036 		len = buflen;
1037 
1038 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1039 
1040 	/*
1041 	 * If the nul at the end of args has been overwritten, then
1042 	 * assume application is using setproctitle(3).
1043 	 */
1044 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1045 		len = strnlen(buffer, res);
1046 		if (len < res) {
1047 			res = len;
1048 		} else {
1049 			len = env_end - env_start;
1050 			if (len > buflen - res)
1051 				len = buflen - res;
1052 			res += access_process_vm(task, env_start,
1053 						 buffer+res, len,
1054 						 FOLL_FORCE);
1055 			res = strnlen(buffer, res);
1056 		}
1057 	}
1058 out_mm:
1059 	mmput(mm);
1060 out:
1061 	return res;
1062 }
1063 
1064 int __weak memcmp_pages(struct page *page1, struct page *page2)
1065 {
1066 	char *addr1, *addr2;
1067 	int ret;
1068 
1069 	addr1 = kmap_local_page(page1);
1070 	addr2 = kmap_local_page(page2);
1071 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1072 	kunmap_local(addr2);
1073 	kunmap_local(addr1);
1074 	return ret;
1075 }
1076 
1077 #ifdef CONFIG_PRINTK
1078 /**
1079  * mem_dump_obj - Print available provenance information
1080  * @object: object for which to find provenance information.
1081  *
1082  * This function uses pr_cont(), so that the caller is expected to have
1083  * printed out whatever preamble is appropriate.  The provenance information
1084  * depends on the type of object and on how much debugging is enabled.
1085  * For example, for a slab-cache object, the slab name is printed, and,
1086  * if available, the return address and stack trace from the allocation
1087  * and last free path of that object.
1088  */
1089 void mem_dump_obj(void *object)
1090 {
1091 	const char *type;
1092 
1093 	if (kmem_dump_obj(object))
1094 		return;
1095 
1096 	if (vmalloc_dump_obj(object))
1097 		return;
1098 
1099 	if (is_vmalloc_addr(object))
1100 		type = "vmalloc memory";
1101 	else if (virt_addr_valid(object))
1102 		type = "non-slab/vmalloc memory";
1103 	else if (object == NULL)
1104 		type = "NULL pointer";
1105 	else if (object == ZERO_SIZE_PTR)
1106 		type = "zero-size pointer";
1107 	else
1108 		type = "non-paged memory";
1109 
1110 	pr_cont(" %s\n", type);
1111 }
1112 EXPORT_SYMBOL_GPL(mem_dump_obj);
1113 #endif
1114 
1115 /*
1116  * A driver might set a page logically offline -- PageOffline() -- and
1117  * turn the page inaccessible in the hypervisor; after that, access to page
1118  * content can be fatal.
1119  *
1120  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1121  * pages after checking PageOffline(); however, these PFN walkers can race
1122  * with drivers that set PageOffline().
1123  *
1124  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1125  * synchronize with such drivers, achieving that a page cannot be set
1126  * PageOffline() while frozen.
1127  *
1128  * page_offline_begin()/page_offline_end() is used by drivers that care about
1129  * such races when setting a page PageOffline().
1130  */
1131 static DECLARE_RWSEM(page_offline_rwsem);
1132 
1133 void page_offline_freeze(void)
1134 {
1135 	down_read(&page_offline_rwsem);
1136 }
1137 
1138 void page_offline_thaw(void)
1139 {
1140 	up_read(&page_offline_rwsem);
1141 }
1142 
1143 void page_offline_begin(void)
1144 {
1145 	down_write(&page_offline_rwsem);
1146 }
1147 EXPORT_SYMBOL(page_offline_begin);
1148 
1149 void page_offline_end(void)
1150 {
1151 	up_write(&page_offline_rwsem);
1152 }
1153 EXPORT_SYMBOL(page_offline_end);
1154 
1155 #ifndef flush_dcache_folio
1156 void flush_dcache_folio(struct folio *folio)
1157 {
1158 	long i, nr = folio_nr_pages(folio);
1159 
1160 	for (i = 0; i < nr; i++)
1161 		flush_dcache_page(folio_page(folio, i));
1162 }
1163 EXPORT_SYMBOL(flush_dcache_folio);
1164 #endif
1165