xref: /linux/mm/util.c (revision c1ca352d371f724f7fb40f016abdb563aa85fe55)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #include "swap.h"
31 
32 /**
33  * kfree_const - conditionally free memory
34  * @x: pointer to the memory
35  *
36  * Function calls kfree only if @x is not in .rodata section.
37  */
38 void kfree_const(const void *x)
39 {
40 	if (!is_kernel_rodata((unsigned long)x))
41 		kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  *
50  * Return: newly allocated copy of @s or %NULL in case of error
51  */
52 char *kstrdup(const char *s, gfp_t gfp)
53 {
54 	size_t len;
55 	char *buf;
56 
57 	if (!s)
58 		return NULL;
59 
60 	len = strlen(s) + 1;
61 	buf = kmalloc_track_caller(len, gfp);
62 	if (buf)
63 		memcpy(buf, s, len);
64 	return buf;
65 }
66 EXPORT_SYMBOL(kstrdup);
67 
68 /**
69  * kstrdup_const - conditionally duplicate an existing const string
70  * @s: the string to duplicate
71  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72  *
73  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
74  * must not be passed to krealloc().
75  *
76  * Return: source string if it is in .rodata section otherwise
77  * fallback to kstrdup.
78  */
79 const char *kstrdup_const(const char *s, gfp_t gfp)
80 {
81 	if (is_kernel_rodata((unsigned long)s))
82 		return s;
83 
84 	return kstrdup(s, gfp);
85 }
86 EXPORT_SYMBOL(kstrdup_const);
87 
88 /**
89  * kstrndup - allocate space for and copy an existing string
90  * @s: the string to duplicate
91  * @max: read at most @max chars from @s
92  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
93  *
94  * Note: Use kmemdup_nul() instead if the size is known exactly.
95  *
96  * Return: newly allocated copy of @s or %NULL in case of error
97  */
98 char *kstrndup(const char *s, size_t max, gfp_t gfp)
99 {
100 	size_t len;
101 	char *buf;
102 
103 	if (!s)
104 		return NULL;
105 
106 	len = strnlen(s, max);
107 	buf = kmalloc_track_caller(len+1, gfp);
108 	if (buf) {
109 		memcpy(buf, s, len);
110 		buf[len] = '\0';
111 	}
112 	return buf;
113 }
114 EXPORT_SYMBOL(kstrndup);
115 
116 /**
117  * kmemdup - duplicate region of memory
118  *
119  * @src: memory region to duplicate
120  * @len: memory region length
121  * @gfp: GFP mask to use
122  *
123  * Return: newly allocated copy of @src or %NULL in case of error
124  */
125 void *kmemdup(const void *src, size_t len, gfp_t gfp)
126 {
127 	void *p;
128 
129 	p = kmalloc_track_caller(len, gfp);
130 	if (p)
131 		memcpy(p, src, len);
132 	return p;
133 }
134 EXPORT_SYMBOL(kmemdup);
135 
136 /**
137  * kmemdup_nul - Create a NUL-terminated string from unterminated data
138  * @s: The data to stringify
139  * @len: The size of the data
140  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
141  *
142  * Return: newly allocated copy of @s with NUL-termination or %NULL in
143  * case of error
144  */
145 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
146 {
147 	char *buf;
148 
149 	if (!s)
150 		return NULL;
151 
152 	buf = kmalloc_track_caller(len + 1, gfp);
153 	if (buf) {
154 		memcpy(buf, s, len);
155 		buf[len] = '\0';
156 	}
157 	return buf;
158 }
159 EXPORT_SYMBOL(kmemdup_nul);
160 
161 /**
162  * memdup_user - duplicate memory region from user space
163  *
164  * @src: source address in user space
165  * @len: number of bytes to copy
166  *
167  * Return: an ERR_PTR() on failure.  Result is physically
168  * contiguous, to be freed by kfree().
169  */
170 void *memdup_user(const void __user *src, size_t len)
171 {
172 	void *p;
173 
174 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
175 	if (!p)
176 		return ERR_PTR(-ENOMEM);
177 
178 	if (copy_from_user(p, src, len)) {
179 		kfree(p);
180 		return ERR_PTR(-EFAULT);
181 	}
182 
183 	return p;
184 }
185 EXPORT_SYMBOL(memdup_user);
186 
187 /**
188  * vmemdup_user - duplicate memory region from user space
189  *
190  * @src: source address in user space
191  * @len: number of bytes to copy
192  *
193  * Return: an ERR_PTR() on failure.  Result may be not
194  * physically contiguous.  Use kvfree() to free.
195  */
196 void *vmemdup_user(const void __user *src, size_t len)
197 {
198 	void *p;
199 
200 	p = kvmalloc(len, GFP_USER);
201 	if (!p)
202 		return ERR_PTR(-ENOMEM);
203 
204 	if (copy_from_user(p, src, len)) {
205 		kvfree(p);
206 		return ERR_PTR(-EFAULT);
207 	}
208 
209 	return p;
210 }
211 EXPORT_SYMBOL(vmemdup_user);
212 
213 /**
214  * strndup_user - duplicate an existing string from user space
215  * @s: The string to duplicate
216  * @n: Maximum number of bytes to copy, including the trailing NUL.
217  *
218  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
219  */
220 char *strndup_user(const char __user *s, long n)
221 {
222 	char *p;
223 	long length;
224 
225 	length = strnlen_user(s, n);
226 
227 	if (!length)
228 		return ERR_PTR(-EFAULT);
229 
230 	if (length > n)
231 		return ERR_PTR(-EINVAL);
232 
233 	p = memdup_user(s, length);
234 
235 	if (IS_ERR(p))
236 		return p;
237 
238 	p[length - 1] = '\0';
239 
240 	return p;
241 }
242 EXPORT_SYMBOL(strndup_user);
243 
244 /**
245  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
246  *
247  * @src: source address in user space
248  * @len: number of bytes to copy
249  *
250  * Return: an ERR_PTR() on failure.
251  */
252 void *memdup_user_nul(const void __user *src, size_t len)
253 {
254 	char *p;
255 
256 	/*
257 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
258 	 * cause pagefault, which makes it pointless to use GFP_NOFS
259 	 * or GFP_ATOMIC.
260 	 */
261 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
262 	if (!p)
263 		return ERR_PTR(-ENOMEM);
264 
265 	if (copy_from_user(p, src, len)) {
266 		kfree(p);
267 		return ERR_PTR(-EFAULT);
268 	}
269 	p[len] = '\0';
270 
271 	return p;
272 }
273 EXPORT_SYMBOL(memdup_user_nul);
274 
275 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
276 		struct vm_area_struct *prev)
277 {
278 	struct vm_area_struct *next;
279 
280 	vma->vm_prev = prev;
281 	if (prev) {
282 		next = prev->vm_next;
283 		prev->vm_next = vma;
284 	} else {
285 		next = mm->mmap;
286 		mm->mmap = vma;
287 	}
288 	vma->vm_next = next;
289 	if (next)
290 		next->vm_prev = vma;
291 }
292 
293 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
294 {
295 	struct vm_area_struct *prev, *next;
296 
297 	next = vma->vm_next;
298 	prev = vma->vm_prev;
299 	if (prev)
300 		prev->vm_next = next;
301 	else
302 		mm->mmap = next;
303 	if (next)
304 		next->vm_prev = prev;
305 }
306 
307 /* Check if the vma is being used as a stack by this task */
308 int vma_is_stack_for_current(struct vm_area_struct *vma)
309 {
310 	struct task_struct * __maybe_unused t = current;
311 
312 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
313 }
314 
315 /*
316  * Change backing file, only valid to use during initial VMA setup.
317  */
318 void vma_set_file(struct vm_area_struct *vma, struct file *file)
319 {
320 	/* Changing an anonymous vma with this is illegal */
321 	get_file(file);
322 	swap(vma->vm_file, file);
323 	fput(file);
324 }
325 EXPORT_SYMBOL(vma_set_file);
326 
327 #ifndef STACK_RND_MASK
328 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
329 #endif
330 
331 unsigned long randomize_stack_top(unsigned long stack_top)
332 {
333 	unsigned long random_variable = 0;
334 
335 	if (current->flags & PF_RANDOMIZE) {
336 		random_variable = get_random_long();
337 		random_variable &= STACK_RND_MASK;
338 		random_variable <<= PAGE_SHIFT;
339 	}
340 #ifdef CONFIG_STACK_GROWSUP
341 	return PAGE_ALIGN(stack_top) + random_variable;
342 #else
343 	return PAGE_ALIGN(stack_top) - random_variable;
344 #endif
345 }
346 
347 /**
348  * randomize_page - Generate a random, page aligned address
349  * @start:	The smallest acceptable address the caller will take.
350  * @range:	The size of the area, starting at @start, within which the
351  *		random address must fall.
352  *
353  * If @start + @range would overflow, @range is capped.
354  *
355  * NOTE: Historical use of randomize_range, which this replaces, presumed that
356  * @start was already page aligned.  We now align it regardless.
357  *
358  * Return: A page aligned address within [start, start + range).  On error,
359  * @start is returned.
360  */
361 unsigned long randomize_page(unsigned long start, unsigned long range)
362 {
363 	if (!PAGE_ALIGNED(start)) {
364 		range -= PAGE_ALIGN(start) - start;
365 		start = PAGE_ALIGN(start);
366 	}
367 
368 	if (start > ULONG_MAX - range)
369 		range = ULONG_MAX - start;
370 
371 	range >>= PAGE_SHIFT;
372 
373 	if (range == 0)
374 		return start;
375 
376 	return start + (get_random_long() % range << PAGE_SHIFT);
377 }
378 
379 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
380 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
381 {
382 	/* Is the current task 32bit ? */
383 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
384 		return randomize_page(mm->brk, SZ_32M);
385 
386 	return randomize_page(mm->brk, SZ_1G);
387 }
388 
389 unsigned long arch_mmap_rnd(void)
390 {
391 	unsigned long rnd;
392 
393 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
394 	if (is_compat_task())
395 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
396 	else
397 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
398 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
399 
400 	return rnd << PAGE_SHIFT;
401 }
402 
403 static int mmap_is_legacy(struct rlimit *rlim_stack)
404 {
405 	if (current->personality & ADDR_COMPAT_LAYOUT)
406 		return 1;
407 
408 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
409 		return 1;
410 
411 	return sysctl_legacy_va_layout;
412 }
413 
414 /*
415  * Leave enough space between the mmap area and the stack to honour ulimit in
416  * the face of randomisation.
417  */
418 #define MIN_GAP		(SZ_128M)
419 #define MAX_GAP		(STACK_TOP / 6 * 5)
420 
421 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
422 {
423 	unsigned long gap = rlim_stack->rlim_cur;
424 	unsigned long pad = stack_guard_gap;
425 
426 	/* Account for stack randomization if necessary */
427 	if (current->flags & PF_RANDOMIZE)
428 		pad += (STACK_RND_MASK << PAGE_SHIFT);
429 
430 	/* Values close to RLIM_INFINITY can overflow. */
431 	if (gap + pad > gap)
432 		gap += pad;
433 
434 	if (gap < MIN_GAP)
435 		gap = MIN_GAP;
436 	else if (gap > MAX_GAP)
437 		gap = MAX_GAP;
438 
439 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
440 }
441 
442 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
443 {
444 	unsigned long random_factor = 0UL;
445 
446 	if (current->flags & PF_RANDOMIZE)
447 		random_factor = arch_mmap_rnd();
448 
449 	if (mmap_is_legacy(rlim_stack)) {
450 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
451 		mm->get_unmapped_area = arch_get_unmapped_area;
452 	} else {
453 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
454 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
455 	}
456 }
457 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
458 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
459 {
460 	mm->mmap_base = TASK_UNMAPPED_BASE;
461 	mm->get_unmapped_area = arch_get_unmapped_area;
462 }
463 #endif
464 
465 /**
466  * __account_locked_vm - account locked pages to an mm's locked_vm
467  * @mm:          mm to account against
468  * @pages:       number of pages to account
469  * @inc:         %true if @pages should be considered positive, %false if not
470  * @task:        task used to check RLIMIT_MEMLOCK
471  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
472  *
473  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
474  * that mmap_lock is held as writer.
475  *
476  * Return:
477  * * 0       on success
478  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
479  */
480 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
481 			struct task_struct *task, bool bypass_rlim)
482 {
483 	unsigned long locked_vm, limit;
484 	int ret = 0;
485 
486 	mmap_assert_write_locked(mm);
487 
488 	locked_vm = mm->locked_vm;
489 	if (inc) {
490 		if (!bypass_rlim) {
491 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
492 			if (locked_vm + pages > limit)
493 				ret = -ENOMEM;
494 		}
495 		if (!ret)
496 			mm->locked_vm = locked_vm + pages;
497 	} else {
498 		WARN_ON_ONCE(pages > locked_vm);
499 		mm->locked_vm = locked_vm - pages;
500 	}
501 
502 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
503 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
504 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
505 		 ret ? " - exceeded" : "");
506 
507 	return ret;
508 }
509 EXPORT_SYMBOL_GPL(__account_locked_vm);
510 
511 /**
512  * account_locked_vm - account locked pages to an mm's locked_vm
513  * @mm:          mm to account against, may be NULL
514  * @pages:       number of pages to account
515  * @inc:         %true if @pages should be considered positive, %false if not
516  *
517  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
518  *
519  * Return:
520  * * 0       on success, or if mm is NULL
521  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
522  */
523 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
524 {
525 	int ret;
526 
527 	if (pages == 0 || !mm)
528 		return 0;
529 
530 	mmap_write_lock(mm);
531 	ret = __account_locked_vm(mm, pages, inc, current,
532 				  capable(CAP_IPC_LOCK));
533 	mmap_write_unlock(mm);
534 
535 	return ret;
536 }
537 EXPORT_SYMBOL_GPL(account_locked_vm);
538 
539 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
540 	unsigned long len, unsigned long prot,
541 	unsigned long flag, unsigned long pgoff)
542 {
543 	unsigned long ret;
544 	struct mm_struct *mm = current->mm;
545 	unsigned long populate;
546 	LIST_HEAD(uf);
547 
548 	ret = security_mmap_file(file, prot, flag);
549 	if (!ret) {
550 		if (mmap_write_lock_killable(mm))
551 			return -EINTR;
552 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
553 			      &uf);
554 		mmap_write_unlock(mm);
555 		userfaultfd_unmap_complete(mm, &uf);
556 		if (populate)
557 			mm_populate(ret, populate);
558 	}
559 	return ret;
560 }
561 
562 unsigned long vm_mmap(struct file *file, unsigned long addr,
563 	unsigned long len, unsigned long prot,
564 	unsigned long flag, unsigned long offset)
565 {
566 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
567 		return -EINVAL;
568 	if (unlikely(offset_in_page(offset)))
569 		return -EINVAL;
570 
571 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
572 }
573 EXPORT_SYMBOL(vm_mmap);
574 
575 /**
576  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
577  * failure, fall back to non-contiguous (vmalloc) allocation.
578  * @size: size of the request.
579  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
580  * @node: numa node to allocate from
581  *
582  * Uses kmalloc to get the memory but if the allocation fails then falls back
583  * to the vmalloc allocator. Use kvfree for freeing the memory.
584  *
585  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
586  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
587  * preferable to the vmalloc fallback, due to visible performance drawbacks.
588  *
589  * Return: pointer to the allocated memory of %NULL in case of failure
590  */
591 void *kvmalloc_node(size_t size, gfp_t flags, int node)
592 {
593 	gfp_t kmalloc_flags = flags;
594 	void *ret;
595 
596 	/*
597 	 * We want to attempt a large physically contiguous block first because
598 	 * it is less likely to fragment multiple larger blocks and therefore
599 	 * contribute to a long term fragmentation less than vmalloc fallback.
600 	 * However make sure that larger requests are not too disruptive - no
601 	 * OOM killer and no allocation failure warnings as we have a fallback.
602 	 */
603 	if (size > PAGE_SIZE) {
604 		kmalloc_flags |= __GFP_NOWARN;
605 
606 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
607 			kmalloc_flags |= __GFP_NORETRY;
608 
609 		/* nofail semantic is implemented by the vmalloc fallback */
610 		kmalloc_flags &= ~__GFP_NOFAIL;
611 	}
612 
613 	ret = kmalloc_node(size, kmalloc_flags, node);
614 
615 	/*
616 	 * It doesn't really make sense to fallback to vmalloc for sub page
617 	 * requests
618 	 */
619 	if (ret || size <= PAGE_SIZE)
620 		return ret;
621 
622 	/* non-sleeping allocations are not supported by vmalloc */
623 	if (!gfpflags_allow_blocking(flags))
624 		return NULL;
625 
626 	/* Don't even allow crazy sizes */
627 	if (unlikely(size > INT_MAX)) {
628 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
629 		return NULL;
630 	}
631 
632 	/*
633 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
634 	 * since the callers already cannot assume anything
635 	 * about the resulting pointer, and cannot play
636 	 * protection games.
637 	 */
638 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
639 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
640 			node, __builtin_return_address(0));
641 }
642 EXPORT_SYMBOL(kvmalloc_node);
643 
644 /**
645  * kvfree() - Free memory.
646  * @addr: Pointer to allocated memory.
647  *
648  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
649  * It is slightly more efficient to use kfree() or vfree() if you are certain
650  * that you know which one to use.
651  *
652  * Context: Either preemptible task context or not-NMI interrupt.
653  */
654 void kvfree(const void *addr)
655 {
656 	if (is_vmalloc_addr(addr))
657 		vfree(addr);
658 	else
659 		kfree(addr);
660 }
661 EXPORT_SYMBOL(kvfree);
662 
663 /**
664  * kvfree_sensitive - Free a data object containing sensitive information.
665  * @addr: address of the data object to be freed.
666  * @len: length of the data object.
667  *
668  * Use the special memzero_explicit() function to clear the content of a
669  * kvmalloc'ed object containing sensitive data to make sure that the
670  * compiler won't optimize out the data clearing.
671  */
672 void kvfree_sensitive(const void *addr, size_t len)
673 {
674 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
675 		memzero_explicit((void *)addr, len);
676 		kvfree(addr);
677 	}
678 }
679 EXPORT_SYMBOL(kvfree_sensitive);
680 
681 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
682 {
683 	void *newp;
684 
685 	if (oldsize >= newsize)
686 		return (void *)p;
687 	newp = kvmalloc(newsize, flags);
688 	if (!newp)
689 		return NULL;
690 	memcpy(newp, p, oldsize);
691 	kvfree(p);
692 	return newp;
693 }
694 EXPORT_SYMBOL(kvrealloc);
695 
696 /**
697  * __vmalloc_array - allocate memory for a virtually contiguous array.
698  * @n: number of elements.
699  * @size: element size.
700  * @flags: the type of memory to allocate (see kmalloc).
701  */
702 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
703 {
704 	size_t bytes;
705 
706 	if (unlikely(check_mul_overflow(n, size, &bytes)))
707 		return NULL;
708 	return __vmalloc(bytes, flags);
709 }
710 EXPORT_SYMBOL(__vmalloc_array);
711 
712 /**
713  * vmalloc_array - allocate memory for a virtually contiguous array.
714  * @n: number of elements.
715  * @size: element size.
716  */
717 void *vmalloc_array(size_t n, size_t size)
718 {
719 	return __vmalloc_array(n, size, GFP_KERNEL);
720 }
721 EXPORT_SYMBOL(vmalloc_array);
722 
723 /**
724  * __vcalloc - allocate and zero memory for a virtually contiguous array.
725  * @n: number of elements.
726  * @size: element size.
727  * @flags: the type of memory to allocate (see kmalloc).
728  */
729 void *__vcalloc(size_t n, size_t size, gfp_t flags)
730 {
731 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
732 }
733 EXPORT_SYMBOL(__vcalloc);
734 
735 /**
736  * vcalloc - allocate and zero memory for a virtually contiguous array.
737  * @n: number of elements.
738  * @size: element size.
739  */
740 void *vcalloc(size_t n, size_t size)
741 {
742 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
743 }
744 EXPORT_SYMBOL(vcalloc);
745 
746 /* Neutral page->mapping pointer to address_space or anon_vma or other */
747 void *page_rmapping(struct page *page)
748 {
749 	return folio_raw_mapping(page_folio(page));
750 }
751 
752 /**
753  * folio_mapped - Is this folio mapped into userspace?
754  * @folio: The folio.
755  *
756  * Return: True if any page in this folio is referenced by user page tables.
757  */
758 bool folio_mapped(struct folio *folio)
759 {
760 	long i, nr;
761 
762 	if (!folio_test_large(folio))
763 		return atomic_read(&folio->_mapcount) >= 0;
764 	if (atomic_read(folio_mapcount_ptr(folio)) >= 0)
765 		return true;
766 	if (folio_test_hugetlb(folio))
767 		return false;
768 
769 	nr = folio_nr_pages(folio);
770 	for (i = 0; i < nr; i++) {
771 		if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0)
772 			return true;
773 	}
774 	return false;
775 }
776 EXPORT_SYMBOL(folio_mapped);
777 
778 struct anon_vma *folio_anon_vma(struct folio *folio)
779 {
780 	unsigned long mapping = (unsigned long)folio->mapping;
781 
782 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
783 		return NULL;
784 	return (void *)(mapping - PAGE_MAPPING_ANON);
785 }
786 
787 /**
788  * folio_mapping - Find the mapping where this folio is stored.
789  * @folio: The folio.
790  *
791  * For folios which are in the page cache, return the mapping that this
792  * page belongs to.  Folios in the swap cache return the swap mapping
793  * this page is stored in (which is different from the mapping for the
794  * swap file or swap device where the data is stored).
795  *
796  * You can call this for folios which aren't in the swap cache or page
797  * cache and it will return NULL.
798  */
799 struct address_space *folio_mapping(struct folio *folio)
800 {
801 	struct address_space *mapping;
802 
803 	/* This happens if someone calls flush_dcache_page on slab page */
804 	if (unlikely(folio_test_slab(folio)))
805 		return NULL;
806 
807 	if (unlikely(folio_test_swapcache(folio)))
808 		return swap_address_space(folio_swap_entry(folio));
809 
810 	mapping = folio->mapping;
811 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
812 		return NULL;
813 
814 	return mapping;
815 }
816 EXPORT_SYMBOL(folio_mapping);
817 
818 /* Slow path of page_mapcount() for compound pages */
819 int __page_mapcount(struct page *page)
820 {
821 	int ret;
822 
823 	ret = atomic_read(&page->_mapcount) + 1;
824 	/*
825 	 * For file THP page->_mapcount contains total number of mapping
826 	 * of the page: no need to look into compound_mapcount.
827 	 */
828 	if (!PageAnon(page) && !PageHuge(page))
829 		return ret;
830 	page = compound_head(page);
831 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
832 	if (PageDoubleMap(page))
833 		ret--;
834 	return ret;
835 }
836 EXPORT_SYMBOL_GPL(__page_mapcount);
837 
838 /**
839  * folio_mapcount() - Calculate the number of mappings of this folio.
840  * @folio: The folio.
841  *
842  * A large folio tracks both how many times the entire folio is mapped,
843  * and how many times each individual page in the folio is mapped.
844  * This function calculates the total number of times the folio is
845  * mapped.
846  *
847  * Return: The number of times this folio is mapped.
848  */
849 int folio_mapcount(struct folio *folio)
850 {
851 	int i, compound, nr, ret;
852 
853 	if (likely(!folio_test_large(folio)))
854 		return atomic_read(&folio->_mapcount) + 1;
855 
856 	compound = folio_entire_mapcount(folio);
857 	nr = folio_nr_pages(folio);
858 	if (folio_test_hugetlb(folio))
859 		return compound;
860 	ret = compound;
861 	for (i = 0; i < nr; i++)
862 		ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1;
863 	/* File pages has compound_mapcount included in _mapcount */
864 	if (!folio_test_anon(folio))
865 		return ret - compound * nr;
866 	if (folio_test_double_map(folio))
867 		ret -= nr;
868 	return ret;
869 }
870 
871 /**
872  * folio_copy - Copy the contents of one folio to another.
873  * @dst: Folio to copy to.
874  * @src: Folio to copy from.
875  *
876  * The bytes in the folio represented by @src are copied to @dst.
877  * Assumes the caller has validated that @dst is at least as large as @src.
878  * Can be called in atomic context for order-0 folios, but if the folio is
879  * larger, it may sleep.
880  */
881 void folio_copy(struct folio *dst, struct folio *src)
882 {
883 	long i = 0;
884 	long nr = folio_nr_pages(src);
885 
886 	for (;;) {
887 		copy_highpage(folio_page(dst, i), folio_page(src, i));
888 		if (++i == nr)
889 			break;
890 		cond_resched();
891 	}
892 }
893 
894 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
895 int sysctl_overcommit_ratio __read_mostly = 50;
896 unsigned long sysctl_overcommit_kbytes __read_mostly;
897 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
898 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
899 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
900 
901 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
902 		size_t *lenp, loff_t *ppos)
903 {
904 	int ret;
905 
906 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
907 	if (ret == 0 && write)
908 		sysctl_overcommit_kbytes = 0;
909 	return ret;
910 }
911 
912 static void sync_overcommit_as(struct work_struct *dummy)
913 {
914 	percpu_counter_sync(&vm_committed_as);
915 }
916 
917 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
918 		size_t *lenp, loff_t *ppos)
919 {
920 	struct ctl_table t;
921 	int new_policy = -1;
922 	int ret;
923 
924 	/*
925 	 * The deviation of sync_overcommit_as could be big with loose policy
926 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
927 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
928 	 * with the strict "NEVER", and to avoid possible race condition (even
929 	 * though user usually won't too frequently do the switching to policy
930 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
931 	 *	1. changing the batch
932 	 *	2. sync percpu count on each CPU
933 	 *	3. switch the policy
934 	 */
935 	if (write) {
936 		t = *table;
937 		t.data = &new_policy;
938 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
939 		if (ret || new_policy == -1)
940 			return ret;
941 
942 		mm_compute_batch(new_policy);
943 		if (new_policy == OVERCOMMIT_NEVER)
944 			schedule_on_each_cpu(sync_overcommit_as);
945 		sysctl_overcommit_memory = new_policy;
946 	} else {
947 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
948 	}
949 
950 	return ret;
951 }
952 
953 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
954 		size_t *lenp, loff_t *ppos)
955 {
956 	int ret;
957 
958 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
959 	if (ret == 0 && write)
960 		sysctl_overcommit_ratio = 0;
961 	return ret;
962 }
963 
964 /*
965  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
966  */
967 unsigned long vm_commit_limit(void)
968 {
969 	unsigned long allowed;
970 
971 	if (sysctl_overcommit_kbytes)
972 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
973 	else
974 		allowed = ((totalram_pages() - hugetlb_total_pages())
975 			   * sysctl_overcommit_ratio / 100);
976 	allowed += total_swap_pages;
977 
978 	return allowed;
979 }
980 
981 /*
982  * Make sure vm_committed_as in one cacheline and not cacheline shared with
983  * other variables. It can be updated by several CPUs frequently.
984  */
985 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
986 
987 /*
988  * The global memory commitment made in the system can be a metric
989  * that can be used to drive ballooning decisions when Linux is hosted
990  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
991  * balancing memory across competing virtual machines that are hosted.
992  * Several metrics drive this policy engine including the guest reported
993  * memory commitment.
994  *
995  * The time cost of this is very low for small platforms, and for big
996  * platform like a 2S/36C/72T Skylake server, in worst case where
997  * vm_committed_as's spinlock is under severe contention, the time cost
998  * could be about 30~40 microseconds.
999  */
1000 unsigned long vm_memory_committed(void)
1001 {
1002 	return percpu_counter_sum_positive(&vm_committed_as);
1003 }
1004 EXPORT_SYMBOL_GPL(vm_memory_committed);
1005 
1006 /*
1007  * Check that a process has enough memory to allocate a new virtual
1008  * mapping. 0 means there is enough memory for the allocation to
1009  * succeed and -ENOMEM implies there is not.
1010  *
1011  * We currently support three overcommit policies, which are set via the
1012  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
1013  *
1014  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1015  * Additional code 2002 Jul 20 by Robert Love.
1016  *
1017  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1018  *
1019  * Note this is a helper function intended to be used by LSMs which
1020  * wish to use this logic.
1021  */
1022 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1023 {
1024 	long allowed;
1025 
1026 	vm_acct_memory(pages);
1027 
1028 	/*
1029 	 * Sometimes we want to use more memory than we have
1030 	 */
1031 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1032 		return 0;
1033 
1034 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1035 		if (pages > totalram_pages() + total_swap_pages)
1036 			goto error;
1037 		return 0;
1038 	}
1039 
1040 	allowed = vm_commit_limit();
1041 	/*
1042 	 * Reserve some for root
1043 	 */
1044 	if (!cap_sys_admin)
1045 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1046 
1047 	/*
1048 	 * Don't let a single process grow so big a user can't recover
1049 	 */
1050 	if (mm) {
1051 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1052 
1053 		allowed -= min_t(long, mm->total_vm / 32, reserve);
1054 	}
1055 
1056 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1057 		return 0;
1058 error:
1059 	vm_unacct_memory(pages);
1060 
1061 	return -ENOMEM;
1062 }
1063 
1064 /**
1065  * get_cmdline() - copy the cmdline value to a buffer.
1066  * @task:     the task whose cmdline value to copy.
1067  * @buffer:   the buffer to copy to.
1068  * @buflen:   the length of the buffer. Larger cmdline values are truncated
1069  *            to this length.
1070  *
1071  * Return: the size of the cmdline field copied. Note that the copy does
1072  * not guarantee an ending NULL byte.
1073  */
1074 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1075 {
1076 	int res = 0;
1077 	unsigned int len;
1078 	struct mm_struct *mm = get_task_mm(task);
1079 	unsigned long arg_start, arg_end, env_start, env_end;
1080 	if (!mm)
1081 		goto out;
1082 	if (!mm->arg_end)
1083 		goto out_mm;	/* Shh! No looking before we're done */
1084 
1085 	spin_lock(&mm->arg_lock);
1086 	arg_start = mm->arg_start;
1087 	arg_end = mm->arg_end;
1088 	env_start = mm->env_start;
1089 	env_end = mm->env_end;
1090 	spin_unlock(&mm->arg_lock);
1091 
1092 	len = arg_end - arg_start;
1093 
1094 	if (len > buflen)
1095 		len = buflen;
1096 
1097 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1098 
1099 	/*
1100 	 * If the nul at the end of args has been overwritten, then
1101 	 * assume application is using setproctitle(3).
1102 	 */
1103 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1104 		len = strnlen(buffer, res);
1105 		if (len < res) {
1106 			res = len;
1107 		} else {
1108 			len = env_end - env_start;
1109 			if (len > buflen - res)
1110 				len = buflen - res;
1111 			res += access_process_vm(task, env_start,
1112 						 buffer+res, len,
1113 						 FOLL_FORCE);
1114 			res = strnlen(buffer, res);
1115 		}
1116 	}
1117 out_mm:
1118 	mmput(mm);
1119 out:
1120 	return res;
1121 }
1122 
1123 int __weak memcmp_pages(struct page *page1, struct page *page2)
1124 {
1125 	char *addr1, *addr2;
1126 	int ret;
1127 
1128 	addr1 = kmap_atomic(page1);
1129 	addr2 = kmap_atomic(page2);
1130 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1131 	kunmap_atomic(addr2);
1132 	kunmap_atomic(addr1);
1133 	return ret;
1134 }
1135 
1136 #ifdef CONFIG_PRINTK
1137 /**
1138  * mem_dump_obj - Print available provenance information
1139  * @object: object for which to find provenance information.
1140  *
1141  * This function uses pr_cont(), so that the caller is expected to have
1142  * printed out whatever preamble is appropriate.  The provenance information
1143  * depends on the type of object and on how much debugging is enabled.
1144  * For example, for a slab-cache object, the slab name is printed, and,
1145  * if available, the return address and stack trace from the allocation
1146  * and last free path of that object.
1147  */
1148 void mem_dump_obj(void *object)
1149 {
1150 	const char *type;
1151 
1152 	if (kmem_valid_obj(object)) {
1153 		kmem_dump_obj(object);
1154 		return;
1155 	}
1156 
1157 	if (vmalloc_dump_obj(object))
1158 		return;
1159 
1160 	if (virt_addr_valid(object))
1161 		type = "non-slab/vmalloc memory";
1162 	else if (object == NULL)
1163 		type = "NULL pointer";
1164 	else if (object == ZERO_SIZE_PTR)
1165 		type = "zero-size pointer";
1166 	else
1167 		type = "non-paged memory";
1168 
1169 	pr_cont(" %s\n", type);
1170 }
1171 EXPORT_SYMBOL_GPL(mem_dump_obj);
1172 #endif
1173 
1174 /*
1175  * A driver might set a page logically offline -- PageOffline() -- and
1176  * turn the page inaccessible in the hypervisor; after that, access to page
1177  * content can be fatal.
1178  *
1179  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1180  * pages after checking PageOffline(); however, these PFN walkers can race
1181  * with drivers that set PageOffline().
1182  *
1183  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1184  * synchronize with such drivers, achieving that a page cannot be set
1185  * PageOffline() while frozen.
1186  *
1187  * page_offline_begin()/page_offline_end() is used by drivers that care about
1188  * such races when setting a page PageOffline().
1189  */
1190 static DECLARE_RWSEM(page_offline_rwsem);
1191 
1192 void page_offline_freeze(void)
1193 {
1194 	down_read(&page_offline_rwsem);
1195 }
1196 
1197 void page_offline_thaw(void)
1198 {
1199 	up_read(&page_offline_rwsem);
1200 }
1201 
1202 void page_offline_begin(void)
1203 {
1204 	down_write(&page_offline_rwsem);
1205 }
1206 EXPORT_SYMBOL(page_offline_begin);
1207 
1208 void page_offline_end(void)
1209 {
1210 	up_write(&page_offline_rwsem);
1211 }
1212 EXPORT_SYMBOL(page_offline_end);
1213 
1214 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1215 void flush_dcache_folio(struct folio *folio)
1216 {
1217 	long i, nr = folio_nr_pages(folio);
1218 
1219 	for (i = 0; i < nr; i++)
1220 		flush_dcache_page(folio_page(folio, i));
1221 }
1222 EXPORT_SYMBOL(flush_dcache_folio);
1223 #endif
1224