xref: /linux/mm/util.c (revision bca844a8c92502b2aa5bd50a9094eaf01a1710c0)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
17 
18 #include <linux/uaccess.h>
19 
20 #include "internal.h"
21 
22 /**
23  * kfree_const - conditionally free memory
24  * @x: pointer to the memory
25  *
26  * Function calls kfree only if @x is not in .rodata section.
27  */
28 void kfree_const(const void *x)
29 {
30 	if (!is_kernel_rodata((unsigned long)x))
31 		kfree(x);
32 }
33 EXPORT_SYMBOL(kfree_const);
34 
35 /**
36  * kstrdup - allocate space for and copy an existing string
37  * @s: the string to duplicate
38  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
39  *
40  * Return: newly allocated copy of @s or %NULL in case of error
41  */
42 char *kstrdup(const char *s, gfp_t gfp)
43 {
44 	size_t len;
45 	char *buf;
46 
47 	if (!s)
48 		return NULL;
49 
50 	len = strlen(s) + 1;
51 	buf = kmalloc_track_caller(len, gfp);
52 	if (buf)
53 		memcpy(buf, s, len);
54 	return buf;
55 }
56 EXPORT_SYMBOL(kstrdup);
57 
58 /**
59  * kstrdup_const - conditionally duplicate an existing const string
60  * @s: the string to duplicate
61  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
62  *
63  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
64  *
65  * Return: source string if it is in .rodata section otherwise
66  * fallback to kstrdup.
67  */
68 const char *kstrdup_const(const char *s, gfp_t gfp)
69 {
70 	if (is_kernel_rodata((unsigned long)s))
71 		return s;
72 
73 	return kstrdup(s, gfp);
74 }
75 EXPORT_SYMBOL(kstrdup_const);
76 
77 /**
78  * kstrndup - allocate space for and copy an existing string
79  * @s: the string to duplicate
80  * @max: read at most @max chars from @s
81  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
82  *
83  * Note: Use kmemdup_nul() instead if the size is known exactly.
84  *
85  * Return: newly allocated copy of @s or %NULL in case of error
86  */
87 char *kstrndup(const char *s, size_t max, gfp_t gfp)
88 {
89 	size_t len;
90 	char *buf;
91 
92 	if (!s)
93 		return NULL;
94 
95 	len = strnlen(s, max);
96 	buf = kmalloc_track_caller(len+1, gfp);
97 	if (buf) {
98 		memcpy(buf, s, len);
99 		buf[len] = '\0';
100 	}
101 	return buf;
102 }
103 EXPORT_SYMBOL(kstrndup);
104 
105 /**
106  * kmemdup - duplicate region of memory
107  *
108  * @src: memory region to duplicate
109  * @len: memory region length
110  * @gfp: GFP mask to use
111  *
112  * Return: newly allocated copy of @src or %NULL in case of error
113  */
114 void *kmemdup(const void *src, size_t len, gfp_t gfp)
115 {
116 	void *p;
117 
118 	p = kmalloc_track_caller(len, gfp);
119 	if (p)
120 		memcpy(p, src, len);
121 	return p;
122 }
123 EXPORT_SYMBOL(kmemdup);
124 
125 /**
126  * kmemdup_nul - Create a NUL-terminated string from unterminated data
127  * @s: The data to stringify
128  * @len: The size of the data
129  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
130  *
131  * Return: newly allocated copy of @s with NUL-termination or %NULL in
132  * case of error
133  */
134 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
135 {
136 	char *buf;
137 
138 	if (!s)
139 		return NULL;
140 
141 	buf = kmalloc_track_caller(len + 1, gfp);
142 	if (buf) {
143 		memcpy(buf, s, len);
144 		buf[len] = '\0';
145 	}
146 	return buf;
147 }
148 EXPORT_SYMBOL(kmemdup_nul);
149 
150 /**
151  * memdup_user - duplicate memory region from user space
152  *
153  * @src: source address in user space
154  * @len: number of bytes to copy
155  *
156  * Return: an ERR_PTR() on failure.  Result is physically
157  * contiguous, to be freed by kfree().
158  */
159 void *memdup_user(const void __user *src, size_t len)
160 {
161 	void *p;
162 
163 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
164 	if (!p)
165 		return ERR_PTR(-ENOMEM);
166 
167 	if (copy_from_user(p, src, len)) {
168 		kfree(p);
169 		return ERR_PTR(-EFAULT);
170 	}
171 
172 	return p;
173 }
174 EXPORT_SYMBOL(memdup_user);
175 
176 /**
177  * vmemdup_user - duplicate memory region from user space
178  *
179  * @src: source address in user space
180  * @len: number of bytes to copy
181  *
182  * Return: an ERR_PTR() on failure.  Result may be not
183  * physically contiguous.  Use kvfree() to free.
184  */
185 void *vmemdup_user(const void __user *src, size_t len)
186 {
187 	void *p;
188 
189 	p = kvmalloc(len, GFP_USER);
190 	if (!p)
191 		return ERR_PTR(-ENOMEM);
192 
193 	if (copy_from_user(p, src, len)) {
194 		kvfree(p);
195 		return ERR_PTR(-EFAULT);
196 	}
197 
198 	return p;
199 }
200 EXPORT_SYMBOL(vmemdup_user);
201 
202 /**
203  * strndup_user - duplicate an existing string from user space
204  * @s: The string to duplicate
205  * @n: Maximum number of bytes to copy, including the trailing NUL.
206  *
207  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
208  */
209 char *strndup_user(const char __user *s, long n)
210 {
211 	char *p;
212 	long length;
213 
214 	length = strnlen_user(s, n);
215 
216 	if (!length)
217 		return ERR_PTR(-EFAULT);
218 
219 	if (length > n)
220 		return ERR_PTR(-EINVAL);
221 
222 	p = memdup_user(s, length);
223 
224 	if (IS_ERR(p))
225 		return p;
226 
227 	p[length - 1] = '\0';
228 
229 	return p;
230 }
231 EXPORT_SYMBOL(strndup_user);
232 
233 /**
234  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
235  *
236  * @src: source address in user space
237  * @len: number of bytes to copy
238  *
239  * Return: an ERR_PTR() on failure.
240  */
241 void *memdup_user_nul(const void __user *src, size_t len)
242 {
243 	char *p;
244 
245 	/*
246 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
247 	 * cause pagefault, which makes it pointless to use GFP_NOFS
248 	 * or GFP_ATOMIC.
249 	 */
250 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
251 	if (!p)
252 		return ERR_PTR(-ENOMEM);
253 
254 	if (copy_from_user(p, src, len)) {
255 		kfree(p);
256 		return ERR_PTR(-EFAULT);
257 	}
258 	p[len] = '\0';
259 
260 	return p;
261 }
262 EXPORT_SYMBOL(memdup_user_nul);
263 
264 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
265 		struct vm_area_struct *prev, struct rb_node *rb_parent)
266 {
267 	struct vm_area_struct *next;
268 
269 	vma->vm_prev = prev;
270 	if (prev) {
271 		next = prev->vm_next;
272 		prev->vm_next = vma;
273 	} else {
274 		mm->mmap = vma;
275 		if (rb_parent)
276 			next = rb_entry(rb_parent,
277 					struct vm_area_struct, vm_rb);
278 		else
279 			next = NULL;
280 	}
281 	vma->vm_next = next;
282 	if (next)
283 		next->vm_prev = vma;
284 }
285 
286 /* Check if the vma is being used as a stack by this task */
287 int vma_is_stack_for_current(struct vm_area_struct *vma)
288 {
289 	struct task_struct * __maybe_unused t = current;
290 
291 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
292 }
293 
294 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
295 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
296 {
297 	mm->mmap_base = TASK_UNMAPPED_BASE;
298 	mm->get_unmapped_area = arch_get_unmapped_area;
299 }
300 #endif
301 
302 /*
303  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
304  * back to the regular GUP.
305  * Note a difference with get_user_pages_fast: this always returns the
306  * number of pages pinned, 0 if no pages were pinned.
307  * If the architecture does not support this function, simply return with no
308  * pages pinned.
309  */
310 int __weak __get_user_pages_fast(unsigned long start,
311 				 int nr_pages, int write, struct page **pages)
312 {
313 	return 0;
314 }
315 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
316 
317 /**
318  * get_user_pages_fast() - pin user pages in memory
319  * @start:	starting user address
320  * @nr_pages:	number of pages from start to pin
321  * @gup_flags:	flags modifying pin behaviour
322  * @pages:	array that receives pointers to the pages pinned.
323  *		Should be at least nr_pages long.
324  *
325  * get_user_pages_fast provides equivalent functionality to get_user_pages,
326  * operating on current and current->mm, with force=0 and vma=NULL. However
327  * unlike get_user_pages, it must be called without mmap_sem held.
328  *
329  * get_user_pages_fast may take mmap_sem and page table locks, so no
330  * assumptions can be made about lack of locking. get_user_pages_fast is to be
331  * implemented in a way that is advantageous (vs get_user_pages()) when the
332  * user memory area is already faulted in and present in ptes. However if the
333  * pages have to be faulted in, it may turn out to be slightly slower so
334  * callers need to carefully consider what to use. On many architectures,
335  * get_user_pages_fast simply falls back to get_user_pages.
336  *
337  * Return: number of pages pinned. This may be fewer than the number
338  * requested. If nr_pages is 0 or negative, returns 0. If no pages
339  * were pinned, returns -errno.
340  */
341 int __weak get_user_pages_fast(unsigned long start,
342 				int nr_pages, unsigned int gup_flags,
343 				struct page **pages)
344 {
345 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
346 }
347 EXPORT_SYMBOL_GPL(get_user_pages_fast);
348 
349 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
350 	unsigned long len, unsigned long prot,
351 	unsigned long flag, unsigned long pgoff)
352 {
353 	unsigned long ret;
354 	struct mm_struct *mm = current->mm;
355 	unsigned long populate;
356 	LIST_HEAD(uf);
357 
358 	ret = security_mmap_file(file, prot, flag);
359 	if (!ret) {
360 		if (down_write_killable(&mm->mmap_sem))
361 			return -EINTR;
362 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
363 				    &populate, &uf);
364 		up_write(&mm->mmap_sem);
365 		userfaultfd_unmap_complete(mm, &uf);
366 		if (populate)
367 			mm_populate(ret, populate);
368 	}
369 	return ret;
370 }
371 
372 unsigned long vm_mmap(struct file *file, unsigned long addr,
373 	unsigned long len, unsigned long prot,
374 	unsigned long flag, unsigned long offset)
375 {
376 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
377 		return -EINVAL;
378 	if (unlikely(offset_in_page(offset)))
379 		return -EINVAL;
380 
381 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
382 }
383 EXPORT_SYMBOL(vm_mmap);
384 
385 /**
386  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
387  * failure, fall back to non-contiguous (vmalloc) allocation.
388  * @size: size of the request.
389  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
390  * @node: numa node to allocate from
391  *
392  * Uses kmalloc to get the memory but if the allocation fails then falls back
393  * to the vmalloc allocator. Use kvfree for freeing the memory.
394  *
395  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
396  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
397  * preferable to the vmalloc fallback, due to visible performance drawbacks.
398  *
399  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
400  * fall back to vmalloc.
401  *
402  * Return: pointer to the allocated memory of %NULL in case of failure
403  */
404 void *kvmalloc_node(size_t size, gfp_t flags, int node)
405 {
406 	gfp_t kmalloc_flags = flags;
407 	void *ret;
408 
409 	/*
410 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
411 	 * so the given set of flags has to be compatible.
412 	 */
413 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
414 		return kmalloc_node(size, flags, node);
415 
416 	/*
417 	 * We want to attempt a large physically contiguous block first because
418 	 * it is less likely to fragment multiple larger blocks and therefore
419 	 * contribute to a long term fragmentation less than vmalloc fallback.
420 	 * However make sure that larger requests are not too disruptive - no
421 	 * OOM killer and no allocation failure warnings as we have a fallback.
422 	 */
423 	if (size > PAGE_SIZE) {
424 		kmalloc_flags |= __GFP_NOWARN;
425 
426 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
427 			kmalloc_flags |= __GFP_NORETRY;
428 	}
429 
430 	ret = kmalloc_node(size, kmalloc_flags, node);
431 
432 	/*
433 	 * It doesn't really make sense to fallback to vmalloc for sub page
434 	 * requests
435 	 */
436 	if (ret || size <= PAGE_SIZE)
437 		return ret;
438 
439 	return __vmalloc_node_flags_caller(size, node, flags,
440 			__builtin_return_address(0));
441 }
442 EXPORT_SYMBOL(kvmalloc_node);
443 
444 /**
445  * kvfree() - Free memory.
446  * @addr: Pointer to allocated memory.
447  *
448  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
449  * It is slightly more efficient to use kfree() or vfree() if you are certain
450  * that you know which one to use.
451  *
452  * Context: Either preemptible task context or not-NMI interrupt.
453  */
454 void kvfree(const void *addr)
455 {
456 	if (is_vmalloc_addr(addr))
457 		vfree(addr);
458 	else
459 		kfree(addr);
460 }
461 EXPORT_SYMBOL(kvfree);
462 
463 static inline void *__page_rmapping(struct page *page)
464 {
465 	unsigned long mapping;
466 
467 	mapping = (unsigned long)page->mapping;
468 	mapping &= ~PAGE_MAPPING_FLAGS;
469 
470 	return (void *)mapping;
471 }
472 
473 /* Neutral page->mapping pointer to address_space or anon_vma or other */
474 void *page_rmapping(struct page *page)
475 {
476 	page = compound_head(page);
477 	return __page_rmapping(page);
478 }
479 
480 /*
481  * Return true if this page is mapped into pagetables.
482  * For compound page it returns true if any subpage of compound page is mapped.
483  */
484 bool page_mapped(struct page *page)
485 {
486 	int i;
487 
488 	if (likely(!PageCompound(page)))
489 		return atomic_read(&page->_mapcount) >= 0;
490 	page = compound_head(page);
491 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
492 		return true;
493 	if (PageHuge(page))
494 		return false;
495 	for (i = 0; i < (1 << compound_order(page)); i++) {
496 		if (atomic_read(&page[i]._mapcount) >= 0)
497 			return true;
498 	}
499 	return false;
500 }
501 EXPORT_SYMBOL(page_mapped);
502 
503 struct anon_vma *page_anon_vma(struct page *page)
504 {
505 	unsigned long mapping;
506 
507 	page = compound_head(page);
508 	mapping = (unsigned long)page->mapping;
509 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
510 		return NULL;
511 	return __page_rmapping(page);
512 }
513 
514 struct address_space *page_mapping(struct page *page)
515 {
516 	struct address_space *mapping;
517 
518 	page = compound_head(page);
519 
520 	/* This happens if someone calls flush_dcache_page on slab page */
521 	if (unlikely(PageSlab(page)))
522 		return NULL;
523 
524 	if (unlikely(PageSwapCache(page))) {
525 		swp_entry_t entry;
526 
527 		entry.val = page_private(page);
528 		return swap_address_space(entry);
529 	}
530 
531 	mapping = page->mapping;
532 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
533 		return NULL;
534 
535 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
536 }
537 EXPORT_SYMBOL(page_mapping);
538 
539 /*
540  * For file cache pages, return the address_space, otherwise return NULL
541  */
542 struct address_space *page_mapping_file(struct page *page)
543 {
544 	if (unlikely(PageSwapCache(page)))
545 		return NULL;
546 	return page_mapping(page);
547 }
548 
549 /* Slow path of page_mapcount() for compound pages */
550 int __page_mapcount(struct page *page)
551 {
552 	int ret;
553 
554 	ret = atomic_read(&page->_mapcount) + 1;
555 	/*
556 	 * For file THP page->_mapcount contains total number of mapping
557 	 * of the page: no need to look into compound_mapcount.
558 	 */
559 	if (!PageAnon(page) && !PageHuge(page))
560 		return ret;
561 	page = compound_head(page);
562 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
563 	if (PageDoubleMap(page))
564 		ret--;
565 	return ret;
566 }
567 EXPORT_SYMBOL_GPL(__page_mapcount);
568 
569 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
570 int sysctl_overcommit_ratio __read_mostly = 50;
571 unsigned long sysctl_overcommit_kbytes __read_mostly;
572 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
573 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
574 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
575 
576 int overcommit_ratio_handler(struct ctl_table *table, int write,
577 			     void __user *buffer, size_t *lenp,
578 			     loff_t *ppos)
579 {
580 	int ret;
581 
582 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
583 	if (ret == 0 && write)
584 		sysctl_overcommit_kbytes = 0;
585 	return ret;
586 }
587 
588 int overcommit_kbytes_handler(struct ctl_table *table, int write,
589 			     void __user *buffer, size_t *lenp,
590 			     loff_t *ppos)
591 {
592 	int ret;
593 
594 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
595 	if (ret == 0 && write)
596 		sysctl_overcommit_ratio = 0;
597 	return ret;
598 }
599 
600 /*
601  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
602  */
603 unsigned long vm_commit_limit(void)
604 {
605 	unsigned long allowed;
606 
607 	if (sysctl_overcommit_kbytes)
608 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
609 	else
610 		allowed = ((totalram_pages() - hugetlb_total_pages())
611 			   * sysctl_overcommit_ratio / 100);
612 	allowed += total_swap_pages;
613 
614 	return allowed;
615 }
616 
617 /*
618  * Make sure vm_committed_as in one cacheline and not cacheline shared with
619  * other variables. It can be updated by several CPUs frequently.
620  */
621 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
622 
623 /*
624  * The global memory commitment made in the system can be a metric
625  * that can be used to drive ballooning decisions when Linux is hosted
626  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
627  * balancing memory across competing virtual machines that are hosted.
628  * Several metrics drive this policy engine including the guest reported
629  * memory commitment.
630  */
631 unsigned long vm_memory_committed(void)
632 {
633 	return percpu_counter_read_positive(&vm_committed_as);
634 }
635 EXPORT_SYMBOL_GPL(vm_memory_committed);
636 
637 /*
638  * Check that a process has enough memory to allocate a new virtual
639  * mapping. 0 means there is enough memory for the allocation to
640  * succeed and -ENOMEM implies there is not.
641  *
642  * We currently support three overcommit policies, which are set via the
643  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
644  *
645  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
646  * Additional code 2002 Jul 20 by Robert Love.
647  *
648  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
649  *
650  * Note this is a helper function intended to be used by LSMs which
651  * wish to use this logic.
652  */
653 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
654 {
655 	long allowed;
656 
657 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
658 			-(s64)vm_committed_as_batch * num_online_cpus(),
659 			"memory commitment underflow");
660 
661 	vm_acct_memory(pages);
662 
663 	/*
664 	 * Sometimes we want to use more memory than we have
665 	 */
666 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
667 		return 0;
668 
669 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
670 		if (pages > totalram_pages() + total_swap_pages)
671 			goto error;
672 		return 0;
673 	}
674 
675 	allowed = vm_commit_limit();
676 	/*
677 	 * Reserve some for root
678 	 */
679 	if (!cap_sys_admin)
680 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
681 
682 	/*
683 	 * Don't let a single process grow so big a user can't recover
684 	 */
685 	if (mm) {
686 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
687 
688 		allowed -= min_t(long, mm->total_vm / 32, reserve);
689 	}
690 
691 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
692 		return 0;
693 error:
694 	vm_unacct_memory(pages);
695 
696 	return -ENOMEM;
697 }
698 
699 /**
700  * get_cmdline() - copy the cmdline value to a buffer.
701  * @task:     the task whose cmdline value to copy.
702  * @buffer:   the buffer to copy to.
703  * @buflen:   the length of the buffer. Larger cmdline values are truncated
704  *            to this length.
705  *
706  * Return: the size of the cmdline field copied. Note that the copy does
707  * not guarantee an ending NULL byte.
708  */
709 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
710 {
711 	int res = 0;
712 	unsigned int len;
713 	struct mm_struct *mm = get_task_mm(task);
714 	unsigned long arg_start, arg_end, env_start, env_end;
715 	if (!mm)
716 		goto out;
717 	if (!mm->arg_end)
718 		goto out_mm;	/* Shh! No looking before we're done */
719 
720 	down_read(&mm->mmap_sem);
721 	arg_start = mm->arg_start;
722 	arg_end = mm->arg_end;
723 	env_start = mm->env_start;
724 	env_end = mm->env_end;
725 	up_read(&mm->mmap_sem);
726 
727 	len = arg_end - arg_start;
728 
729 	if (len > buflen)
730 		len = buflen;
731 
732 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
733 
734 	/*
735 	 * If the nul at the end of args has been overwritten, then
736 	 * assume application is using setproctitle(3).
737 	 */
738 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
739 		len = strnlen(buffer, res);
740 		if (len < res) {
741 			res = len;
742 		} else {
743 			len = env_end - env_start;
744 			if (len > buflen - res)
745 				len = buflen - res;
746 			res += access_process_vm(task, env_start,
747 						 buffer+res, len,
748 						 FOLL_FORCE);
749 			res = strnlen(buffer, res);
750 		}
751 	}
752 out_mm:
753 	mmput(mm);
754 out:
755 	return res;
756 }
757