1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 /** 32 * kfree_const - conditionally free memory 33 * @x: pointer to the memory 34 * 35 * Function calls kfree only if @x is not in .rodata section. 36 */ 37 void kfree_const(const void *x) 38 { 39 if (!is_kernel_rodata((unsigned long)x)) 40 kfree(x); 41 } 42 EXPORT_SYMBOL(kfree_const); 43 44 /** 45 * kstrdup - allocate space for and copy an existing string 46 * @s: the string to duplicate 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 48 * 49 * Return: newly allocated copy of @s or %NULL in case of error 50 */ 51 char *kstrdup(const char *s, gfp_t gfp) 52 { 53 size_t len; 54 char *buf; 55 56 if (!s) 57 return NULL; 58 59 len = strlen(s) + 1; 60 buf = kmalloc_track_caller(len, gfp); 61 if (buf) 62 memcpy(buf, s, len); 63 return buf; 64 } 65 EXPORT_SYMBOL(kstrdup); 66 67 /** 68 * kstrdup_const - conditionally duplicate an existing const string 69 * @s: the string to duplicate 70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 71 * 72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 73 * must not be passed to krealloc(). 74 * 75 * Return: source string if it is in .rodata section otherwise 76 * fallback to kstrdup. 77 */ 78 const char *kstrdup_const(const char *s, gfp_t gfp) 79 { 80 if (is_kernel_rodata((unsigned long)s)) 81 return s; 82 83 return kstrdup(s, gfp); 84 } 85 EXPORT_SYMBOL(kstrdup_const); 86 87 /** 88 * kstrndup - allocate space for and copy an existing string 89 * @s: the string to duplicate 90 * @max: read at most @max chars from @s 91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 92 * 93 * Note: Use kmemdup_nul() instead if the size is known exactly. 94 * 95 * Return: newly allocated copy of @s or %NULL in case of error 96 */ 97 char *kstrndup(const char *s, size_t max, gfp_t gfp) 98 { 99 size_t len; 100 char *buf; 101 102 if (!s) 103 return NULL; 104 105 len = strnlen(s, max); 106 buf = kmalloc_track_caller(len+1, gfp); 107 if (buf) { 108 memcpy(buf, s, len); 109 buf[len] = '\0'; 110 } 111 return buf; 112 } 113 EXPORT_SYMBOL(kstrndup); 114 115 /** 116 * kmemdup - duplicate region of memory 117 * 118 * @src: memory region to duplicate 119 * @len: memory region length 120 * @gfp: GFP mask to use 121 * 122 * Return: newly allocated copy of @src or %NULL in case of error 123 */ 124 void *kmemdup(const void *src, size_t len, gfp_t gfp) 125 { 126 void *p; 127 128 p = kmalloc_track_caller(len, gfp); 129 if (p) 130 memcpy(p, src, len); 131 return p; 132 } 133 EXPORT_SYMBOL(kmemdup); 134 135 /** 136 * kmemdup_nul - Create a NUL-terminated string from unterminated data 137 * @s: The data to stringify 138 * @len: The size of the data 139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 140 * 141 * Return: newly allocated copy of @s with NUL-termination or %NULL in 142 * case of error 143 */ 144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 145 { 146 char *buf; 147 148 if (!s) 149 return NULL; 150 151 buf = kmalloc_track_caller(len + 1, gfp); 152 if (buf) { 153 memcpy(buf, s, len); 154 buf[len] = '\0'; 155 } 156 return buf; 157 } 158 EXPORT_SYMBOL(kmemdup_nul); 159 160 /** 161 * memdup_user - duplicate memory region from user space 162 * 163 * @src: source address in user space 164 * @len: number of bytes to copy 165 * 166 * Return: an ERR_PTR() on failure. Result is physically 167 * contiguous, to be freed by kfree(). 168 */ 169 void *memdup_user(const void __user *src, size_t len) 170 { 171 void *p; 172 173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 174 if (!p) 175 return ERR_PTR(-ENOMEM); 176 177 if (copy_from_user(p, src, len)) { 178 kfree(p); 179 return ERR_PTR(-EFAULT); 180 } 181 182 return p; 183 } 184 EXPORT_SYMBOL(memdup_user); 185 186 /** 187 * vmemdup_user - duplicate memory region from user space 188 * 189 * @src: source address in user space 190 * @len: number of bytes to copy 191 * 192 * Return: an ERR_PTR() on failure. Result may be not 193 * physically contiguous. Use kvfree() to free. 194 */ 195 void *vmemdup_user(const void __user *src, size_t len) 196 { 197 void *p; 198 199 p = kvmalloc(len, GFP_USER); 200 if (!p) 201 return ERR_PTR(-ENOMEM); 202 203 if (copy_from_user(p, src, len)) { 204 kvfree(p); 205 return ERR_PTR(-EFAULT); 206 } 207 208 return p; 209 } 210 EXPORT_SYMBOL(vmemdup_user); 211 212 /** 213 * strndup_user - duplicate an existing string from user space 214 * @s: The string to duplicate 215 * @n: Maximum number of bytes to copy, including the trailing NUL. 216 * 217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 218 */ 219 char *strndup_user(const char __user *s, long n) 220 { 221 char *p; 222 long length; 223 224 length = strnlen_user(s, n); 225 226 if (!length) 227 return ERR_PTR(-EFAULT); 228 229 if (length > n) 230 return ERR_PTR(-EINVAL); 231 232 p = memdup_user(s, length); 233 234 if (IS_ERR(p)) 235 return p; 236 237 p[length - 1] = '\0'; 238 239 return p; 240 } 241 EXPORT_SYMBOL(strndup_user); 242 243 /** 244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 245 * 246 * @src: source address in user space 247 * @len: number of bytes to copy 248 * 249 * Return: an ERR_PTR() on failure. 250 */ 251 void *memdup_user_nul(const void __user *src, size_t len) 252 { 253 char *p; 254 255 /* 256 * Always use GFP_KERNEL, since copy_from_user() can sleep and 257 * cause pagefault, which makes it pointless to use GFP_NOFS 258 * or GFP_ATOMIC. 259 */ 260 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 261 if (!p) 262 return ERR_PTR(-ENOMEM); 263 264 if (copy_from_user(p, src, len)) { 265 kfree(p); 266 return ERR_PTR(-EFAULT); 267 } 268 p[len] = '\0'; 269 270 return p; 271 } 272 EXPORT_SYMBOL(memdup_user_nul); 273 274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 275 struct vm_area_struct *prev) 276 { 277 struct vm_area_struct *next; 278 279 vma->vm_prev = prev; 280 if (prev) { 281 next = prev->vm_next; 282 prev->vm_next = vma; 283 } else { 284 next = mm->mmap; 285 mm->mmap = vma; 286 } 287 vma->vm_next = next; 288 if (next) 289 next->vm_prev = vma; 290 } 291 292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma) 293 { 294 struct vm_area_struct *prev, *next; 295 296 next = vma->vm_next; 297 prev = vma->vm_prev; 298 if (prev) 299 prev->vm_next = next; 300 else 301 mm->mmap = next; 302 if (next) 303 next->vm_prev = prev; 304 } 305 306 /* Check if the vma is being used as a stack by this task */ 307 int vma_is_stack_for_current(struct vm_area_struct *vma) 308 { 309 struct task_struct * __maybe_unused t = current; 310 311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 312 } 313 314 /* 315 * Change backing file, only valid to use during initial VMA setup. 316 */ 317 void vma_set_file(struct vm_area_struct *vma, struct file *file) 318 { 319 /* Changing an anonymous vma with this is illegal */ 320 get_file(file); 321 swap(vma->vm_file, file); 322 fput(file); 323 } 324 EXPORT_SYMBOL(vma_set_file); 325 326 #ifndef STACK_RND_MASK 327 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 328 #endif 329 330 unsigned long randomize_stack_top(unsigned long stack_top) 331 { 332 unsigned long random_variable = 0; 333 334 if (current->flags & PF_RANDOMIZE) { 335 random_variable = get_random_long(); 336 random_variable &= STACK_RND_MASK; 337 random_variable <<= PAGE_SHIFT; 338 } 339 #ifdef CONFIG_STACK_GROWSUP 340 return PAGE_ALIGN(stack_top) + random_variable; 341 #else 342 return PAGE_ALIGN(stack_top) - random_variable; 343 #endif 344 } 345 346 /** 347 * randomize_page - Generate a random, page aligned address 348 * @start: The smallest acceptable address the caller will take. 349 * @range: The size of the area, starting at @start, within which the 350 * random address must fall. 351 * 352 * If @start + @range would overflow, @range is capped. 353 * 354 * NOTE: Historical use of randomize_range, which this replaces, presumed that 355 * @start was already page aligned. We now align it regardless. 356 * 357 * Return: A page aligned address within [start, start + range). On error, 358 * @start is returned. 359 */ 360 unsigned long randomize_page(unsigned long start, unsigned long range) 361 { 362 if (!PAGE_ALIGNED(start)) { 363 range -= PAGE_ALIGN(start) - start; 364 start = PAGE_ALIGN(start); 365 } 366 367 if (start > ULONG_MAX - range) 368 range = ULONG_MAX - start; 369 370 range >>= PAGE_SHIFT; 371 372 if (range == 0) 373 return start; 374 375 return start + (get_random_long() % range << PAGE_SHIFT); 376 } 377 378 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 379 unsigned long arch_randomize_brk(struct mm_struct *mm) 380 { 381 /* Is the current task 32bit ? */ 382 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 383 return randomize_page(mm->brk, SZ_32M); 384 385 return randomize_page(mm->brk, SZ_1G); 386 } 387 388 unsigned long arch_mmap_rnd(void) 389 { 390 unsigned long rnd; 391 392 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 393 if (is_compat_task()) 394 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 395 else 396 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 397 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 398 399 return rnd << PAGE_SHIFT; 400 } 401 402 static int mmap_is_legacy(struct rlimit *rlim_stack) 403 { 404 if (current->personality & ADDR_COMPAT_LAYOUT) 405 return 1; 406 407 if (rlim_stack->rlim_cur == RLIM_INFINITY) 408 return 1; 409 410 return sysctl_legacy_va_layout; 411 } 412 413 /* 414 * Leave enough space between the mmap area and the stack to honour ulimit in 415 * the face of randomisation. 416 */ 417 #define MIN_GAP (SZ_128M) 418 #define MAX_GAP (STACK_TOP / 6 * 5) 419 420 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 421 { 422 unsigned long gap = rlim_stack->rlim_cur; 423 unsigned long pad = stack_guard_gap; 424 425 /* Account for stack randomization if necessary */ 426 if (current->flags & PF_RANDOMIZE) 427 pad += (STACK_RND_MASK << PAGE_SHIFT); 428 429 /* Values close to RLIM_INFINITY can overflow. */ 430 if (gap + pad > gap) 431 gap += pad; 432 433 if (gap < MIN_GAP) 434 gap = MIN_GAP; 435 else if (gap > MAX_GAP) 436 gap = MAX_GAP; 437 438 return PAGE_ALIGN(STACK_TOP - gap - rnd); 439 } 440 441 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 442 { 443 unsigned long random_factor = 0UL; 444 445 if (current->flags & PF_RANDOMIZE) 446 random_factor = arch_mmap_rnd(); 447 448 if (mmap_is_legacy(rlim_stack)) { 449 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 450 mm->get_unmapped_area = arch_get_unmapped_area; 451 } else { 452 mm->mmap_base = mmap_base(random_factor, rlim_stack); 453 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 454 } 455 } 456 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 457 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 458 { 459 mm->mmap_base = TASK_UNMAPPED_BASE; 460 mm->get_unmapped_area = arch_get_unmapped_area; 461 } 462 #endif 463 464 /** 465 * __account_locked_vm - account locked pages to an mm's locked_vm 466 * @mm: mm to account against 467 * @pages: number of pages to account 468 * @inc: %true if @pages should be considered positive, %false if not 469 * @task: task used to check RLIMIT_MEMLOCK 470 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 471 * 472 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 473 * that mmap_lock is held as writer. 474 * 475 * Return: 476 * * 0 on success 477 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 478 */ 479 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 480 struct task_struct *task, bool bypass_rlim) 481 { 482 unsigned long locked_vm, limit; 483 int ret = 0; 484 485 mmap_assert_write_locked(mm); 486 487 locked_vm = mm->locked_vm; 488 if (inc) { 489 if (!bypass_rlim) { 490 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 491 if (locked_vm + pages > limit) 492 ret = -ENOMEM; 493 } 494 if (!ret) 495 mm->locked_vm = locked_vm + pages; 496 } else { 497 WARN_ON_ONCE(pages > locked_vm); 498 mm->locked_vm = locked_vm - pages; 499 } 500 501 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 502 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 503 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 504 ret ? " - exceeded" : ""); 505 506 return ret; 507 } 508 EXPORT_SYMBOL_GPL(__account_locked_vm); 509 510 /** 511 * account_locked_vm - account locked pages to an mm's locked_vm 512 * @mm: mm to account against, may be NULL 513 * @pages: number of pages to account 514 * @inc: %true if @pages should be considered positive, %false if not 515 * 516 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 517 * 518 * Return: 519 * * 0 on success, or if mm is NULL 520 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 521 */ 522 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 523 { 524 int ret; 525 526 if (pages == 0 || !mm) 527 return 0; 528 529 mmap_write_lock(mm); 530 ret = __account_locked_vm(mm, pages, inc, current, 531 capable(CAP_IPC_LOCK)); 532 mmap_write_unlock(mm); 533 534 return ret; 535 } 536 EXPORT_SYMBOL_GPL(account_locked_vm); 537 538 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 539 unsigned long len, unsigned long prot, 540 unsigned long flag, unsigned long pgoff) 541 { 542 unsigned long ret; 543 struct mm_struct *mm = current->mm; 544 unsigned long populate; 545 LIST_HEAD(uf); 546 547 ret = security_mmap_file(file, prot, flag); 548 if (!ret) { 549 if (mmap_write_lock_killable(mm)) 550 return -EINTR; 551 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, 552 &uf); 553 mmap_write_unlock(mm); 554 userfaultfd_unmap_complete(mm, &uf); 555 if (populate) 556 mm_populate(ret, populate); 557 } 558 return ret; 559 } 560 561 unsigned long vm_mmap(struct file *file, unsigned long addr, 562 unsigned long len, unsigned long prot, 563 unsigned long flag, unsigned long offset) 564 { 565 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 566 return -EINVAL; 567 if (unlikely(offset_in_page(offset))) 568 return -EINVAL; 569 570 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 571 } 572 EXPORT_SYMBOL(vm_mmap); 573 574 /** 575 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 576 * failure, fall back to non-contiguous (vmalloc) allocation. 577 * @size: size of the request. 578 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 579 * @node: numa node to allocate from 580 * 581 * Uses kmalloc to get the memory but if the allocation fails then falls back 582 * to the vmalloc allocator. Use kvfree for freeing the memory. 583 * 584 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 585 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 586 * preferable to the vmalloc fallback, due to visible performance drawbacks. 587 * 588 * Return: pointer to the allocated memory of %NULL in case of failure 589 */ 590 void *kvmalloc_node(size_t size, gfp_t flags, int node) 591 { 592 gfp_t kmalloc_flags = flags; 593 void *ret; 594 595 /* 596 * We want to attempt a large physically contiguous block first because 597 * it is less likely to fragment multiple larger blocks and therefore 598 * contribute to a long term fragmentation less than vmalloc fallback. 599 * However make sure that larger requests are not too disruptive - no 600 * OOM killer and no allocation failure warnings as we have a fallback. 601 */ 602 if (size > PAGE_SIZE) { 603 kmalloc_flags |= __GFP_NOWARN; 604 605 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 606 kmalloc_flags |= __GFP_NORETRY; 607 608 /* nofail semantic is implemented by the vmalloc fallback */ 609 kmalloc_flags &= ~__GFP_NOFAIL; 610 } 611 612 ret = kmalloc_node(size, kmalloc_flags, node); 613 614 /* 615 * It doesn't really make sense to fallback to vmalloc for sub page 616 * requests 617 */ 618 if (ret || size <= PAGE_SIZE) 619 return ret; 620 621 /* Don't even allow crazy sizes */ 622 if (unlikely(size > INT_MAX)) { 623 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 624 return NULL; 625 } 626 627 /* 628 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 629 * since the callers already cannot assume anything 630 * about the resulting pointer, and cannot play 631 * protection games. 632 */ 633 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 634 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 635 node, __builtin_return_address(0)); 636 } 637 EXPORT_SYMBOL(kvmalloc_node); 638 639 /** 640 * kvfree() - Free memory. 641 * @addr: Pointer to allocated memory. 642 * 643 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 644 * It is slightly more efficient to use kfree() or vfree() if you are certain 645 * that you know which one to use. 646 * 647 * Context: Either preemptible task context or not-NMI interrupt. 648 */ 649 void kvfree(const void *addr) 650 { 651 if (is_vmalloc_addr(addr)) 652 vfree(addr); 653 else 654 kfree(addr); 655 } 656 EXPORT_SYMBOL(kvfree); 657 658 /** 659 * kvfree_sensitive - Free a data object containing sensitive information. 660 * @addr: address of the data object to be freed. 661 * @len: length of the data object. 662 * 663 * Use the special memzero_explicit() function to clear the content of a 664 * kvmalloc'ed object containing sensitive data to make sure that the 665 * compiler won't optimize out the data clearing. 666 */ 667 void kvfree_sensitive(const void *addr, size_t len) 668 { 669 if (likely(!ZERO_OR_NULL_PTR(addr))) { 670 memzero_explicit((void *)addr, len); 671 kvfree(addr); 672 } 673 } 674 EXPORT_SYMBOL(kvfree_sensitive); 675 676 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 677 { 678 void *newp; 679 680 if (oldsize >= newsize) 681 return (void *)p; 682 newp = kvmalloc(newsize, flags); 683 if (!newp) 684 return NULL; 685 memcpy(newp, p, oldsize); 686 kvfree(p); 687 return newp; 688 } 689 EXPORT_SYMBOL(kvrealloc); 690 691 /** 692 * __vmalloc_array - allocate memory for a virtually contiguous array. 693 * @n: number of elements. 694 * @size: element size. 695 * @flags: the type of memory to allocate (see kmalloc). 696 */ 697 void *__vmalloc_array(size_t n, size_t size, gfp_t flags) 698 { 699 size_t bytes; 700 701 if (unlikely(check_mul_overflow(n, size, &bytes))) 702 return NULL; 703 return __vmalloc(bytes, flags); 704 } 705 EXPORT_SYMBOL(__vmalloc_array); 706 707 /** 708 * vmalloc_array - allocate memory for a virtually contiguous array. 709 * @n: number of elements. 710 * @size: element size. 711 */ 712 void *vmalloc_array(size_t n, size_t size) 713 { 714 return __vmalloc_array(n, size, GFP_KERNEL); 715 } 716 EXPORT_SYMBOL(vmalloc_array); 717 718 /** 719 * __vcalloc - allocate and zero memory for a virtually contiguous array. 720 * @n: number of elements. 721 * @size: element size. 722 * @flags: the type of memory to allocate (see kmalloc). 723 */ 724 void *__vcalloc(size_t n, size_t size, gfp_t flags) 725 { 726 return __vmalloc_array(n, size, flags | __GFP_ZERO); 727 } 728 EXPORT_SYMBOL(__vcalloc); 729 730 /** 731 * vcalloc - allocate and zero memory for a virtually contiguous array. 732 * @n: number of elements. 733 * @size: element size. 734 */ 735 void *vcalloc(size_t n, size_t size) 736 { 737 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); 738 } 739 EXPORT_SYMBOL(vcalloc); 740 741 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 742 void *page_rmapping(struct page *page) 743 { 744 return folio_raw_mapping(page_folio(page)); 745 } 746 747 /** 748 * folio_mapped - Is this folio mapped into userspace? 749 * @folio: The folio. 750 * 751 * Return: True if any page in this folio is referenced by user page tables. 752 */ 753 bool folio_mapped(struct folio *folio) 754 { 755 long i, nr; 756 757 if (!folio_test_large(folio)) 758 return atomic_read(&folio->_mapcount) >= 0; 759 if (atomic_read(folio_mapcount_ptr(folio)) >= 0) 760 return true; 761 if (folio_test_hugetlb(folio)) 762 return false; 763 764 nr = folio_nr_pages(folio); 765 for (i = 0; i < nr; i++) { 766 if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0) 767 return true; 768 } 769 return false; 770 } 771 EXPORT_SYMBOL(folio_mapped); 772 773 struct anon_vma *folio_anon_vma(struct folio *folio) 774 { 775 unsigned long mapping = (unsigned long)folio->mapping; 776 777 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 778 return NULL; 779 return (void *)(mapping - PAGE_MAPPING_ANON); 780 } 781 782 /** 783 * folio_mapping - Find the mapping where this folio is stored. 784 * @folio: The folio. 785 * 786 * For folios which are in the page cache, return the mapping that this 787 * page belongs to. Folios in the swap cache return the swap mapping 788 * this page is stored in (which is different from the mapping for the 789 * swap file or swap device where the data is stored). 790 * 791 * You can call this for folios which aren't in the swap cache or page 792 * cache and it will return NULL. 793 */ 794 struct address_space *folio_mapping(struct folio *folio) 795 { 796 struct address_space *mapping; 797 798 /* This happens if someone calls flush_dcache_page on slab page */ 799 if (unlikely(folio_test_slab(folio))) 800 return NULL; 801 802 if (unlikely(folio_test_swapcache(folio))) 803 return swap_address_space(folio_swap_entry(folio)); 804 805 mapping = folio->mapping; 806 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 807 return NULL; 808 809 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 810 } 811 EXPORT_SYMBOL(folio_mapping); 812 813 /* Slow path of page_mapcount() for compound pages */ 814 int __page_mapcount(struct page *page) 815 { 816 int ret; 817 818 ret = atomic_read(&page->_mapcount) + 1; 819 /* 820 * For file THP page->_mapcount contains total number of mapping 821 * of the page: no need to look into compound_mapcount. 822 */ 823 if (!PageAnon(page) && !PageHuge(page)) 824 return ret; 825 page = compound_head(page); 826 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 827 if (PageDoubleMap(page)) 828 ret--; 829 return ret; 830 } 831 EXPORT_SYMBOL_GPL(__page_mapcount); 832 833 /** 834 * folio_mapcount() - Calculate the number of mappings of this folio. 835 * @folio: The folio. 836 * 837 * A large folio tracks both how many times the entire folio is mapped, 838 * and how many times each individual page in the folio is mapped. 839 * This function calculates the total number of times the folio is 840 * mapped. 841 * 842 * Return: The number of times this folio is mapped. 843 */ 844 int folio_mapcount(struct folio *folio) 845 { 846 int i, compound, nr, ret; 847 848 if (likely(!folio_test_large(folio))) 849 return atomic_read(&folio->_mapcount) + 1; 850 851 compound = folio_entire_mapcount(folio); 852 nr = folio_nr_pages(folio); 853 if (folio_test_hugetlb(folio)) 854 return compound; 855 ret = compound; 856 for (i = 0; i < nr; i++) 857 ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1; 858 /* File pages has compound_mapcount included in _mapcount */ 859 if (!folio_test_anon(folio)) 860 return ret - compound * nr; 861 if (folio_test_double_map(folio)) 862 ret -= nr; 863 return ret; 864 } 865 866 /** 867 * folio_copy - Copy the contents of one folio to another. 868 * @dst: Folio to copy to. 869 * @src: Folio to copy from. 870 * 871 * The bytes in the folio represented by @src are copied to @dst. 872 * Assumes the caller has validated that @dst is at least as large as @src. 873 * Can be called in atomic context for order-0 folios, but if the folio is 874 * larger, it may sleep. 875 */ 876 void folio_copy(struct folio *dst, struct folio *src) 877 { 878 long i = 0; 879 long nr = folio_nr_pages(src); 880 881 for (;;) { 882 copy_highpage(folio_page(dst, i), folio_page(src, i)); 883 if (++i == nr) 884 break; 885 cond_resched(); 886 } 887 } 888 889 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 890 int sysctl_overcommit_ratio __read_mostly = 50; 891 unsigned long sysctl_overcommit_kbytes __read_mostly; 892 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 893 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 894 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 895 896 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 897 size_t *lenp, loff_t *ppos) 898 { 899 int ret; 900 901 ret = proc_dointvec(table, write, buffer, lenp, ppos); 902 if (ret == 0 && write) 903 sysctl_overcommit_kbytes = 0; 904 return ret; 905 } 906 907 static void sync_overcommit_as(struct work_struct *dummy) 908 { 909 percpu_counter_sync(&vm_committed_as); 910 } 911 912 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 913 size_t *lenp, loff_t *ppos) 914 { 915 struct ctl_table t; 916 int new_policy = -1; 917 int ret; 918 919 /* 920 * The deviation of sync_overcommit_as could be big with loose policy 921 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 922 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 923 * with the strict "NEVER", and to avoid possible race condition (even 924 * though user usually won't too frequently do the switching to policy 925 * OVERCOMMIT_NEVER), the switch is done in the following order: 926 * 1. changing the batch 927 * 2. sync percpu count on each CPU 928 * 3. switch the policy 929 */ 930 if (write) { 931 t = *table; 932 t.data = &new_policy; 933 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 934 if (ret || new_policy == -1) 935 return ret; 936 937 mm_compute_batch(new_policy); 938 if (new_policy == OVERCOMMIT_NEVER) 939 schedule_on_each_cpu(sync_overcommit_as); 940 sysctl_overcommit_memory = new_policy; 941 } else { 942 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 943 } 944 945 return ret; 946 } 947 948 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 949 size_t *lenp, loff_t *ppos) 950 { 951 int ret; 952 953 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 954 if (ret == 0 && write) 955 sysctl_overcommit_ratio = 0; 956 return ret; 957 } 958 959 /* 960 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 961 */ 962 unsigned long vm_commit_limit(void) 963 { 964 unsigned long allowed; 965 966 if (sysctl_overcommit_kbytes) 967 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 968 else 969 allowed = ((totalram_pages() - hugetlb_total_pages()) 970 * sysctl_overcommit_ratio / 100); 971 allowed += total_swap_pages; 972 973 return allowed; 974 } 975 976 /* 977 * Make sure vm_committed_as in one cacheline and not cacheline shared with 978 * other variables. It can be updated by several CPUs frequently. 979 */ 980 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 981 982 /* 983 * The global memory commitment made in the system can be a metric 984 * that can be used to drive ballooning decisions when Linux is hosted 985 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 986 * balancing memory across competing virtual machines that are hosted. 987 * Several metrics drive this policy engine including the guest reported 988 * memory commitment. 989 * 990 * The time cost of this is very low for small platforms, and for big 991 * platform like a 2S/36C/72T Skylake server, in worst case where 992 * vm_committed_as's spinlock is under severe contention, the time cost 993 * could be about 30~40 microseconds. 994 */ 995 unsigned long vm_memory_committed(void) 996 { 997 return percpu_counter_sum_positive(&vm_committed_as); 998 } 999 EXPORT_SYMBOL_GPL(vm_memory_committed); 1000 1001 /* 1002 * Check that a process has enough memory to allocate a new virtual 1003 * mapping. 0 means there is enough memory for the allocation to 1004 * succeed and -ENOMEM implies there is not. 1005 * 1006 * We currently support three overcommit policies, which are set via the 1007 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 1008 * 1009 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1010 * Additional code 2002 Jul 20 by Robert Love. 1011 * 1012 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1013 * 1014 * Note this is a helper function intended to be used by LSMs which 1015 * wish to use this logic. 1016 */ 1017 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1018 { 1019 long allowed; 1020 1021 vm_acct_memory(pages); 1022 1023 /* 1024 * Sometimes we want to use more memory than we have 1025 */ 1026 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1027 return 0; 1028 1029 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1030 if (pages > totalram_pages() + total_swap_pages) 1031 goto error; 1032 return 0; 1033 } 1034 1035 allowed = vm_commit_limit(); 1036 /* 1037 * Reserve some for root 1038 */ 1039 if (!cap_sys_admin) 1040 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1041 1042 /* 1043 * Don't let a single process grow so big a user can't recover 1044 */ 1045 if (mm) { 1046 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1047 1048 allowed -= min_t(long, mm->total_vm / 32, reserve); 1049 } 1050 1051 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1052 return 0; 1053 error: 1054 vm_unacct_memory(pages); 1055 1056 return -ENOMEM; 1057 } 1058 1059 /** 1060 * get_cmdline() - copy the cmdline value to a buffer. 1061 * @task: the task whose cmdline value to copy. 1062 * @buffer: the buffer to copy to. 1063 * @buflen: the length of the buffer. Larger cmdline values are truncated 1064 * to this length. 1065 * 1066 * Return: the size of the cmdline field copied. Note that the copy does 1067 * not guarantee an ending NULL byte. 1068 */ 1069 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1070 { 1071 int res = 0; 1072 unsigned int len; 1073 struct mm_struct *mm = get_task_mm(task); 1074 unsigned long arg_start, arg_end, env_start, env_end; 1075 if (!mm) 1076 goto out; 1077 if (!mm->arg_end) 1078 goto out_mm; /* Shh! No looking before we're done */ 1079 1080 spin_lock(&mm->arg_lock); 1081 arg_start = mm->arg_start; 1082 arg_end = mm->arg_end; 1083 env_start = mm->env_start; 1084 env_end = mm->env_end; 1085 spin_unlock(&mm->arg_lock); 1086 1087 len = arg_end - arg_start; 1088 1089 if (len > buflen) 1090 len = buflen; 1091 1092 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1093 1094 /* 1095 * If the nul at the end of args has been overwritten, then 1096 * assume application is using setproctitle(3). 1097 */ 1098 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1099 len = strnlen(buffer, res); 1100 if (len < res) { 1101 res = len; 1102 } else { 1103 len = env_end - env_start; 1104 if (len > buflen - res) 1105 len = buflen - res; 1106 res += access_process_vm(task, env_start, 1107 buffer+res, len, 1108 FOLL_FORCE); 1109 res = strnlen(buffer, res); 1110 } 1111 } 1112 out_mm: 1113 mmput(mm); 1114 out: 1115 return res; 1116 } 1117 1118 int __weak memcmp_pages(struct page *page1, struct page *page2) 1119 { 1120 char *addr1, *addr2; 1121 int ret; 1122 1123 addr1 = kmap_atomic(page1); 1124 addr2 = kmap_atomic(page2); 1125 ret = memcmp(addr1, addr2, PAGE_SIZE); 1126 kunmap_atomic(addr2); 1127 kunmap_atomic(addr1); 1128 return ret; 1129 } 1130 1131 #ifdef CONFIG_PRINTK 1132 /** 1133 * mem_dump_obj - Print available provenance information 1134 * @object: object for which to find provenance information. 1135 * 1136 * This function uses pr_cont(), so that the caller is expected to have 1137 * printed out whatever preamble is appropriate. The provenance information 1138 * depends on the type of object and on how much debugging is enabled. 1139 * For example, for a slab-cache object, the slab name is printed, and, 1140 * if available, the return address and stack trace from the allocation 1141 * and last free path of that object. 1142 */ 1143 void mem_dump_obj(void *object) 1144 { 1145 const char *type; 1146 1147 if (kmem_valid_obj(object)) { 1148 kmem_dump_obj(object); 1149 return; 1150 } 1151 1152 if (vmalloc_dump_obj(object)) 1153 return; 1154 1155 if (virt_addr_valid(object)) 1156 type = "non-slab/vmalloc memory"; 1157 else if (object == NULL) 1158 type = "NULL pointer"; 1159 else if (object == ZERO_SIZE_PTR) 1160 type = "zero-size pointer"; 1161 else 1162 type = "non-paged memory"; 1163 1164 pr_cont(" %s\n", type); 1165 } 1166 EXPORT_SYMBOL_GPL(mem_dump_obj); 1167 #endif 1168 1169 /* 1170 * A driver might set a page logically offline -- PageOffline() -- and 1171 * turn the page inaccessible in the hypervisor; after that, access to page 1172 * content can be fatal. 1173 * 1174 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1175 * pages after checking PageOffline(); however, these PFN walkers can race 1176 * with drivers that set PageOffline(). 1177 * 1178 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1179 * synchronize with such drivers, achieving that a page cannot be set 1180 * PageOffline() while frozen. 1181 * 1182 * page_offline_begin()/page_offline_end() is used by drivers that care about 1183 * such races when setting a page PageOffline(). 1184 */ 1185 static DECLARE_RWSEM(page_offline_rwsem); 1186 1187 void page_offline_freeze(void) 1188 { 1189 down_read(&page_offline_rwsem); 1190 } 1191 1192 void page_offline_thaw(void) 1193 { 1194 up_read(&page_offline_rwsem); 1195 } 1196 1197 void page_offline_begin(void) 1198 { 1199 down_write(&page_offline_rwsem); 1200 } 1201 EXPORT_SYMBOL(page_offline_begin); 1202 1203 void page_offline_end(void) 1204 { 1205 up_write(&page_offline_rwsem); 1206 } 1207 EXPORT_SYMBOL(page_offline_end); 1208 1209 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO 1210 void flush_dcache_folio(struct folio *folio) 1211 { 1212 long i, nr = folio_nr_pages(folio); 1213 1214 for (i = 0; i < nr; i++) 1215 flush_dcache_page(folio_page(folio, i)); 1216 } 1217 EXPORT_SYMBOL(flush_dcache_folio); 1218 #endif 1219