1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include <kunit/visibility.h> 30 31 #include "internal.h" 32 #include "swap.h" 33 34 /** 35 * kfree_const - conditionally free memory 36 * @x: pointer to the memory 37 * 38 * Function calls kfree only if @x is not in .rodata section. 39 */ 40 void kfree_const(const void *x) 41 { 42 if (!is_kernel_rodata((unsigned long)x)) 43 kfree(x); 44 } 45 EXPORT_SYMBOL(kfree_const); 46 47 /** 48 * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated. 49 * @s: The data to copy 50 * @len: The size of the data, not including the NUL terminator 51 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 52 * 53 * Return: newly allocated copy of @s with NUL-termination or %NULL in 54 * case of error 55 */ 56 static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp) 57 { 58 char *buf; 59 60 /* '+1' for the NUL terminator */ 61 buf = kmalloc_track_caller(len + 1, gfp); 62 if (!buf) 63 return NULL; 64 65 memcpy(buf, s, len); 66 /* Ensure the buf is always NUL-terminated, regardless of @s. */ 67 buf[len] = '\0'; 68 return buf; 69 } 70 71 /** 72 * kstrdup - allocate space for and copy an existing string 73 * @s: the string to duplicate 74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 75 * 76 * Return: newly allocated copy of @s or %NULL in case of error 77 */ 78 noinline 79 char *kstrdup(const char *s, gfp_t gfp) 80 { 81 return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL; 82 } 83 EXPORT_SYMBOL(kstrdup); 84 85 /** 86 * kstrdup_const - conditionally duplicate an existing const string 87 * @s: the string to duplicate 88 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 89 * 90 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 91 * must not be passed to krealloc(). 92 * 93 * Return: source string if it is in .rodata section otherwise 94 * fallback to kstrdup. 95 */ 96 const char *kstrdup_const(const char *s, gfp_t gfp) 97 { 98 if (is_kernel_rodata((unsigned long)s)) 99 return s; 100 101 return kstrdup(s, gfp); 102 } 103 EXPORT_SYMBOL(kstrdup_const); 104 105 /** 106 * kstrndup - allocate space for and copy an existing string 107 * @s: the string to duplicate 108 * @max: read at most @max chars from @s 109 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 110 * 111 * Note: Use kmemdup_nul() instead if the size is known exactly. 112 * 113 * Return: newly allocated copy of @s or %NULL in case of error 114 */ 115 char *kstrndup(const char *s, size_t max, gfp_t gfp) 116 { 117 return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL; 118 } 119 EXPORT_SYMBOL(kstrndup); 120 121 /** 122 * kmemdup - duplicate region of memory 123 * 124 * @src: memory region to duplicate 125 * @len: memory region length 126 * @gfp: GFP mask to use 127 * 128 * Return: newly allocated copy of @src or %NULL in case of error, 129 * result is physically contiguous. Use kfree() to free. 130 */ 131 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) 132 { 133 void *p; 134 135 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); 136 if (p) 137 memcpy(p, src, len); 138 return p; 139 } 140 EXPORT_SYMBOL(kmemdup_noprof); 141 142 /** 143 * kmemdup_array - duplicate a given array. 144 * 145 * @src: array to duplicate. 146 * @count: number of elements to duplicate from array. 147 * @element_size: size of each element of array. 148 * @gfp: GFP mask to use. 149 * 150 * Return: duplicated array of @src or %NULL in case of error, 151 * result is physically contiguous. Use kfree() to free. 152 */ 153 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp) 154 { 155 return kmemdup(src, size_mul(element_size, count), gfp); 156 } 157 EXPORT_SYMBOL(kmemdup_array); 158 159 /** 160 * kvmemdup - duplicate region of memory 161 * 162 * @src: memory region to duplicate 163 * @len: memory region length 164 * @gfp: GFP mask to use 165 * 166 * Return: newly allocated copy of @src or %NULL in case of error, 167 * result may be not physically contiguous. Use kvfree() to free. 168 */ 169 void *kvmemdup(const void *src, size_t len, gfp_t gfp) 170 { 171 void *p; 172 173 p = kvmalloc(len, gfp); 174 if (p) 175 memcpy(p, src, len); 176 return p; 177 } 178 EXPORT_SYMBOL(kvmemdup); 179 180 /** 181 * kmemdup_nul - Create a NUL-terminated string from unterminated data 182 * @s: The data to stringify 183 * @len: The size of the data 184 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 185 * 186 * Return: newly allocated copy of @s with NUL-termination or %NULL in 187 * case of error 188 */ 189 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 190 { 191 return s ? __kmemdup_nul(s, len, gfp) : NULL; 192 } 193 EXPORT_SYMBOL(kmemdup_nul); 194 195 static kmem_buckets *user_buckets __ro_after_init; 196 197 static int __init init_user_buckets(void) 198 { 199 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL); 200 201 return 0; 202 } 203 subsys_initcall(init_user_buckets); 204 205 /** 206 * memdup_user - duplicate memory region from user space 207 * 208 * @src: source address in user space 209 * @len: number of bytes to copy 210 * 211 * Return: an ERR_PTR() on failure. Result is physically 212 * contiguous, to be freed by kfree(). 213 */ 214 void *memdup_user(const void __user *src, size_t len) 215 { 216 void *p; 217 218 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN); 219 if (!p) 220 return ERR_PTR(-ENOMEM); 221 222 if (copy_from_user(p, src, len)) { 223 kfree(p); 224 return ERR_PTR(-EFAULT); 225 } 226 227 return p; 228 } 229 EXPORT_SYMBOL(memdup_user); 230 231 /** 232 * vmemdup_user - duplicate memory region from user space 233 * 234 * @src: source address in user space 235 * @len: number of bytes to copy 236 * 237 * Return: an ERR_PTR() on failure. Result may be not 238 * physically contiguous. Use kvfree() to free. 239 */ 240 void *vmemdup_user(const void __user *src, size_t len) 241 { 242 void *p; 243 244 p = kmem_buckets_valloc(user_buckets, len, GFP_USER); 245 if (!p) 246 return ERR_PTR(-ENOMEM); 247 248 if (copy_from_user(p, src, len)) { 249 kvfree(p); 250 return ERR_PTR(-EFAULT); 251 } 252 253 return p; 254 } 255 EXPORT_SYMBOL(vmemdup_user); 256 257 /** 258 * strndup_user - duplicate an existing string from user space 259 * @s: The string to duplicate 260 * @n: Maximum number of bytes to copy, including the trailing NUL. 261 * 262 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 263 */ 264 char *strndup_user(const char __user *s, long n) 265 { 266 char *p; 267 long length; 268 269 length = strnlen_user(s, n); 270 271 if (!length) 272 return ERR_PTR(-EFAULT); 273 274 if (length > n) 275 return ERR_PTR(-EINVAL); 276 277 p = memdup_user(s, length); 278 279 if (IS_ERR(p)) 280 return p; 281 282 p[length - 1] = '\0'; 283 284 return p; 285 } 286 EXPORT_SYMBOL(strndup_user); 287 288 /** 289 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 290 * 291 * @src: source address in user space 292 * @len: number of bytes to copy 293 * 294 * Return: an ERR_PTR() on failure. 295 */ 296 void *memdup_user_nul(const void __user *src, size_t len) 297 { 298 char *p; 299 300 p = kmem_buckets_alloc_track_caller(user_buckets, len + 1, GFP_USER | __GFP_NOWARN); 301 if (!p) 302 return ERR_PTR(-ENOMEM); 303 304 if (copy_from_user(p, src, len)) { 305 kfree(p); 306 return ERR_PTR(-EFAULT); 307 } 308 p[len] = '\0'; 309 310 return p; 311 } 312 EXPORT_SYMBOL(memdup_user_nul); 313 314 /* Check if the vma is being used as a stack by this task */ 315 int vma_is_stack_for_current(struct vm_area_struct *vma) 316 { 317 struct task_struct * __maybe_unused t = current; 318 319 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 320 } 321 322 /* 323 * Change backing file, only valid to use during initial VMA setup. 324 */ 325 void vma_set_file(struct vm_area_struct *vma, struct file *file) 326 { 327 /* Changing an anonymous vma with this is illegal */ 328 get_file(file); 329 swap(vma->vm_file, file); 330 fput(file); 331 } 332 EXPORT_SYMBOL(vma_set_file); 333 334 #ifndef STACK_RND_MASK 335 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 336 #endif 337 338 unsigned long randomize_stack_top(unsigned long stack_top) 339 { 340 unsigned long random_variable = 0; 341 342 if (current->flags & PF_RANDOMIZE) { 343 random_variable = get_random_long(); 344 random_variable &= STACK_RND_MASK; 345 random_variable <<= PAGE_SHIFT; 346 } 347 #ifdef CONFIG_STACK_GROWSUP 348 return PAGE_ALIGN(stack_top) + random_variable; 349 #else 350 return PAGE_ALIGN(stack_top) - random_variable; 351 #endif 352 } 353 354 /** 355 * randomize_page - Generate a random, page aligned address 356 * @start: The smallest acceptable address the caller will take. 357 * @range: The size of the area, starting at @start, within which the 358 * random address must fall. 359 * 360 * If @start + @range would overflow, @range is capped. 361 * 362 * NOTE: Historical use of randomize_range, which this replaces, presumed that 363 * @start was already page aligned. We now align it regardless. 364 * 365 * Return: A page aligned address within [start, start + range). On error, 366 * @start is returned. 367 */ 368 unsigned long randomize_page(unsigned long start, unsigned long range) 369 { 370 if (!PAGE_ALIGNED(start)) { 371 range -= PAGE_ALIGN(start) - start; 372 start = PAGE_ALIGN(start); 373 } 374 375 if (start > ULONG_MAX - range) 376 range = ULONG_MAX - start; 377 378 range >>= PAGE_SHIFT; 379 380 if (range == 0) 381 return start; 382 383 return start + (get_random_long() % range << PAGE_SHIFT); 384 } 385 386 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 387 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 388 { 389 /* Is the current task 32bit ? */ 390 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 391 return randomize_page(mm->brk, SZ_32M); 392 393 return randomize_page(mm->brk, SZ_1G); 394 } 395 396 unsigned long arch_mmap_rnd(void) 397 { 398 unsigned long rnd; 399 400 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 401 if (is_compat_task()) 402 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 403 else 404 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 405 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 406 407 return rnd << PAGE_SHIFT; 408 } 409 410 static int mmap_is_legacy(struct rlimit *rlim_stack) 411 { 412 if (current->personality & ADDR_COMPAT_LAYOUT) 413 return 1; 414 415 /* On parisc the stack always grows up - so a unlimited stack should 416 * not be an indicator to use the legacy memory layout. */ 417 if (rlim_stack->rlim_cur == RLIM_INFINITY && 418 !IS_ENABLED(CONFIG_STACK_GROWSUP)) 419 return 1; 420 421 return sysctl_legacy_va_layout; 422 } 423 424 /* 425 * Leave enough space between the mmap area and the stack to honour ulimit in 426 * the face of randomisation. 427 */ 428 #define MIN_GAP (SZ_128M) 429 #define MAX_GAP (STACK_TOP / 6 * 5) 430 431 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 432 { 433 #ifdef CONFIG_STACK_GROWSUP 434 /* 435 * For an upwards growing stack the calculation is much simpler. 436 * Memory for the maximum stack size is reserved at the top of the 437 * task. mmap_base starts directly below the stack and grows 438 * downwards. 439 */ 440 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); 441 #else 442 unsigned long gap = rlim_stack->rlim_cur; 443 unsigned long pad = stack_guard_gap; 444 445 /* Account for stack randomization if necessary */ 446 if (current->flags & PF_RANDOMIZE) 447 pad += (STACK_RND_MASK << PAGE_SHIFT); 448 449 /* Values close to RLIM_INFINITY can overflow. */ 450 if (gap + pad > gap) 451 gap += pad; 452 453 if (gap < MIN_GAP && MIN_GAP < MAX_GAP) 454 gap = MIN_GAP; 455 else if (gap > MAX_GAP) 456 gap = MAX_GAP; 457 458 return PAGE_ALIGN(STACK_TOP - gap - rnd); 459 #endif 460 } 461 462 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 463 { 464 unsigned long random_factor = 0UL; 465 466 if (current->flags & PF_RANDOMIZE) 467 random_factor = arch_mmap_rnd(); 468 469 if (mmap_is_legacy(rlim_stack)) { 470 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 471 clear_bit(MMF_TOPDOWN, &mm->flags); 472 } else { 473 mm->mmap_base = mmap_base(random_factor, rlim_stack); 474 set_bit(MMF_TOPDOWN, &mm->flags); 475 } 476 } 477 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 478 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 479 { 480 mm->mmap_base = TASK_UNMAPPED_BASE; 481 clear_bit(MMF_TOPDOWN, &mm->flags); 482 } 483 #endif 484 #ifdef CONFIG_MMU 485 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout); 486 #endif 487 488 /** 489 * __account_locked_vm - account locked pages to an mm's locked_vm 490 * @mm: mm to account against 491 * @pages: number of pages to account 492 * @inc: %true if @pages should be considered positive, %false if not 493 * @task: task used to check RLIMIT_MEMLOCK 494 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 495 * 496 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 497 * that mmap_lock is held as writer. 498 * 499 * Return: 500 * * 0 on success 501 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 502 */ 503 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 504 struct task_struct *task, bool bypass_rlim) 505 { 506 unsigned long locked_vm, limit; 507 int ret = 0; 508 509 mmap_assert_write_locked(mm); 510 511 locked_vm = mm->locked_vm; 512 if (inc) { 513 if (!bypass_rlim) { 514 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 515 if (locked_vm + pages > limit) 516 ret = -ENOMEM; 517 } 518 if (!ret) 519 mm->locked_vm = locked_vm + pages; 520 } else { 521 WARN_ON_ONCE(pages > locked_vm); 522 mm->locked_vm = locked_vm - pages; 523 } 524 525 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 526 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 527 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 528 ret ? " - exceeded" : ""); 529 530 return ret; 531 } 532 EXPORT_SYMBOL_GPL(__account_locked_vm); 533 534 /** 535 * account_locked_vm - account locked pages to an mm's locked_vm 536 * @mm: mm to account against, may be NULL 537 * @pages: number of pages to account 538 * @inc: %true if @pages should be considered positive, %false if not 539 * 540 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 541 * 542 * Return: 543 * * 0 on success, or if mm is NULL 544 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 545 */ 546 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 547 { 548 int ret; 549 550 if (pages == 0 || !mm) 551 return 0; 552 553 mmap_write_lock(mm); 554 ret = __account_locked_vm(mm, pages, inc, current, 555 capable(CAP_IPC_LOCK)); 556 mmap_write_unlock(mm); 557 558 return ret; 559 } 560 EXPORT_SYMBOL_GPL(account_locked_vm); 561 562 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 563 unsigned long len, unsigned long prot, 564 unsigned long flag, unsigned long pgoff) 565 { 566 unsigned long ret; 567 struct mm_struct *mm = current->mm; 568 unsigned long populate; 569 LIST_HEAD(uf); 570 571 ret = security_mmap_file(file, prot, flag); 572 if (!ret) { 573 if (mmap_write_lock_killable(mm)) 574 return -EINTR; 575 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, 576 &uf); 577 mmap_write_unlock(mm); 578 userfaultfd_unmap_complete(mm, &uf); 579 if (populate) 580 mm_populate(ret, populate); 581 } 582 return ret; 583 } 584 585 /* 586 * Perform a userland memory mapping into the current process address space. See 587 * the comment for do_mmap() for more details on this operation in general. 588 * 589 * This differs from do_mmap() in that: 590 * 591 * a. An offset parameter is provided rather than pgoff, which is both checked 592 * for overflow and page alignment. 593 * b. mmap locking is performed on the caller's behalf. 594 * c. Userfaultfd unmap events and memory population are handled. 595 * 596 * This means that this function performs essentially the same work as if 597 * userland were invoking mmap (2). 598 * 599 * Returns either an error, or the address at which the requested mapping has 600 * been performed. 601 */ 602 unsigned long vm_mmap(struct file *file, unsigned long addr, 603 unsigned long len, unsigned long prot, 604 unsigned long flag, unsigned long offset) 605 { 606 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 607 return -EINVAL; 608 if (unlikely(offset_in_page(offset))) 609 return -EINVAL; 610 611 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 612 } 613 EXPORT_SYMBOL(vm_mmap); 614 615 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 616 { 617 /* 618 * We want to attempt a large physically contiguous block first because 619 * it is less likely to fragment multiple larger blocks and therefore 620 * contribute to a long term fragmentation less than vmalloc fallback. 621 * However make sure that larger requests are not too disruptive - no 622 * OOM killer and no allocation failure warnings as we have a fallback. 623 */ 624 if (size > PAGE_SIZE) { 625 flags |= __GFP_NOWARN; 626 627 if (!(flags & __GFP_RETRY_MAYFAIL)) 628 flags |= __GFP_NORETRY; 629 630 /* nofail semantic is implemented by the vmalloc fallback */ 631 flags &= ~__GFP_NOFAIL; 632 } 633 634 return flags; 635 } 636 637 /** 638 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 639 * failure, fall back to non-contiguous (vmalloc) allocation. 640 * @size: size of the request. 641 * @b: which set of kmalloc buckets to allocate from. 642 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 643 * @node: numa node to allocate from 644 * 645 * Uses kmalloc to get the memory but if the allocation fails then falls back 646 * to the vmalloc allocator. Use kvfree for freeing the memory. 647 * 648 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 649 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 650 * preferable to the vmalloc fallback, due to visible performance drawbacks. 651 * 652 * Return: pointer to the allocated memory of %NULL in case of failure 653 */ 654 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 655 { 656 void *ret; 657 658 /* 659 * It doesn't really make sense to fallback to vmalloc for sub page 660 * requests 661 */ 662 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b), 663 kmalloc_gfp_adjust(flags, size), 664 node); 665 if (ret || size <= PAGE_SIZE) 666 return ret; 667 668 /* non-sleeping allocations are not supported by vmalloc */ 669 if (!gfpflags_allow_blocking(flags)) 670 return NULL; 671 672 /* Don't even allow crazy sizes */ 673 if (unlikely(size > INT_MAX)) { 674 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 675 return NULL; 676 } 677 678 /* 679 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 680 * since the callers already cannot assume anything 681 * about the resulting pointer, and cannot play 682 * protection games. 683 */ 684 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 685 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 686 node, __builtin_return_address(0)); 687 } 688 EXPORT_SYMBOL(__kvmalloc_node_noprof); 689 690 /** 691 * kvfree() - Free memory. 692 * @addr: Pointer to allocated memory. 693 * 694 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 695 * It is slightly more efficient to use kfree() or vfree() if you are certain 696 * that you know which one to use. 697 * 698 * Context: Either preemptible task context or not-NMI interrupt. 699 */ 700 void kvfree(const void *addr) 701 { 702 if (is_vmalloc_addr(addr)) 703 vfree(addr); 704 else 705 kfree(addr); 706 } 707 EXPORT_SYMBOL(kvfree); 708 709 /** 710 * kvfree_sensitive - Free a data object containing sensitive information. 711 * @addr: address of the data object to be freed. 712 * @len: length of the data object. 713 * 714 * Use the special memzero_explicit() function to clear the content of a 715 * kvmalloc'ed object containing sensitive data to make sure that the 716 * compiler won't optimize out the data clearing. 717 */ 718 void kvfree_sensitive(const void *addr, size_t len) 719 { 720 if (likely(!ZERO_OR_NULL_PTR(addr))) { 721 memzero_explicit((void *)addr, len); 722 kvfree(addr); 723 } 724 } 725 EXPORT_SYMBOL(kvfree_sensitive); 726 727 /** 728 * kvrealloc - reallocate memory; contents remain unchanged 729 * @p: object to reallocate memory for 730 * @size: the size to reallocate 731 * @flags: the flags for the page level allocator 732 * 733 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 734 * and @p is not a %NULL pointer, the object pointed to is freed. 735 * 736 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 737 * initial memory allocation, every subsequent call to this API for the same 738 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 739 * __GFP_ZERO is not fully honored by this API. 740 * 741 * In any case, the contents of the object pointed to are preserved up to the 742 * lesser of the new and old sizes. 743 * 744 * This function must not be called concurrently with itself or kvfree() for the 745 * same memory allocation. 746 * 747 * Return: pointer to the allocated memory or %NULL in case of error 748 */ 749 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 750 { 751 void *n; 752 753 if (is_vmalloc_addr(p)) 754 return vrealloc_noprof(p, size, flags); 755 756 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); 757 if (!n) { 758 /* We failed to krealloc(), fall back to kvmalloc(). */ 759 n = kvmalloc_noprof(size, flags); 760 if (!n) 761 return NULL; 762 763 if (p) { 764 /* We already know that `p` is not a vmalloc address. */ 765 kasan_disable_current(); 766 memcpy(n, kasan_reset_tag(p), ksize(p)); 767 kasan_enable_current(); 768 769 kfree(p); 770 } 771 } 772 773 return n; 774 } 775 EXPORT_SYMBOL(kvrealloc_noprof); 776 777 /** 778 * __vmalloc_array - allocate memory for a virtually contiguous array. 779 * @n: number of elements. 780 * @size: element size. 781 * @flags: the type of memory to allocate (see kmalloc). 782 */ 783 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 784 { 785 size_t bytes; 786 787 if (unlikely(check_mul_overflow(n, size, &bytes))) 788 return NULL; 789 return __vmalloc_noprof(bytes, flags); 790 } 791 EXPORT_SYMBOL(__vmalloc_array_noprof); 792 793 /** 794 * vmalloc_array - allocate memory for a virtually contiguous array. 795 * @n: number of elements. 796 * @size: element size. 797 */ 798 void *vmalloc_array_noprof(size_t n, size_t size) 799 { 800 return __vmalloc_array_noprof(n, size, GFP_KERNEL); 801 } 802 EXPORT_SYMBOL(vmalloc_array_noprof); 803 804 /** 805 * __vcalloc - allocate and zero memory for a virtually contiguous array. 806 * @n: number of elements. 807 * @size: element size. 808 * @flags: the type of memory to allocate (see kmalloc). 809 */ 810 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) 811 { 812 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO); 813 } 814 EXPORT_SYMBOL(__vcalloc_noprof); 815 816 /** 817 * vcalloc - allocate and zero memory for a virtually contiguous array. 818 * @n: number of elements. 819 * @size: element size. 820 */ 821 void *vcalloc_noprof(size_t n, size_t size) 822 { 823 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO); 824 } 825 EXPORT_SYMBOL(vcalloc_noprof); 826 827 struct anon_vma *folio_anon_vma(const struct folio *folio) 828 { 829 unsigned long mapping = (unsigned long)folio->mapping; 830 831 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 832 return NULL; 833 return (void *)(mapping - PAGE_MAPPING_ANON); 834 } 835 836 /** 837 * folio_mapping - Find the mapping where this folio is stored. 838 * @folio: The folio. 839 * 840 * For folios which are in the page cache, return the mapping that this 841 * page belongs to. Folios in the swap cache return the swap mapping 842 * this page is stored in (which is different from the mapping for the 843 * swap file or swap device where the data is stored). 844 * 845 * You can call this for folios which aren't in the swap cache or page 846 * cache and it will return NULL. 847 */ 848 struct address_space *folio_mapping(struct folio *folio) 849 { 850 struct address_space *mapping; 851 852 /* This happens if someone calls flush_dcache_page on slab page */ 853 if (unlikely(folio_test_slab(folio))) 854 return NULL; 855 856 if (unlikely(folio_test_swapcache(folio))) 857 return swap_address_space(folio->swap); 858 859 mapping = folio->mapping; 860 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 861 return NULL; 862 863 return mapping; 864 } 865 EXPORT_SYMBOL(folio_mapping); 866 867 /** 868 * folio_copy - Copy the contents of one folio to another. 869 * @dst: Folio to copy to. 870 * @src: Folio to copy from. 871 * 872 * The bytes in the folio represented by @src are copied to @dst. 873 * Assumes the caller has validated that @dst is at least as large as @src. 874 * Can be called in atomic context for order-0 folios, but if the folio is 875 * larger, it may sleep. 876 */ 877 void folio_copy(struct folio *dst, struct folio *src) 878 { 879 long i = 0; 880 long nr = folio_nr_pages(src); 881 882 for (;;) { 883 copy_highpage(folio_page(dst, i), folio_page(src, i)); 884 if (++i == nr) 885 break; 886 cond_resched(); 887 } 888 } 889 EXPORT_SYMBOL(folio_copy); 890 891 int folio_mc_copy(struct folio *dst, struct folio *src) 892 { 893 long nr = folio_nr_pages(src); 894 long i = 0; 895 896 for (;;) { 897 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i))) 898 return -EHWPOISON; 899 if (++i == nr) 900 break; 901 cond_resched(); 902 } 903 904 return 0; 905 } 906 EXPORT_SYMBOL(folio_mc_copy); 907 908 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 909 int sysctl_overcommit_ratio __read_mostly = 50; 910 unsigned long sysctl_overcommit_kbytes __read_mostly; 911 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 912 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 913 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 914 915 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer, 916 size_t *lenp, loff_t *ppos) 917 { 918 int ret; 919 920 ret = proc_dointvec(table, write, buffer, lenp, ppos); 921 if (ret == 0 && write) 922 sysctl_overcommit_kbytes = 0; 923 return ret; 924 } 925 926 static void sync_overcommit_as(struct work_struct *dummy) 927 { 928 percpu_counter_sync(&vm_committed_as); 929 } 930 931 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer, 932 size_t *lenp, loff_t *ppos) 933 { 934 struct ctl_table t; 935 int new_policy = -1; 936 int ret; 937 938 /* 939 * The deviation of sync_overcommit_as could be big with loose policy 940 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 941 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 942 * with the strict "NEVER", and to avoid possible race condition (even 943 * though user usually won't too frequently do the switching to policy 944 * OVERCOMMIT_NEVER), the switch is done in the following order: 945 * 1. changing the batch 946 * 2. sync percpu count on each CPU 947 * 3. switch the policy 948 */ 949 if (write) { 950 t = *table; 951 t.data = &new_policy; 952 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 953 if (ret || new_policy == -1) 954 return ret; 955 956 mm_compute_batch(new_policy); 957 if (new_policy == OVERCOMMIT_NEVER) 958 schedule_on_each_cpu(sync_overcommit_as); 959 sysctl_overcommit_memory = new_policy; 960 } else { 961 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 962 } 963 964 return ret; 965 } 966 967 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer, 968 size_t *lenp, loff_t *ppos) 969 { 970 int ret; 971 972 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 973 if (ret == 0 && write) 974 sysctl_overcommit_ratio = 0; 975 return ret; 976 } 977 978 /* 979 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 980 */ 981 unsigned long vm_commit_limit(void) 982 { 983 unsigned long allowed; 984 985 if (sysctl_overcommit_kbytes) 986 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 987 else 988 allowed = ((totalram_pages() - hugetlb_total_pages()) 989 * sysctl_overcommit_ratio / 100); 990 allowed += total_swap_pages; 991 992 return allowed; 993 } 994 995 /* 996 * Make sure vm_committed_as in one cacheline and not cacheline shared with 997 * other variables. It can be updated by several CPUs frequently. 998 */ 999 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 1000 1001 /* 1002 * The global memory commitment made in the system can be a metric 1003 * that can be used to drive ballooning decisions when Linux is hosted 1004 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 1005 * balancing memory across competing virtual machines that are hosted. 1006 * Several metrics drive this policy engine including the guest reported 1007 * memory commitment. 1008 * 1009 * The time cost of this is very low for small platforms, and for big 1010 * platform like a 2S/36C/72T Skylake server, in worst case where 1011 * vm_committed_as's spinlock is under severe contention, the time cost 1012 * could be about 30~40 microseconds. 1013 */ 1014 unsigned long vm_memory_committed(void) 1015 { 1016 return percpu_counter_sum_positive(&vm_committed_as); 1017 } 1018 EXPORT_SYMBOL_GPL(vm_memory_committed); 1019 1020 /* 1021 * Check that a process has enough memory to allocate a new virtual 1022 * mapping. 0 means there is enough memory for the allocation to 1023 * succeed and -ENOMEM implies there is not. 1024 * 1025 * We currently support three overcommit policies, which are set via the 1026 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 1027 * 1028 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1029 * Additional code 2002 Jul 20 by Robert Love. 1030 * 1031 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1032 * 1033 * Note this is a helper function intended to be used by LSMs which 1034 * wish to use this logic. 1035 */ 1036 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1037 { 1038 long allowed; 1039 unsigned long bytes_failed; 1040 1041 vm_acct_memory(pages); 1042 1043 /* 1044 * Sometimes we want to use more memory than we have 1045 */ 1046 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1047 return 0; 1048 1049 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1050 if (pages > totalram_pages() + total_swap_pages) 1051 goto error; 1052 return 0; 1053 } 1054 1055 allowed = vm_commit_limit(); 1056 /* 1057 * Reserve some for root 1058 */ 1059 if (!cap_sys_admin) 1060 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1061 1062 /* 1063 * Don't let a single process grow so big a user can't recover 1064 */ 1065 if (mm) { 1066 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1067 1068 allowed -= min_t(long, mm->total_vm / 32, reserve); 1069 } 1070 1071 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1072 return 0; 1073 error: 1074 bytes_failed = pages << PAGE_SHIFT; 1075 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n", 1076 __func__, current->pid, current->comm, bytes_failed); 1077 vm_unacct_memory(pages); 1078 1079 return -ENOMEM; 1080 } 1081 1082 /** 1083 * get_cmdline() - copy the cmdline value to a buffer. 1084 * @task: the task whose cmdline value to copy. 1085 * @buffer: the buffer to copy to. 1086 * @buflen: the length of the buffer. Larger cmdline values are truncated 1087 * to this length. 1088 * 1089 * Return: the size of the cmdline field copied. Note that the copy does 1090 * not guarantee an ending NULL byte. 1091 */ 1092 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1093 { 1094 int res = 0; 1095 unsigned int len; 1096 struct mm_struct *mm = get_task_mm(task); 1097 unsigned long arg_start, arg_end, env_start, env_end; 1098 if (!mm) 1099 goto out; 1100 if (!mm->arg_end) 1101 goto out_mm; /* Shh! No looking before we're done */ 1102 1103 spin_lock(&mm->arg_lock); 1104 arg_start = mm->arg_start; 1105 arg_end = mm->arg_end; 1106 env_start = mm->env_start; 1107 env_end = mm->env_end; 1108 spin_unlock(&mm->arg_lock); 1109 1110 len = arg_end - arg_start; 1111 1112 if (len > buflen) 1113 len = buflen; 1114 1115 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1116 1117 /* 1118 * If the nul at the end of args has been overwritten, then 1119 * assume application is using setproctitle(3). 1120 */ 1121 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1122 len = strnlen(buffer, res); 1123 if (len < res) { 1124 res = len; 1125 } else { 1126 len = env_end - env_start; 1127 if (len > buflen - res) 1128 len = buflen - res; 1129 res += access_process_vm(task, env_start, 1130 buffer+res, len, 1131 FOLL_FORCE); 1132 res = strnlen(buffer, res); 1133 } 1134 } 1135 out_mm: 1136 mmput(mm); 1137 out: 1138 return res; 1139 } 1140 1141 int __weak memcmp_pages(struct page *page1, struct page *page2) 1142 { 1143 char *addr1, *addr2; 1144 int ret; 1145 1146 addr1 = kmap_local_page(page1); 1147 addr2 = kmap_local_page(page2); 1148 ret = memcmp(addr1, addr2, PAGE_SIZE); 1149 kunmap_local(addr2); 1150 kunmap_local(addr1); 1151 return ret; 1152 } 1153 1154 #ifdef CONFIG_PRINTK 1155 /** 1156 * mem_dump_obj - Print available provenance information 1157 * @object: object for which to find provenance information. 1158 * 1159 * This function uses pr_cont(), so that the caller is expected to have 1160 * printed out whatever preamble is appropriate. The provenance information 1161 * depends on the type of object and on how much debugging is enabled. 1162 * For example, for a slab-cache object, the slab name is printed, and, 1163 * if available, the return address and stack trace from the allocation 1164 * and last free path of that object. 1165 */ 1166 void mem_dump_obj(void *object) 1167 { 1168 const char *type; 1169 1170 if (kmem_dump_obj(object)) 1171 return; 1172 1173 if (vmalloc_dump_obj(object)) 1174 return; 1175 1176 if (is_vmalloc_addr(object)) 1177 type = "vmalloc memory"; 1178 else if (virt_addr_valid(object)) 1179 type = "non-slab/vmalloc memory"; 1180 else if (object == NULL) 1181 type = "NULL pointer"; 1182 else if (object == ZERO_SIZE_PTR) 1183 type = "zero-size pointer"; 1184 else 1185 type = "non-paged memory"; 1186 1187 pr_cont(" %s\n", type); 1188 } 1189 EXPORT_SYMBOL_GPL(mem_dump_obj); 1190 #endif 1191 1192 /* 1193 * A driver might set a page logically offline -- PageOffline() -- and 1194 * turn the page inaccessible in the hypervisor; after that, access to page 1195 * content can be fatal. 1196 * 1197 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1198 * pages after checking PageOffline(); however, these PFN walkers can race 1199 * with drivers that set PageOffline(). 1200 * 1201 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1202 * synchronize with such drivers, achieving that a page cannot be set 1203 * PageOffline() while frozen. 1204 * 1205 * page_offline_begin()/page_offline_end() is used by drivers that care about 1206 * such races when setting a page PageOffline(). 1207 */ 1208 static DECLARE_RWSEM(page_offline_rwsem); 1209 1210 void page_offline_freeze(void) 1211 { 1212 down_read(&page_offline_rwsem); 1213 } 1214 1215 void page_offline_thaw(void) 1216 { 1217 up_read(&page_offline_rwsem); 1218 } 1219 1220 void page_offline_begin(void) 1221 { 1222 down_write(&page_offline_rwsem); 1223 } 1224 EXPORT_SYMBOL(page_offline_begin); 1225 1226 void page_offline_end(void) 1227 { 1228 up_write(&page_offline_rwsem); 1229 } 1230 EXPORT_SYMBOL(page_offline_end); 1231 1232 #ifndef flush_dcache_folio 1233 void flush_dcache_folio(struct folio *folio) 1234 { 1235 long i, nr = folio_nr_pages(folio); 1236 1237 for (i = 0; i < nr; i++) 1238 flush_dcache_page(folio_page(folio, i)); 1239 } 1240 EXPORT_SYMBOL(flush_dcache_folio); 1241 #endif 1242