xref: /linux/mm/util.c (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 /**
32  * kfree_const - conditionally free memory
33  * @x: pointer to the memory
34  *
35  * Function calls kfree only if @x is not in .rodata section.
36  */
37 void kfree_const(const void *x)
38 {
39 	if (!is_kernel_rodata((unsigned long)x))
40 		kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43 
44 /**
45  * kstrdup - allocate space for and copy an existing string
46  * @s: the string to duplicate
47  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48  *
49  * Return: newly allocated copy of @s or %NULL in case of error
50  */
51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 	size_t len;
54 	char *buf;
55 
56 	if (!s)
57 		return NULL;
58 
59 	len = strlen(s) + 1;
60 	buf = kmalloc_track_caller(len, gfp);
61 	if (buf)
62 		memcpy(buf, s, len);
63 	return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66 
67 /**
68  * kstrdup_const - conditionally duplicate an existing const string
69  * @s: the string to duplicate
70  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71  *
72  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
73  *
74  * Return: source string if it is in .rodata section otherwise
75  * fallback to kstrdup.
76  */
77 const char *kstrdup_const(const char *s, gfp_t gfp)
78 {
79 	if (is_kernel_rodata((unsigned long)s))
80 		return s;
81 
82 	return kstrdup(s, gfp);
83 }
84 EXPORT_SYMBOL(kstrdup_const);
85 
86 /**
87  * kstrndup - allocate space for and copy an existing string
88  * @s: the string to duplicate
89  * @max: read at most @max chars from @s
90  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
91  *
92  * Note: Use kmemdup_nul() instead if the size is known exactly.
93  *
94  * Return: newly allocated copy of @s or %NULL in case of error
95  */
96 char *kstrndup(const char *s, size_t max, gfp_t gfp)
97 {
98 	size_t len;
99 	char *buf;
100 
101 	if (!s)
102 		return NULL;
103 
104 	len = strnlen(s, max);
105 	buf = kmalloc_track_caller(len+1, gfp);
106 	if (buf) {
107 		memcpy(buf, s, len);
108 		buf[len] = '\0';
109 	}
110 	return buf;
111 }
112 EXPORT_SYMBOL(kstrndup);
113 
114 /**
115  * kmemdup - duplicate region of memory
116  *
117  * @src: memory region to duplicate
118  * @len: memory region length
119  * @gfp: GFP mask to use
120  *
121  * Return: newly allocated copy of @src or %NULL in case of error
122  */
123 void *kmemdup(const void *src, size_t len, gfp_t gfp)
124 {
125 	void *p;
126 
127 	p = kmalloc_track_caller(len, gfp);
128 	if (p)
129 		memcpy(p, src, len);
130 	return p;
131 }
132 EXPORT_SYMBOL(kmemdup);
133 
134 /**
135  * kmemdup_nul - Create a NUL-terminated string from unterminated data
136  * @s: The data to stringify
137  * @len: The size of the data
138  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
139  *
140  * Return: newly allocated copy of @s with NUL-termination or %NULL in
141  * case of error
142  */
143 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
144 {
145 	char *buf;
146 
147 	if (!s)
148 		return NULL;
149 
150 	buf = kmalloc_track_caller(len + 1, gfp);
151 	if (buf) {
152 		memcpy(buf, s, len);
153 		buf[len] = '\0';
154 	}
155 	return buf;
156 }
157 EXPORT_SYMBOL(kmemdup_nul);
158 
159 /**
160  * memdup_user - duplicate memory region from user space
161  *
162  * @src: source address in user space
163  * @len: number of bytes to copy
164  *
165  * Return: an ERR_PTR() on failure.  Result is physically
166  * contiguous, to be freed by kfree().
167  */
168 void *memdup_user(const void __user *src, size_t len)
169 {
170 	void *p;
171 
172 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
173 	if (!p)
174 		return ERR_PTR(-ENOMEM);
175 
176 	if (copy_from_user(p, src, len)) {
177 		kfree(p);
178 		return ERR_PTR(-EFAULT);
179 	}
180 
181 	return p;
182 }
183 EXPORT_SYMBOL(memdup_user);
184 
185 /**
186  * vmemdup_user - duplicate memory region from user space
187  *
188  * @src: source address in user space
189  * @len: number of bytes to copy
190  *
191  * Return: an ERR_PTR() on failure.  Result may be not
192  * physically contiguous.  Use kvfree() to free.
193  */
194 void *vmemdup_user(const void __user *src, size_t len)
195 {
196 	void *p;
197 
198 	p = kvmalloc(len, GFP_USER);
199 	if (!p)
200 		return ERR_PTR(-ENOMEM);
201 
202 	if (copy_from_user(p, src, len)) {
203 		kvfree(p);
204 		return ERR_PTR(-EFAULT);
205 	}
206 
207 	return p;
208 }
209 EXPORT_SYMBOL(vmemdup_user);
210 
211 /**
212  * strndup_user - duplicate an existing string from user space
213  * @s: The string to duplicate
214  * @n: Maximum number of bytes to copy, including the trailing NUL.
215  *
216  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
217  */
218 char *strndup_user(const char __user *s, long n)
219 {
220 	char *p;
221 	long length;
222 
223 	length = strnlen_user(s, n);
224 
225 	if (!length)
226 		return ERR_PTR(-EFAULT);
227 
228 	if (length > n)
229 		return ERR_PTR(-EINVAL);
230 
231 	p = memdup_user(s, length);
232 
233 	if (IS_ERR(p))
234 		return p;
235 
236 	p[length - 1] = '\0';
237 
238 	return p;
239 }
240 EXPORT_SYMBOL(strndup_user);
241 
242 /**
243  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
244  *
245  * @src: source address in user space
246  * @len: number of bytes to copy
247  *
248  * Return: an ERR_PTR() on failure.
249  */
250 void *memdup_user_nul(const void __user *src, size_t len)
251 {
252 	char *p;
253 
254 	/*
255 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
256 	 * cause pagefault, which makes it pointless to use GFP_NOFS
257 	 * or GFP_ATOMIC.
258 	 */
259 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
260 	if (!p)
261 		return ERR_PTR(-ENOMEM);
262 
263 	if (copy_from_user(p, src, len)) {
264 		kfree(p);
265 		return ERR_PTR(-EFAULT);
266 	}
267 	p[len] = '\0';
268 
269 	return p;
270 }
271 EXPORT_SYMBOL(memdup_user_nul);
272 
273 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
274 		struct vm_area_struct *prev, struct rb_node *rb_parent)
275 {
276 	struct vm_area_struct *next;
277 
278 	vma->vm_prev = prev;
279 	if (prev) {
280 		next = prev->vm_next;
281 		prev->vm_next = vma;
282 	} else {
283 		mm->mmap = vma;
284 		if (rb_parent)
285 			next = rb_entry(rb_parent,
286 					struct vm_area_struct, vm_rb);
287 		else
288 			next = NULL;
289 	}
290 	vma->vm_next = next;
291 	if (next)
292 		next->vm_prev = vma;
293 }
294 
295 /* Check if the vma is being used as a stack by this task */
296 int vma_is_stack_for_current(struct vm_area_struct *vma)
297 {
298 	struct task_struct * __maybe_unused t = current;
299 
300 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
301 }
302 
303 #ifndef STACK_RND_MASK
304 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
305 #endif
306 
307 unsigned long randomize_stack_top(unsigned long stack_top)
308 {
309 	unsigned long random_variable = 0;
310 
311 	if (current->flags & PF_RANDOMIZE) {
312 		random_variable = get_random_long();
313 		random_variable &= STACK_RND_MASK;
314 		random_variable <<= PAGE_SHIFT;
315 	}
316 #ifdef CONFIG_STACK_GROWSUP
317 	return PAGE_ALIGN(stack_top) + random_variable;
318 #else
319 	return PAGE_ALIGN(stack_top) - random_variable;
320 #endif
321 }
322 
323 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
324 unsigned long arch_randomize_brk(struct mm_struct *mm)
325 {
326 	/* Is the current task 32bit ? */
327 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
328 		return randomize_page(mm->brk, SZ_32M);
329 
330 	return randomize_page(mm->brk, SZ_1G);
331 }
332 
333 unsigned long arch_mmap_rnd(void)
334 {
335 	unsigned long rnd;
336 
337 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
338 	if (is_compat_task())
339 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
340 	else
341 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
342 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
343 
344 	return rnd << PAGE_SHIFT;
345 }
346 
347 static int mmap_is_legacy(struct rlimit *rlim_stack)
348 {
349 	if (current->personality & ADDR_COMPAT_LAYOUT)
350 		return 1;
351 
352 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
353 		return 1;
354 
355 	return sysctl_legacy_va_layout;
356 }
357 
358 /*
359  * Leave enough space between the mmap area and the stack to honour ulimit in
360  * the face of randomisation.
361  */
362 #define MIN_GAP		(SZ_128M)
363 #define MAX_GAP		(STACK_TOP / 6 * 5)
364 
365 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
366 {
367 	unsigned long gap = rlim_stack->rlim_cur;
368 	unsigned long pad = stack_guard_gap;
369 
370 	/* Account for stack randomization if necessary */
371 	if (current->flags & PF_RANDOMIZE)
372 		pad += (STACK_RND_MASK << PAGE_SHIFT);
373 
374 	/* Values close to RLIM_INFINITY can overflow. */
375 	if (gap + pad > gap)
376 		gap += pad;
377 
378 	if (gap < MIN_GAP)
379 		gap = MIN_GAP;
380 	else if (gap > MAX_GAP)
381 		gap = MAX_GAP;
382 
383 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
384 }
385 
386 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
387 {
388 	unsigned long random_factor = 0UL;
389 
390 	if (current->flags & PF_RANDOMIZE)
391 		random_factor = arch_mmap_rnd();
392 
393 	if (mmap_is_legacy(rlim_stack)) {
394 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
395 		mm->get_unmapped_area = arch_get_unmapped_area;
396 	} else {
397 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
398 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
399 	}
400 }
401 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
402 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
403 {
404 	mm->mmap_base = TASK_UNMAPPED_BASE;
405 	mm->get_unmapped_area = arch_get_unmapped_area;
406 }
407 #endif
408 
409 /**
410  * __account_locked_vm - account locked pages to an mm's locked_vm
411  * @mm:          mm to account against
412  * @pages:       number of pages to account
413  * @inc:         %true if @pages should be considered positive, %false if not
414  * @task:        task used to check RLIMIT_MEMLOCK
415  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
416  *
417  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
418  * that mmap_sem is held as writer.
419  *
420  * Return:
421  * * 0       on success
422  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
423  */
424 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
425 			struct task_struct *task, bool bypass_rlim)
426 {
427 	unsigned long locked_vm, limit;
428 	int ret = 0;
429 
430 	lockdep_assert_held_write(&mm->mmap_sem);
431 
432 	locked_vm = mm->locked_vm;
433 	if (inc) {
434 		if (!bypass_rlim) {
435 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
436 			if (locked_vm + pages > limit)
437 				ret = -ENOMEM;
438 		}
439 		if (!ret)
440 			mm->locked_vm = locked_vm + pages;
441 	} else {
442 		WARN_ON_ONCE(pages > locked_vm);
443 		mm->locked_vm = locked_vm - pages;
444 	}
445 
446 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
447 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
448 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
449 		 ret ? " - exceeded" : "");
450 
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(__account_locked_vm);
454 
455 /**
456  * account_locked_vm - account locked pages to an mm's locked_vm
457  * @mm:          mm to account against, may be NULL
458  * @pages:       number of pages to account
459  * @inc:         %true if @pages should be considered positive, %false if not
460  *
461  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
462  *
463  * Return:
464  * * 0       on success, or if mm is NULL
465  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
466  */
467 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
468 {
469 	int ret;
470 
471 	if (pages == 0 || !mm)
472 		return 0;
473 
474 	down_write(&mm->mmap_sem);
475 	ret = __account_locked_vm(mm, pages, inc, current,
476 				  capable(CAP_IPC_LOCK));
477 	up_write(&mm->mmap_sem);
478 
479 	return ret;
480 }
481 EXPORT_SYMBOL_GPL(account_locked_vm);
482 
483 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
484 	unsigned long len, unsigned long prot,
485 	unsigned long flag, unsigned long pgoff)
486 {
487 	unsigned long ret;
488 	struct mm_struct *mm = current->mm;
489 	unsigned long populate;
490 	LIST_HEAD(uf);
491 
492 	ret = security_mmap_file(file, prot, flag);
493 	if (!ret) {
494 		if (down_write_killable(&mm->mmap_sem))
495 			return -EINTR;
496 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
497 				    &populate, &uf);
498 		up_write(&mm->mmap_sem);
499 		userfaultfd_unmap_complete(mm, &uf);
500 		if (populate)
501 			mm_populate(ret, populate);
502 	}
503 	return ret;
504 }
505 
506 unsigned long vm_mmap(struct file *file, unsigned long addr,
507 	unsigned long len, unsigned long prot,
508 	unsigned long flag, unsigned long offset)
509 {
510 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
511 		return -EINVAL;
512 	if (unlikely(offset_in_page(offset)))
513 		return -EINVAL;
514 
515 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
516 }
517 EXPORT_SYMBOL(vm_mmap);
518 
519 /**
520  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
521  * failure, fall back to non-contiguous (vmalloc) allocation.
522  * @size: size of the request.
523  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
524  * @node: numa node to allocate from
525  *
526  * Uses kmalloc to get the memory but if the allocation fails then falls back
527  * to the vmalloc allocator. Use kvfree for freeing the memory.
528  *
529  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
530  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
531  * preferable to the vmalloc fallback, due to visible performance drawbacks.
532  *
533  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
534  * fall back to vmalloc.
535  *
536  * Return: pointer to the allocated memory of %NULL in case of failure
537  */
538 void *kvmalloc_node(size_t size, gfp_t flags, int node)
539 {
540 	gfp_t kmalloc_flags = flags;
541 	void *ret;
542 
543 	/*
544 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
545 	 * so the given set of flags has to be compatible.
546 	 */
547 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
548 		return kmalloc_node(size, flags, node);
549 
550 	/*
551 	 * We want to attempt a large physically contiguous block first because
552 	 * it is less likely to fragment multiple larger blocks and therefore
553 	 * contribute to a long term fragmentation less than vmalloc fallback.
554 	 * However make sure that larger requests are not too disruptive - no
555 	 * OOM killer and no allocation failure warnings as we have a fallback.
556 	 */
557 	if (size > PAGE_SIZE) {
558 		kmalloc_flags |= __GFP_NOWARN;
559 
560 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
561 			kmalloc_flags |= __GFP_NORETRY;
562 	}
563 
564 	ret = kmalloc_node(size, kmalloc_flags, node);
565 
566 	/*
567 	 * It doesn't really make sense to fallback to vmalloc for sub page
568 	 * requests
569 	 */
570 	if (ret || size <= PAGE_SIZE)
571 		return ret;
572 
573 	return __vmalloc_node_flags_caller(size, node, flags,
574 			__builtin_return_address(0));
575 }
576 EXPORT_SYMBOL(kvmalloc_node);
577 
578 /**
579  * kvfree() - Free memory.
580  * @addr: Pointer to allocated memory.
581  *
582  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
583  * It is slightly more efficient to use kfree() or vfree() if you are certain
584  * that you know which one to use.
585  *
586  * Context: Either preemptible task context or not-NMI interrupt.
587  */
588 void kvfree(const void *addr)
589 {
590 	if (is_vmalloc_addr(addr))
591 		vfree(addr);
592 	else
593 		kfree(addr);
594 }
595 EXPORT_SYMBOL(kvfree);
596 
597 static inline void *__page_rmapping(struct page *page)
598 {
599 	unsigned long mapping;
600 
601 	mapping = (unsigned long)page->mapping;
602 	mapping &= ~PAGE_MAPPING_FLAGS;
603 
604 	return (void *)mapping;
605 }
606 
607 /* Neutral page->mapping pointer to address_space or anon_vma or other */
608 void *page_rmapping(struct page *page)
609 {
610 	page = compound_head(page);
611 	return __page_rmapping(page);
612 }
613 
614 /*
615  * Return true if this page is mapped into pagetables.
616  * For compound page it returns true if any subpage of compound page is mapped.
617  */
618 bool page_mapped(struct page *page)
619 {
620 	int i;
621 
622 	if (likely(!PageCompound(page)))
623 		return atomic_read(&page->_mapcount) >= 0;
624 	page = compound_head(page);
625 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
626 		return true;
627 	if (PageHuge(page))
628 		return false;
629 	for (i = 0; i < compound_nr(page); i++) {
630 		if (atomic_read(&page[i]._mapcount) >= 0)
631 			return true;
632 	}
633 	return false;
634 }
635 EXPORT_SYMBOL(page_mapped);
636 
637 struct anon_vma *page_anon_vma(struct page *page)
638 {
639 	unsigned long mapping;
640 
641 	page = compound_head(page);
642 	mapping = (unsigned long)page->mapping;
643 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
644 		return NULL;
645 	return __page_rmapping(page);
646 }
647 
648 struct address_space *page_mapping(struct page *page)
649 {
650 	struct address_space *mapping;
651 
652 	page = compound_head(page);
653 
654 	/* This happens if someone calls flush_dcache_page on slab page */
655 	if (unlikely(PageSlab(page)))
656 		return NULL;
657 
658 	if (unlikely(PageSwapCache(page))) {
659 		swp_entry_t entry;
660 
661 		entry.val = page_private(page);
662 		return swap_address_space(entry);
663 	}
664 
665 	mapping = page->mapping;
666 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
667 		return NULL;
668 
669 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
670 }
671 EXPORT_SYMBOL(page_mapping);
672 
673 /*
674  * For file cache pages, return the address_space, otherwise return NULL
675  */
676 struct address_space *page_mapping_file(struct page *page)
677 {
678 	if (unlikely(PageSwapCache(page)))
679 		return NULL;
680 	return page_mapping(page);
681 }
682 
683 /* Slow path of page_mapcount() for compound pages */
684 int __page_mapcount(struct page *page)
685 {
686 	int ret;
687 
688 	ret = atomic_read(&page->_mapcount) + 1;
689 	/*
690 	 * For file THP page->_mapcount contains total number of mapping
691 	 * of the page: no need to look into compound_mapcount.
692 	 */
693 	if (!PageAnon(page) && !PageHuge(page))
694 		return ret;
695 	page = compound_head(page);
696 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
697 	if (PageDoubleMap(page))
698 		ret--;
699 	return ret;
700 }
701 EXPORT_SYMBOL_GPL(__page_mapcount);
702 
703 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
704 int sysctl_overcommit_ratio __read_mostly = 50;
705 unsigned long sysctl_overcommit_kbytes __read_mostly;
706 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
707 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
708 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
709 
710 int overcommit_ratio_handler(struct ctl_table *table, int write,
711 			     void __user *buffer, size_t *lenp,
712 			     loff_t *ppos)
713 {
714 	int ret;
715 
716 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
717 	if (ret == 0 && write)
718 		sysctl_overcommit_kbytes = 0;
719 	return ret;
720 }
721 
722 int overcommit_kbytes_handler(struct ctl_table *table, int write,
723 			     void __user *buffer, size_t *lenp,
724 			     loff_t *ppos)
725 {
726 	int ret;
727 
728 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
729 	if (ret == 0 && write)
730 		sysctl_overcommit_ratio = 0;
731 	return ret;
732 }
733 
734 /*
735  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
736  */
737 unsigned long vm_commit_limit(void)
738 {
739 	unsigned long allowed;
740 
741 	if (sysctl_overcommit_kbytes)
742 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
743 	else
744 		allowed = ((totalram_pages() - hugetlb_total_pages())
745 			   * sysctl_overcommit_ratio / 100);
746 	allowed += total_swap_pages;
747 
748 	return allowed;
749 }
750 
751 /*
752  * Make sure vm_committed_as in one cacheline and not cacheline shared with
753  * other variables. It can be updated by several CPUs frequently.
754  */
755 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
756 
757 /*
758  * The global memory commitment made in the system can be a metric
759  * that can be used to drive ballooning decisions when Linux is hosted
760  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
761  * balancing memory across competing virtual machines that are hosted.
762  * Several metrics drive this policy engine including the guest reported
763  * memory commitment.
764  */
765 unsigned long vm_memory_committed(void)
766 {
767 	return percpu_counter_read_positive(&vm_committed_as);
768 }
769 EXPORT_SYMBOL_GPL(vm_memory_committed);
770 
771 /*
772  * Check that a process has enough memory to allocate a new virtual
773  * mapping. 0 means there is enough memory for the allocation to
774  * succeed and -ENOMEM implies there is not.
775  *
776  * We currently support three overcommit policies, which are set via the
777  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
778  *
779  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
780  * Additional code 2002 Jul 20 by Robert Love.
781  *
782  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
783  *
784  * Note this is a helper function intended to be used by LSMs which
785  * wish to use this logic.
786  */
787 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
788 {
789 	long allowed;
790 
791 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
792 			-(s64)vm_committed_as_batch * num_online_cpus(),
793 			"memory commitment underflow");
794 
795 	vm_acct_memory(pages);
796 
797 	/*
798 	 * Sometimes we want to use more memory than we have
799 	 */
800 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
801 		return 0;
802 
803 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
804 		if (pages > totalram_pages() + total_swap_pages)
805 			goto error;
806 		return 0;
807 	}
808 
809 	allowed = vm_commit_limit();
810 	/*
811 	 * Reserve some for root
812 	 */
813 	if (!cap_sys_admin)
814 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
815 
816 	/*
817 	 * Don't let a single process grow so big a user can't recover
818 	 */
819 	if (mm) {
820 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
821 
822 		allowed -= min_t(long, mm->total_vm / 32, reserve);
823 	}
824 
825 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
826 		return 0;
827 error:
828 	vm_unacct_memory(pages);
829 
830 	return -ENOMEM;
831 }
832 
833 /**
834  * get_cmdline() - copy the cmdline value to a buffer.
835  * @task:     the task whose cmdline value to copy.
836  * @buffer:   the buffer to copy to.
837  * @buflen:   the length of the buffer. Larger cmdline values are truncated
838  *            to this length.
839  *
840  * Return: the size of the cmdline field copied. Note that the copy does
841  * not guarantee an ending NULL byte.
842  */
843 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
844 {
845 	int res = 0;
846 	unsigned int len;
847 	struct mm_struct *mm = get_task_mm(task);
848 	unsigned long arg_start, arg_end, env_start, env_end;
849 	if (!mm)
850 		goto out;
851 	if (!mm->arg_end)
852 		goto out_mm;	/* Shh! No looking before we're done */
853 
854 	spin_lock(&mm->arg_lock);
855 	arg_start = mm->arg_start;
856 	arg_end = mm->arg_end;
857 	env_start = mm->env_start;
858 	env_end = mm->env_end;
859 	spin_unlock(&mm->arg_lock);
860 
861 	len = arg_end - arg_start;
862 
863 	if (len > buflen)
864 		len = buflen;
865 
866 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
867 
868 	/*
869 	 * If the nul at the end of args has been overwritten, then
870 	 * assume application is using setproctitle(3).
871 	 */
872 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
873 		len = strnlen(buffer, res);
874 		if (len < res) {
875 			res = len;
876 		} else {
877 			len = env_end - env_start;
878 			if (len > buflen - res)
879 				len = buflen - res;
880 			res += access_process_vm(task, env_start,
881 						 buffer+res, len,
882 						 FOLL_FORCE);
883 			res = strnlen(buffer, res);
884 		}
885 	}
886 out_mm:
887 	mmput(mm);
888 out:
889 	return res;
890 }
891 
892 int memcmp_pages(struct page *page1, struct page *page2)
893 {
894 	char *addr1, *addr2;
895 	int ret;
896 
897 	addr1 = kmap_atomic(page1);
898 	addr2 = kmap_atomic(page2);
899 	ret = memcmp(addr1, addr2, PAGE_SIZE);
900 	kunmap_atomic(addr2);
901 	kunmap_atomic(addr1);
902 	return ret;
903 }
904