1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include <kunit/visibility.h> 30 31 #include "internal.h" 32 #include "swap.h" 33 34 /** 35 * kfree_const - conditionally free memory 36 * @x: pointer to the memory 37 * 38 * Function calls kfree only if @x is not in .rodata section. 39 */ 40 void kfree_const(const void *x) 41 { 42 if (!is_kernel_rodata((unsigned long)x)) 43 kfree(x); 44 } 45 EXPORT_SYMBOL(kfree_const); 46 47 /** 48 * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated. 49 * @s: The data to copy 50 * @len: The size of the data, not including the NUL terminator 51 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 52 * 53 * Return: newly allocated copy of @s with NUL-termination or %NULL in 54 * case of error 55 */ 56 static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp) 57 { 58 char *buf; 59 60 /* '+1' for the NUL terminator */ 61 buf = kmalloc_track_caller(len + 1, gfp); 62 if (!buf) 63 return NULL; 64 65 memcpy(buf, s, len); 66 /* Ensure the buf is always NUL-terminated, regardless of @s. */ 67 buf[len] = '\0'; 68 return buf; 69 } 70 71 /** 72 * kstrdup - allocate space for and copy an existing string 73 * @s: the string to duplicate 74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 75 * 76 * Return: newly allocated copy of @s or %NULL in case of error 77 */ 78 noinline 79 char *kstrdup(const char *s, gfp_t gfp) 80 { 81 return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL; 82 } 83 EXPORT_SYMBOL(kstrdup); 84 85 /** 86 * kstrdup_const - conditionally duplicate an existing const string 87 * @s: the string to duplicate 88 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 89 * 90 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 91 * must not be passed to krealloc(). 92 * 93 * Return: source string if it is in .rodata section otherwise 94 * fallback to kstrdup. 95 */ 96 const char *kstrdup_const(const char *s, gfp_t gfp) 97 { 98 if (is_kernel_rodata((unsigned long)s)) 99 return s; 100 101 return kstrdup(s, gfp); 102 } 103 EXPORT_SYMBOL(kstrdup_const); 104 105 /** 106 * kstrndup - allocate space for and copy an existing string 107 * @s: the string to duplicate 108 * @max: read at most @max chars from @s 109 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 110 * 111 * Note: Use kmemdup_nul() instead if the size is known exactly. 112 * 113 * Return: newly allocated copy of @s or %NULL in case of error 114 */ 115 char *kstrndup(const char *s, size_t max, gfp_t gfp) 116 { 117 return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL; 118 } 119 EXPORT_SYMBOL(kstrndup); 120 121 /** 122 * kmemdup - duplicate region of memory 123 * 124 * @src: memory region to duplicate 125 * @len: memory region length 126 * @gfp: GFP mask to use 127 * 128 * Return: newly allocated copy of @src or %NULL in case of error, 129 * result is physically contiguous. Use kfree() to free. 130 */ 131 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) 132 { 133 void *p; 134 135 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); 136 if (p) 137 memcpy(p, src, len); 138 return p; 139 } 140 EXPORT_SYMBOL(kmemdup_noprof); 141 142 /** 143 * kmemdup_array - duplicate a given array. 144 * 145 * @src: array to duplicate. 146 * @count: number of elements to duplicate from array. 147 * @element_size: size of each element of array. 148 * @gfp: GFP mask to use. 149 * 150 * Return: duplicated array of @src or %NULL in case of error, 151 * result is physically contiguous. Use kfree() to free. 152 */ 153 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp) 154 { 155 return kmemdup(src, size_mul(element_size, count), gfp); 156 } 157 EXPORT_SYMBOL(kmemdup_array); 158 159 /** 160 * kvmemdup - duplicate region of memory 161 * 162 * @src: memory region to duplicate 163 * @len: memory region length 164 * @gfp: GFP mask to use 165 * 166 * Return: newly allocated copy of @src or %NULL in case of error, 167 * result may be not physically contiguous. Use kvfree() to free. 168 */ 169 void *kvmemdup(const void *src, size_t len, gfp_t gfp) 170 { 171 void *p; 172 173 p = kvmalloc(len, gfp); 174 if (p) 175 memcpy(p, src, len); 176 return p; 177 } 178 EXPORT_SYMBOL(kvmemdup); 179 180 /** 181 * kmemdup_nul - Create a NUL-terminated string from unterminated data 182 * @s: The data to stringify 183 * @len: The size of the data 184 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 185 * 186 * Return: newly allocated copy of @s with NUL-termination or %NULL in 187 * case of error 188 */ 189 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 190 { 191 return s ? __kmemdup_nul(s, len, gfp) : NULL; 192 } 193 EXPORT_SYMBOL(kmemdup_nul); 194 195 static kmem_buckets *user_buckets __ro_after_init; 196 197 static int __init init_user_buckets(void) 198 { 199 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL); 200 201 return 0; 202 } 203 subsys_initcall(init_user_buckets); 204 205 /** 206 * memdup_user - duplicate memory region from user space 207 * 208 * @src: source address in user space 209 * @len: number of bytes to copy 210 * 211 * Return: an ERR_PTR() on failure. Result is physically 212 * contiguous, to be freed by kfree(). 213 */ 214 void *memdup_user(const void __user *src, size_t len) 215 { 216 void *p; 217 218 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN); 219 if (!p) 220 return ERR_PTR(-ENOMEM); 221 222 if (copy_from_user(p, src, len)) { 223 kfree(p); 224 return ERR_PTR(-EFAULT); 225 } 226 227 return p; 228 } 229 EXPORT_SYMBOL(memdup_user); 230 231 /** 232 * vmemdup_user - duplicate memory region from user space 233 * 234 * @src: source address in user space 235 * @len: number of bytes to copy 236 * 237 * Return: an ERR_PTR() on failure. Result may be not 238 * physically contiguous. Use kvfree() to free. 239 */ 240 void *vmemdup_user(const void __user *src, size_t len) 241 { 242 void *p; 243 244 p = kmem_buckets_valloc(user_buckets, len, GFP_USER); 245 if (!p) 246 return ERR_PTR(-ENOMEM); 247 248 if (copy_from_user(p, src, len)) { 249 kvfree(p); 250 return ERR_PTR(-EFAULT); 251 } 252 253 return p; 254 } 255 EXPORT_SYMBOL(vmemdup_user); 256 257 /** 258 * strndup_user - duplicate an existing string from user space 259 * @s: The string to duplicate 260 * @n: Maximum number of bytes to copy, including the trailing NUL. 261 * 262 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 263 */ 264 char *strndup_user(const char __user *s, long n) 265 { 266 char *p; 267 long length; 268 269 length = strnlen_user(s, n); 270 271 if (!length) 272 return ERR_PTR(-EFAULT); 273 274 if (length > n) 275 return ERR_PTR(-EINVAL); 276 277 p = memdup_user(s, length); 278 279 if (IS_ERR(p)) 280 return p; 281 282 p[length - 1] = '\0'; 283 284 return p; 285 } 286 EXPORT_SYMBOL(strndup_user); 287 288 /** 289 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 290 * 291 * @src: source address in user space 292 * @len: number of bytes to copy 293 * 294 * Return: an ERR_PTR() on failure. 295 */ 296 void *memdup_user_nul(const void __user *src, size_t len) 297 { 298 char *p; 299 300 /* 301 * Always use GFP_KERNEL, since copy_from_user() can sleep and 302 * cause pagefault, which makes it pointless to use GFP_NOFS 303 * or GFP_ATOMIC. 304 */ 305 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 306 if (!p) 307 return ERR_PTR(-ENOMEM); 308 309 if (copy_from_user(p, src, len)) { 310 kfree(p); 311 return ERR_PTR(-EFAULT); 312 } 313 p[len] = '\0'; 314 315 return p; 316 } 317 EXPORT_SYMBOL(memdup_user_nul); 318 319 /* Check if the vma is being used as a stack by this task */ 320 int vma_is_stack_for_current(struct vm_area_struct *vma) 321 { 322 struct task_struct * __maybe_unused t = current; 323 324 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 325 } 326 327 /* 328 * Change backing file, only valid to use during initial VMA setup. 329 */ 330 void vma_set_file(struct vm_area_struct *vma, struct file *file) 331 { 332 /* Changing an anonymous vma with this is illegal */ 333 get_file(file); 334 swap(vma->vm_file, file); 335 fput(file); 336 } 337 EXPORT_SYMBOL(vma_set_file); 338 339 #ifndef STACK_RND_MASK 340 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 341 #endif 342 343 unsigned long randomize_stack_top(unsigned long stack_top) 344 { 345 unsigned long random_variable = 0; 346 347 if (current->flags & PF_RANDOMIZE) { 348 random_variable = get_random_long(); 349 random_variable &= STACK_RND_MASK; 350 random_variable <<= PAGE_SHIFT; 351 } 352 #ifdef CONFIG_STACK_GROWSUP 353 return PAGE_ALIGN(stack_top) + random_variable; 354 #else 355 return PAGE_ALIGN(stack_top) - random_variable; 356 #endif 357 } 358 359 /** 360 * randomize_page - Generate a random, page aligned address 361 * @start: The smallest acceptable address the caller will take. 362 * @range: The size of the area, starting at @start, within which the 363 * random address must fall. 364 * 365 * If @start + @range would overflow, @range is capped. 366 * 367 * NOTE: Historical use of randomize_range, which this replaces, presumed that 368 * @start was already page aligned. We now align it regardless. 369 * 370 * Return: A page aligned address within [start, start + range). On error, 371 * @start is returned. 372 */ 373 unsigned long randomize_page(unsigned long start, unsigned long range) 374 { 375 if (!PAGE_ALIGNED(start)) { 376 range -= PAGE_ALIGN(start) - start; 377 start = PAGE_ALIGN(start); 378 } 379 380 if (start > ULONG_MAX - range) 381 range = ULONG_MAX - start; 382 383 range >>= PAGE_SHIFT; 384 385 if (range == 0) 386 return start; 387 388 return start + (get_random_long() % range << PAGE_SHIFT); 389 } 390 391 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 392 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 393 { 394 /* Is the current task 32bit ? */ 395 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 396 return randomize_page(mm->brk, SZ_32M); 397 398 return randomize_page(mm->brk, SZ_1G); 399 } 400 401 unsigned long arch_mmap_rnd(void) 402 { 403 unsigned long rnd; 404 405 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 406 if (is_compat_task()) 407 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 408 else 409 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 410 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 411 412 return rnd << PAGE_SHIFT; 413 } 414 415 static int mmap_is_legacy(struct rlimit *rlim_stack) 416 { 417 if (current->personality & ADDR_COMPAT_LAYOUT) 418 return 1; 419 420 /* On parisc the stack always grows up - so a unlimited stack should 421 * not be an indicator to use the legacy memory layout. */ 422 if (rlim_stack->rlim_cur == RLIM_INFINITY && 423 !IS_ENABLED(CONFIG_STACK_GROWSUP)) 424 return 1; 425 426 return sysctl_legacy_va_layout; 427 } 428 429 /* 430 * Leave enough space between the mmap area and the stack to honour ulimit in 431 * the face of randomisation. 432 */ 433 #define MIN_GAP (SZ_128M) 434 #define MAX_GAP (STACK_TOP / 6 * 5) 435 436 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 437 { 438 #ifdef CONFIG_STACK_GROWSUP 439 /* 440 * For an upwards growing stack the calculation is much simpler. 441 * Memory for the maximum stack size is reserved at the top of the 442 * task. mmap_base starts directly below the stack and grows 443 * downwards. 444 */ 445 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); 446 #else 447 unsigned long gap = rlim_stack->rlim_cur; 448 unsigned long pad = stack_guard_gap; 449 450 /* Account for stack randomization if necessary */ 451 if (current->flags & PF_RANDOMIZE) 452 pad += (STACK_RND_MASK << PAGE_SHIFT); 453 454 /* Values close to RLIM_INFINITY can overflow. */ 455 if (gap + pad > gap) 456 gap += pad; 457 458 if (gap < MIN_GAP && MIN_GAP < MAX_GAP) 459 gap = MIN_GAP; 460 else if (gap > MAX_GAP) 461 gap = MAX_GAP; 462 463 return PAGE_ALIGN(STACK_TOP - gap - rnd); 464 #endif 465 } 466 467 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 468 { 469 unsigned long random_factor = 0UL; 470 471 if (current->flags & PF_RANDOMIZE) 472 random_factor = arch_mmap_rnd(); 473 474 if (mmap_is_legacy(rlim_stack)) { 475 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 476 clear_bit(MMF_TOPDOWN, &mm->flags); 477 } else { 478 mm->mmap_base = mmap_base(random_factor, rlim_stack); 479 set_bit(MMF_TOPDOWN, &mm->flags); 480 } 481 } 482 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 483 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 484 { 485 mm->mmap_base = TASK_UNMAPPED_BASE; 486 clear_bit(MMF_TOPDOWN, &mm->flags); 487 } 488 #endif 489 #ifdef CONFIG_MMU 490 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout); 491 #endif 492 493 /** 494 * __account_locked_vm - account locked pages to an mm's locked_vm 495 * @mm: mm to account against 496 * @pages: number of pages to account 497 * @inc: %true if @pages should be considered positive, %false if not 498 * @task: task used to check RLIMIT_MEMLOCK 499 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 500 * 501 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 502 * that mmap_lock is held as writer. 503 * 504 * Return: 505 * * 0 on success 506 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 507 */ 508 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 509 struct task_struct *task, bool bypass_rlim) 510 { 511 unsigned long locked_vm, limit; 512 int ret = 0; 513 514 mmap_assert_write_locked(mm); 515 516 locked_vm = mm->locked_vm; 517 if (inc) { 518 if (!bypass_rlim) { 519 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 520 if (locked_vm + pages > limit) 521 ret = -ENOMEM; 522 } 523 if (!ret) 524 mm->locked_vm = locked_vm + pages; 525 } else { 526 WARN_ON_ONCE(pages > locked_vm); 527 mm->locked_vm = locked_vm - pages; 528 } 529 530 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 531 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 532 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 533 ret ? " - exceeded" : ""); 534 535 return ret; 536 } 537 EXPORT_SYMBOL_GPL(__account_locked_vm); 538 539 /** 540 * account_locked_vm - account locked pages to an mm's locked_vm 541 * @mm: mm to account against, may be NULL 542 * @pages: number of pages to account 543 * @inc: %true if @pages should be considered positive, %false if not 544 * 545 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 546 * 547 * Return: 548 * * 0 on success, or if mm is NULL 549 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 550 */ 551 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 552 { 553 int ret; 554 555 if (pages == 0 || !mm) 556 return 0; 557 558 mmap_write_lock(mm); 559 ret = __account_locked_vm(mm, pages, inc, current, 560 capable(CAP_IPC_LOCK)); 561 mmap_write_unlock(mm); 562 563 return ret; 564 } 565 EXPORT_SYMBOL_GPL(account_locked_vm); 566 567 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 568 unsigned long len, unsigned long prot, 569 unsigned long flag, unsigned long pgoff) 570 { 571 unsigned long ret; 572 struct mm_struct *mm = current->mm; 573 unsigned long populate; 574 LIST_HEAD(uf); 575 576 ret = security_mmap_file(file, prot, flag); 577 if (!ret) { 578 if (mmap_write_lock_killable(mm)) 579 return -EINTR; 580 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, 581 &uf); 582 mmap_write_unlock(mm); 583 userfaultfd_unmap_complete(mm, &uf); 584 if (populate) 585 mm_populate(ret, populate); 586 } 587 return ret; 588 } 589 590 unsigned long vm_mmap(struct file *file, unsigned long addr, 591 unsigned long len, unsigned long prot, 592 unsigned long flag, unsigned long offset) 593 { 594 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 595 return -EINVAL; 596 if (unlikely(offset_in_page(offset))) 597 return -EINVAL; 598 599 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 600 } 601 EXPORT_SYMBOL(vm_mmap); 602 603 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 604 { 605 /* 606 * We want to attempt a large physically contiguous block first because 607 * it is less likely to fragment multiple larger blocks and therefore 608 * contribute to a long term fragmentation less than vmalloc fallback. 609 * However make sure that larger requests are not too disruptive - no 610 * OOM killer and no allocation failure warnings as we have a fallback. 611 */ 612 if (size > PAGE_SIZE) { 613 flags |= __GFP_NOWARN; 614 615 if (!(flags & __GFP_RETRY_MAYFAIL)) 616 flags |= __GFP_NORETRY; 617 618 /* nofail semantic is implemented by the vmalloc fallback */ 619 flags &= ~__GFP_NOFAIL; 620 } 621 622 return flags; 623 } 624 625 /** 626 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 627 * failure, fall back to non-contiguous (vmalloc) allocation. 628 * @size: size of the request. 629 * @b: which set of kmalloc buckets to allocate from. 630 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 631 * @node: numa node to allocate from 632 * 633 * Uses kmalloc to get the memory but if the allocation fails then falls back 634 * to the vmalloc allocator. Use kvfree for freeing the memory. 635 * 636 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 637 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 638 * preferable to the vmalloc fallback, due to visible performance drawbacks. 639 * 640 * Return: pointer to the allocated memory of %NULL in case of failure 641 */ 642 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 643 { 644 void *ret; 645 646 /* 647 * It doesn't really make sense to fallback to vmalloc for sub page 648 * requests 649 */ 650 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b), 651 kmalloc_gfp_adjust(flags, size), 652 node); 653 if (ret || size <= PAGE_SIZE) 654 return ret; 655 656 /* non-sleeping allocations are not supported by vmalloc */ 657 if (!gfpflags_allow_blocking(flags)) 658 return NULL; 659 660 /* Don't even allow crazy sizes */ 661 if (unlikely(size > INT_MAX)) { 662 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 663 return NULL; 664 } 665 666 /* 667 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 668 * since the callers already cannot assume anything 669 * about the resulting pointer, and cannot play 670 * protection games. 671 */ 672 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 673 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 674 node, __builtin_return_address(0)); 675 } 676 EXPORT_SYMBOL(__kvmalloc_node_noprof); 677 678 /** 679 * kvfree() - Free memory. 680 * @addr: Pointer to allocated memory. 681 * 682 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 683 * It is slightly more efficient to use kfree() or vfree() if you are certain 684 * that you know which one to use. 685 * 686 * Context: Either preemptible task context or not-NMI interrupt. 687 */ 688 void kvfree(const void *addr) 689 { 690 if (is_vmalloc_addr(addr)) 691 vfree(addr); 692 else 693 kfree(addr); 694 } 695 EXPORT_SYMBOL(kvfree); 696 697 /** 698 * kvfree_sensitive - Free a data object containing sensitive information. 699 * @addr: address of the data object to be freed. 700 * @len: length of the data object. 701 * 702 * Use the special memzero_explicit() function to clear the content of a 703 * kvmalloc'ed object containing sensitive data to make sure that the 704 * compiler won't optimize out the data clearing. 705 */ 706 void kvfree_sensitive(const void *addr, size_t len) 707 { 708 if (likely(!ZERO_OR_NULL_PTR(addr))) { 709 memzero_explicit((void *)addr, len); 710 kvfree(addr); 711 } 712 } 713 EXPORT_SYMBOL(kvfree_sensitive); 714 715 /** 716 * kvrealloc - reallocate memory; contents remain unchanged 717 * @p: object to reallocate memory for 718 * @size: the size to reallocate 719 * @flags: the flags for the page level allocator 720 * 721 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 722 * and @p is not a %NULL pointer, the object pointed to is freed. 723 * 724 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 725 * initial memory allocation, every subsequent call to this API for the same 726 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 727 * __GFP_ZERO is not fully honored by this API. 728 * 729 * In any case, the contents of the object pointed to are preserved up to the 730 * lesser of the new and old sizes. 731 * 732 * This function must not be called concurrently with itself or kvfree() for the 733 * same memory allocation. 734 * 735 * Return: pointer to the allocated memory or %NULL in case of error 736 */ 737 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 738 { 739 void *n; 740 741 if (is_vmalloc_addr(p)) 742 return vrealloc_noprof(p, size, flags); 743 744 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); 745 if (!n) { 746 /* We failed to krealloc(), fall back to kvmalloc(). */ 747 n = kvmalloc_noprof(size, flags); 748 if (!n) 749 return NULL; 750 751 if (p) { 752 /* We already know that `p` is not a vmalloc address. */ 753 kasan_disable_current(); 754 memcpy(n, kasan_reset_tag(p), ksize(p)); 755 kasan_enable_current(); 756 757 kfree(p); 758 } 759 } 760 761 return n; 762 } 763 EXPORT_SYMBOL(kvrealloc_noprof); 764 765 /** 766 * __vmalloc_array - allocate memory for a virtually contiguous array. 767 * @n: number of elements. 768 * @size: element size. 769 * @flags: the type of memory to allocate (see kmalloc). 770 */ 771 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 772 { 773 size_t bytes; 774 775 if (unlikely(check_mul_overflow(n, size, &bytes))) 776 return NULL; 777 return __vmalloc_noprof(bytes, flags); 778 } 779 EXPORT_SYMBOL(__vmalloc_array_noprof); 780 781 /** 782 * vmalloc_array - allocate memory for a virtually contiguous array. 783 * @n: number of elements. 784 * @size: element size. 785 */ 786 void *vmalloc_array_noprof(size_t n, size_t size) 787 { 788 return __vmalloc_array_noprof(n, size, GFP_KERNEL); 789 } 790 EXPORT_SYMBOL(vmalloc_array_noprof); 791 792 /** 793 * __vcalloc - allocate and zero memory for a virtually contiguous array. 794 * @n: number of elements. 795 * @size: element size. 796 * @flags: the type of memory to allocate (see kmalloc). 797 */ 798 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) 799 { 800 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO); 801 } 802 EXPORT_SYMBOL(__vcalloc_noprof); 803 804 /** 805 * vcalloc - allocate and zero memory for a virtually contiguous array. 806 * @n: number of elements. 807 * @size: element size. 808 */ 809 void *vcalloc_noprof(size_t n, size_t size) 810 { 811 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO); 812 } 813 EXPORT_SYMBOL(vcalloc_noprof); 814 815 struct anon_vma *folio_anon_vma(const struct folio *folio) 816 { 817 unsigned long mapping = (unsigned long)folio->mapping; 818 819 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 820 return NULL; 821 return (void *)(mapping - PAGE_MAPPING_ANON); 822 } 823 824 /** 825 * folio_mapping - Find the mapping where this folio is stored. 826 * @folio: The folio. 827 * 828 * For folios which are in the page cache, return the mapping that this 829 * page belongs to. Folios in the swap cache return the swap mapping 830 * this page is stored in (which is different from the mapping for the 831 * swap file or swap device where the data is stored). 832 * 833 * You can call this for folios which aren't in the swap cache or page 834 * cache and it will return NULL. 835 */ 836 struct address_space *folio_mapping(struct folio *folio) 837 { 838 struct address_space *mapping; 839 840 /* This happens if someone calls flush_dcache_page on slab page */ 841 if (unlikely(folio_test_slab(folio))) 842 return NULL; 843 844 if (unlikely(folio_test_swapcache(folio))) 845 return swap_address_space(folio->swap); 846 847 mapping = folio->mapping; 848 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 849 return NULL; 850 851 return mapping; 852 } 853 EXPORT_SYMBOL(folio_mapping); 854 855 /** 856 * folio_copy - Copy the contents of one folio to another. 857 * @dst: Folio to copy to. 858 * @src: Folio to copy from. 859 * 860 * The bytes in the folio represented by @src are copied to @dst. 861 * Assumes the caller has validated that @dst is at least as large as @src. 862 * Can be called in atomic context for order-0 folios, but if the folio is 863 * larger, it may sleep. 864 */ 865 void folio_copy(struct folio *dst, struct folio *src) 866 { 867 long i = 0; 868 long nr = folio_nr_pages(src); 869 870 for (;;) { 871 copy_highpage(folio_page(dst, i), folio_page(src, i)); 872 if (++i == nr) 873 break; 874 cond_resched(); 875 } 876 } 877 EXPORT_SYMBOL(folio_copy); 878 879 int folio_mc_copy(struct folio *dst, struct folio *src) 880 { 881 long nr = folio_nr_pages(src); 882 long i = 0; 883 884 for (;;) { 885 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i))) 886 return -EHWPOISON; 887 if (++i == nr) 888 break; 889 cond_resched(); 890 } 891 892 return 0; 893 } 894 EXPORT_SYMBOL(folio_mc_copy); 895 896 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 897 int sysctl_overcommit_ratio __read_mostly = 50; 898 unsigned long sysctl_overcommit_kbytes __read_mostly; 899 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 900 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 901 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 902 903 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer, 904 size_t *lenp, loff_t *ppos) 905 { 906 int ret; 907 908 ret = proc_dointvec(table, write, buffer, lenp, ppos); 909 if (ret == 0 && write) 910 sysctl_overcommit_kbytes = 0; 911 return ret; 912 } 913 914 static void sync_overcommit_as(struct work_struct *dummy) 915 { 916 percpu_counter_sync(&vm_committed_as); 917 } 918 919 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer, 920 size_t *lenp, loff_t *ppos) 921 { 922 struct ctl_table t; 923 int new_policy = -1; 924 int ret; 925 926 /* 927 * The deviation of sync_overcommit_as could be big with loose policy 928 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 929 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 930 * with the strict "NEVER", and to avoid possible race condition (even 931 * though user usually won't too frequently do the switching to policy 932 * OVERCOMMIT_NEVER), the switch is done in the following order: 933 * 1. changing the batch 934 * 2. sync percpu count on each CPU 935 * 3. switch the policy 936 */ 937 if (write) { 938 t = *table; 939 t.data = &new_policy; 940 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 941 if (ret || new_policy == -1) 942 return ret; 943 944 mm_compute_batch(new_policy); 945 if (new_policy == OVERCOMMIT_NEVER) 946 schedule_on_each_cpu(sync_overcommit_as); 947 sysctl_overcommit_memory = new_policy; 948 } else { 949 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 950 } 951 952 return ret; 953 } 954 955 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer, 956 size_t *lenp, loff_t *ppos) 957 { 958 int ret; 959 960 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 961 if (ret == 0 && write) 962 sysctl_overcommit_ratio = 0; 963 return ret; 964 } 965 966 /* 967 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 968 */ 969 unsigned long vm_commit_limit(void) 970 { 971 unsigned long allowed; 972 973 if (sysctl_overcommit_kbytes) 974 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 975 else 976 allowed = ((totalram_pages() - hugetlb_total_pages()) 977 * sysctl_overcommit_ratio / 100); 978 allowed += total_swap_pages; 979 980 return allowed; 981 } 982 983 /* 984 * Make sure vm_committed_as in one cacheline and not cacheline shared with 985 * other variables. It can be updated by several CPUs frequently. 986 */ 987 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 988 989 /* 990 * The global memory commitment made in the system can be a metric 991 * that can be used to drive ballooning decisions when Linux is hosted 992 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 993 * balancing memory across competing virtual machines that are hosted. 994 * Several metrics drive this policy engine including the guest reported 995 * memory commitment. 996 * 997 * The time cost of this is very low for small platforms, and for big 998 * platform like a 2S/36C/72T Skylake server, in worst case where 999 * vm_committed_as's spinlock is under severe contention, the time cost 1000 * could be about 30~40 microseconds. 1001 */ 1002 unsigned long vm_memory_committed(void) 1003 { 1004 return percpu_counter_sum_positive(&vm_committed_as); 1005 } 1006 EXPORT_SYMBOL_GPL(vm_memory_committed); 1007 1008 /* 1009 * Check that a process has enough memory to allocate a new virtual 1010 * mapping. 0 means there is enough memory for the allocation to 1011 * succeed and -ENOMEM implies there is not. 1012 * 1013 * We currently support three overcommit policies, which are set via the 1014 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 1015 * 1016 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1017 * Additional code 2002 Jul 20 by Robert Love. 1018 * 1019 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1020 * 1021 * Note this is a helper function intended to be used by LSMs which 1022 * wish to use this logic. 1023 */ 1024 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1025 { 1026 long allowed; 1027 unsigned long bytes_failed; 1028 1029 vm_acct_memory(pages); 1030 1031 /* 1032 * Sometimes we want to use more memory than we have 1033 */ 1034 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1035 return 0; 1036 1037 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1038 if (pages > totalram_pages() + total_swap_pages) 1039 goto error; 1040 return 0; 1041 } 1042 1043 allowed = vm_commit_limit(); 1044 /* 1045 * Reserve some for root 1046 */ 1047 if (!cap_sys_admin) 1048 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1049 1050 /* 1051 * Don't let a single process grow so big a user can't recover 1052 */ 1053 if (mm) { 1054 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1055 1056 allowed -= min_t(long, mm->total_vm / 32, reserve); 1057 } 1058 1059 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1060 return 0; 1061 error: 1062 bytes_failed = pages << PAGE_SHIFT; 1063 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n", 1064 __func__, current->pid, current->comm, bytes_failed); 1065 vm_unacct_memory(pages); 1066 1067 return -ENOMEM; 1068 } 1069 1070 /** 1071 * get_cmdline() - copy the cmdline value to a buffer. 1072 * @task: the task whose cmdline value to copy. 1073 * @buffer: the buffer to copy to. 1074 * @buflen: the length of the buffer. Larger cmdline values are truncated 1075 * to this length. 1076 * 1077 * Return: the size of the cmdline field copied. Note that the copy does 1078 * not guarantee an ending NULL byte. 1079 */ 1080 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1081 { 1082 int res = 0; 1083 unsigned int len; 1084 struct mm_struct *mm = get_task_mm(task); 1085 unsigned long arg_start, arg_end, env_start, env_end; 1086 if (!mm) 1087 goto out; 1088 if (!mm->arg_end) 1089 goto out_mm; /* Shh! No looking before we're done */ 1090 1091 spin_lock(&mm->arg_lock); 1092 arg_start = mm->arg_start; 1093 arg_end = mm->arg_end; 1094 env_start = mm->env_start; 1095 env_end = mm->env_end; 1096 spin_unlock(&mm->arg_lock); 1097 1098 len = arg_end - arg_start; 1099 1100 if (len > buflen) 1101 len = buflen; 1102 1103 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1104 1105 /* 1106 * If the nul at the end of args has been overwritten, then 1107 * assume application is using setproctitle(3). 1108 */ 1109 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1110 len = strnlen(buffer, res); 1111 if (len < res) { 1112 res = len; 1113 } else { 1114 len = env_end - env_start; 1115 if (len > buflen - res) 1116 len = buflen - res; 1117 res += access_process_vm(task, env_start, 1118 buffer+res, len, 1119 FOLL_FORCE); 1120 res = strnlen(buffer, res); 1121 } 1122 } 1123 out_mm: 1124 mmput(mm); 1125 out: 1126 return res; 1127 } 1128 1129 int __weak memcmp_pages(struct page *page1, struct page *page2) 1130 { 1131 char *addr1, *addr2; 1132 int ret; 1133 1134 addr1 = kmap_local_page(page1); 1135 addr2 = kmap_local_page(page2); 1136 ret = memcmp(addr1, addr2, PAGE_SIZE); 1137 kunmap_local(addr2); 1138 kunmap_local(addr1); 1139 return ret; 1140 } 1141 1142 #ifdef CONFIG_PRINTK 1143 /** 1144 * mem_dump_obj - Print available provenance information 1145 * @object: object for which to find provenance information. 1146 * 1147 * This function uses pr_cont(), so that the caller is expected to have 1148 * printed out whatever preamble is appropriate. The provenance information 1149 * depends on the type of object and on how much debugging is enabled. 1150 * For example, for a slab-cache object, the slab name is printed, and, 1151 * if available, the return address and stack trace from the allocation 1152 * and last free path of that object. 1153 */ 1154 void mem_dump_obj(void *object) 1155 { 1156 const char *type; 1157 1158 if (kmem_dump_obj(object)) 1159 return; 1160 1161 if (vmalloc_dump_obj(object)) 1162 return; 1163 1164 if (is_vmalloc_addr(object)) 1165 type = "vmalloc memory"; 1166 else if (virt_addr_valid(object)) 1167 type = "non-slab/vmalloc memory"; 1168 else if (object == NULL) 1169 type = "NULL pointer"; 1170 else if (object == ZERO_SIZE_PTR) 1171 type = "zero-size pointer"; 1172 else 1173 type = "non-paged memory"; 1174 1175 pr_cont(" %s\n", type); 1176 } 1177 EXPORT_SYMBOL_GPL(mem_dump_obj); 1178 #endif 1179 1180 /* 1181 * A driver might set a page logically offline -- PageOffline() -- and 1182 * turn the page inaccessible in the hypervisor; after that, access to page 1183 * content can be fatal. 1184 * 1185 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1186 * pages after checking PageOffline(); however, these PFN walkers can race 1187 * with drivers that set PageOffline(). 1188 * 1189 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1190 * synchronize with such drivers, achieving that a page cannot be set 1191 * PageOffline() while frozen. 1192 * 1193 * page_offline_begin()/page_offline_end() is used by drivers that care about 1194 * such races when setting a page PageOffline(). 1195 */ 1196 static DECLARE_RWSEM(page_offline_rwsem); 1197 1198 void page_offline_freeze(void) 1199 { 1200 down_read(&page_offline_rwsem); 1201 } 1202 1203 void page_offline_thaw(void) 1204 { 1205 up_read(&page_offline_rwsem); 1206 } 1207 1208 void page_offline_begin(void) 1209 { 1210 down_write(&page_offline_rwsem); 1211 } 1212 EXPORT_SYMBOL(page_offline_begin); 1213 1214 void page_offline_end(void) 1215 { 1216 up_write(&page_offline_rwsem); 1217 } 1218 EXPORT_SYMBOL(page_offline_end); 1219 1220 #ifndef flush_dcache_folio 1221 void flush_dcache_folio(struct folio *folio) 1222 { 1223 long i, nr = folio_nr_pages(folio); 1224 1225 for (i = 0; i < nr; i++) 1226 flush_dcache_page(folio_page(folio, i)); 1227 } 1228 EXPORT_SYMBOL(flush_dcache_folio); 1229 #endif 1230