1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include <kunit/visibility.h> 30 31 #include "internal.h" 32 #include "swap.h" 33 34 /** 35 * kfree_const - conditionally free memory 36 * @x: pointer to the memory 37 * 38 * Function calls kfree only if @x is not in .rodata section. 39 */ 40 void kfree_const(const void *x) 41 { 42 if (!is_kernel_rodata((unsigned long)x)) 43 kfree(x); 44 } 45 EXPORT_SYMBOL(kfree_const); 46 47 /** 48 * kstrdup - allocate space for and copy an existing string 49 * @s: the string to duplicate 50 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 51 * 52 * Return: newly allocated copy of @s or %NULL in case of error 53 */ 54 noinline 55 char *kstrdup(const char *s, gfp_t gfp) 56 { 57 size_t len; 58 char *buf; 59 60 if (!s) 61 return NULL; 62 63 len = strlen(s) + 1; 64 buf = kmalloc_track_caller(len, gfp); 65 if (buf) 66 memcpy(buf, s, len); 67 return buf; 68 } 69 EXPORT_SYMBOL(kstrdup); 70 71 /** 72 * kstrdup_const - conditionally duplicate an existing const string 73 * @s: the string to duplicate 74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 75 * 76 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 77 * must not be passed to krealloc(). 78 * 79 * Return: source string if it is in .rodata section otherwise 80 * fallback to kstrdup. 81 */ 82 const char *kstrdup_const(const char *s, gfp_t gfp) 83 { 84 if (is_kernel_rodata((unsigned long)s)) 85 return s; 86 87 return kstrdup(s, gfp); 88 } 89 EXPORT_SYMBOL(kstrdup_const); 90 91 /** 92 * kstrndup - allocate space for and copy an existing string 93 * @s: the string to duplicate 94 * @max: read at most @max chars from @s 95 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 96 * 97 * Note: Use kmemdup_nul() instead if the size is known exactly. 98 * 99 * Return: newly allocated copy of @s or %NULL in case of error 100 */ 101 char *kstrndup(const char *s, size_t max, gfp_t gfp) 102 { 103 size_t len; 104 char *buf; 105 106 if (!s) 107 return NULL; 108 109 len = strnlen(s, max); 110 buf = kmalloc_track_caller(len+1, gfp); 111 if (buf) { 112 memcpy(buf, s, len); 113 buf[len] = '\0'; 114 } 115 return buf; 116 } 117 EXPORT_SYMBOL(kstrndup); 118 119 /** 120 * kmemdup - duplicate region of memory 121 * 122 * @src: memory region to duplicate 123 * @len: memory region length 124 * @gfp: GFP mask to use 125 * 126 * Return: newly allocated copy of @src or %NULL in case of error, 127 * result is physically contiguous. Use kfree() to free. 128 */ 129 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) 130 { 131 void *p; 132 133 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); 134 if (p) 135 memcpy(p, src, len); 136 return p; 137 } 138 EXPORT_SYMBOL(kmemdup_noprof); 139 140 /** 141 * kmemdup_array - duplicate a given array. 142 * 143 * @src: array to duplicate. 144 * @count: number of elements to duplicate from array. 145 * @element_size: size of each element of array. 146 * @gfp: GFP mask to use. 147 * 148 * Return: duplicated array of @src or %NULL in case of error, 149 * result is physically contiguous. Use kfree() to free. 150 */ 151 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp) 152 { 153 return kmemdup(src, size_mul(element_size, count), gfp); 154 } 155 EXPORT_SYMBOL(kmemdup_array); 156 157 /** 158 * kvmemdup - duplicate region of memory 159 * 160 * @src: memory region to duplicate 161 * @len: memory region length 162 * @gfp: GFP mask to use 163 * 164 * Return: newly allocated copy of @src or %NULL in case of error, 165 * result may be not physically contiguous. Use kvfree() to free. 166 */ 167 void *kvmemdup(const void *src, size_t len, gfp_t gfp) 168 { 169 void *p; 170 171 p = kvmalloc(len, gfp); 172 if (p) 173 memcpy(p, src, len); 174 return p; 175 } 176 EXPORT_SYMBOL(kvmemdup); 177 178 /** 179 * kmemdup_nul - Create a NUL-terminated string from unterminated data 180 * @s: The data to stringify 181 * @len: The size of the data 182 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 183 * 184 * Return: newly allocated copy of @s with NUL-termination or %NULL in 185 * case of error 186 */ 187 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 188 { 189 char *buf; 190 191 if (!s) 192 return NULL; 193 194 buf = kmalloc_track_caller(len + 1, gfp); 195 if (buf) { 196 memcpy(buf, s, len); 197 buf[len] = '\0'; 198 } 199 return buf; 200 } 201 EXPORT_SYMBOL(kmemdup_nul); 202 203 static kmem_buckets *user_buckets __ro_after_init; 204 205 static int __init init_user_buckets(void) 206 { 207 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL); 208 209 return 0; 210 } 211 subsys_initcall(init_user_buckets); 212 213 /** 214 * memdup_user - duplicate memory region from user space 215 * 216 * @src: source address in user space 217 * @len: number of bytes to copy 218 * 219 * Return: an ERR_PTR() on failure. Result is physically 220 * contiguous, to be freed by kfree(). 221 */ 222 void *memdup_user(const void __user *src, size_t len) 223 { 224 void *p; 225 226 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN); 227 if (!p) 228 return ERR_PTR(-ENOMEM); 229 230 if (copy_from_user(p, src, len)) { 231 kfree(p); 232 return ERR_PTR(-EFAULT); 233 } 234 235 return p; 236 } 237 EXPORT_SYMBOL(memdup_user); 238 239 /** 240 * vmemdup_user - duplicate memory region from user space 241 * 242 * @src: source address in user space 243 * @len: number of bytes to copy 244 * 245 * Return: an ERR_PTR() on failure. Result may be not 246 * physically contiguous. Use kvfree() to free. 247 */ 248 void *vmemdup_user(const void __user *src, size_t len) 249 { 250 void *p; 251 252 p = kmem_buckets_valloc(user_buckets, len, GFP_USER); 253 if (!p) 254 return ERR_PTR(-ENOMEM); 255 256 if (copy_from_user(p, src, len)) { 257 kvfree(p); 258 return ERR_PTR(-EFAULT); 259 } 260 261 return p; 262 } 263 EXPORT_SYMBOL(vmemdup_user); 264 265 /** 266 * strndup_user - duplicate an existing string from user space 267 * @s: The string to duplicate 268 * @n: Maximum number of bytes to copy, including the trailing NUL. 269 * 270 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 271 */ 272 char *strndup_user(const char __user *s, long n) 273 { 274 char *p; 275 long length; 276 277 length = strnlen_user(s, n); 278 279 if (!length) 280 return ERR_PTR(-EFAULT); 281 282 if (length > n) 283 return ERR_PTR(-EINVAL); 284 285 p = memdup_user(s, length); 286 287 if (IS_ERR(p)) 288 return p; 289 290 p[length - 1] = '\0'; 291 292 return p; 293 } 294 EXPORT_SYMBOL(strndup_user); 295 296 /** 297 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 298 * 299 * @src: source address in user space 300 * @len: number of bytes to copy 301 * 302 * Return: an ERR_PTR() on failure. 303 */ 304 void *memdup_user_nul(const void __user *src, size_t len) 305 { 306 char *p; 307 308 /* 309 * Always use GFP_KERNEL, since copy_from_user() can sleep and 310 * cause pagefault, which makes it pointless to use GFP_NOFS 311 * or GFP_ATOMIC. 312 */ 313 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 314 if (!p) 315 return ERR_PTR(-ENOMEM); 316 317 if (copy_from_user(p, src, len)) { 318 kfree(p); 319 return ERR_PTR(-EFAULT); 320 } 321 p[len] = '\0'; 322 323 return p; 324 } 325 EXPORT_SYMBOL(memdup_user_nul); 326 327 /* Check if the vma is being used as a stack by this task */ 328 int vma_is_stack_for_current(struct vm_area_struct *vma) 329 { 330 struct task_struct * __maybe_unused t = current; 331 332 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 333 } 334 335 /* 336 * Change backing file, only valid to use during initial VMA setup. 337 */ 338 void vma_set_file(struct vm_area_struct *vma, struct file *file) 339 { 340 /* Changing an anonymous vma with this is illegal */ 341 get_file(file); 342 swap(vma->vm_file, file); 343 fput(file); 344 } 345 EXPORT_SYMBOL(vma_set_file); 346 347 #ifndef STACK_RND_MASK 348 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 349 #endif 350 351 unsigned long randomize_stack_top(unsigned long stack_top) 352 { 353 unsigned long random_variable = 0; 354 355 if (current->flags & PF_RANDOMIZE) { 356 random_variable = get_random_long(); 357 random_variable &= STACK_RND_MASK; 358 random_variable <<= PAGE_SHIFT; 359 } 360 #ifdef CONFIG_STACK_GROWSUP 361 return PAGE_ALIGN(stack_top) + random_variable; 362 #else 363 return PAGE_ALIGN(stack_top) - random_variable; 364 #endif 365 } 366 367 /** 368 * randomize_page - Generate a random, page aligned address 369 * @start: The smallest acceptable address the caller will take. 370 * @range: The size of the area, starting at @start, within which the 371 * random address must fall. 372 * 373 * If @start + @range would overflow, @range is capped. 374 * 375 * NOTE: Historical use of randomize_range, which this replaces, presumed that 376 * @start was already page aligned. We now align it regardless. 377 * 378 * Return: A page aligned address within [start, start + range). On error, 379 * @start is returned. 380 */ 381 unsigned long randomize_page(unsigned long start, unsigned long range) 382 { 383 if (!PAGE_ALIGNED(start)) { 384 range -= PAGE_ALIGN(start) - start; 385 start = PAGE_ALIGN(start); 386 } 387 388 if (start > ULONG_MAX - range) 389 range = ULONG_MAX - start; 390 391 range >>= PAGE_SHIFT; 392 393 if (range == 0) 394 return start; 395 396 return start + (get_random_long() % range << PAGE_SHIFT); 397 } 398 399 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 400 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 401 { 402 /* Is the current task 32bit ? */ 403 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 404 return randomize_page(mm->brk, SZ_32M); 405 406 return randomize_page(mm->brk, SZ_1G); 407 } 408 409 unsigned long arch_mmap_rnd(void) 410 { 411 unsigned long rnd; 412 413 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 414 if (is_compat_task()) 415 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 416 else 417 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 418 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 419 420 return rnd << PAGE_SHIFT; 421 } 422 423 static int mmap_is_legacy(struct rlimit *rlim_stack) 424 { 425 if (current->personality & ADDR_COMPAT_LAYOUT) 426 return 1; 427 428 /* On parisc the stack always grows up - so a unlimited stack should 429 * not be an indicator to use the legacy memory layout. */ 430 if (rlim_stack->rlim_cur == RLIM_INFINITY && 431 !IS_ENABLED(CONFIG_STACK_GROWSUP)) 432 return 1; 433 434 return sysctl_legacy_va_layout; 435 } 436 437 /* 438 * Leave enough space between the mmap area and the stack to honour ulimit in 439 * the face of randomisation. 440 */ 441 #define MIN_GAP (SZ_128M) 442 #define MAX_GAP (STACK_TOP / 6 * 5) 443 444 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 445 { 446 #ifdef CONFIG_STACK_GROWSUP 447 /* 448 * For an upwards growing stack the calculation is much simpler. 449 * Memory for the maximum stack size is reserved at the top of the 450 * task. mmap_base starts directly below the stack and grows 451 * downwards. 452 */ 453 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); 454 #else 455 unsigned long gap = rlim_stack->rlim_cur; 456 unsigned long pad = stack_guard_gap; 457 458 /* Account for stack randomization if necessary */ 459 if (current->flags & PF_RANDOMIZE) 460 pad += (STACK_RND_MASK << PAGE_SHIFT); 461 462 /* Values close to RLIM_INFINITY can overflow. */ 463 if (gap + pad > gap) 464 gap += pad; 465 466 if (gap < MIN_GAP && MIN_GAP < MAX_GAP) 467 gap = MIN_GAP; 468 else if (gap > MAX_GAP) 469 gap = MAX_GAP; 470 471 return PAGE_ALIGN(STACK_TOP - gap - rnd); 472 #endif 473 } 474 475 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 476 { 477 unsigned long random_factor = 0UL; 478 479 if (current->flags & PF_RANDOMIZE) 480 random_factor = arch_mmap_rnd(); 481 482 if (mmap_is_legacy(rlim_stack)) { 483 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 484 clear_bit(MMF_TOPDOWN, &mm->flags); 485 } else { 486 mm->mmap_base = mmap_base(random_factor, rlim_stack); 487 set_bit(MMF_TOPDOWN, &mm->flags); 488 } 489 } 490 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 491 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 492 { 493 mm->mmap_base = TASK_UNMAPPED_BASE; 494 clear_bit(MMF_TOPDOWN, &mm->flags); 495 } 496 #endif 497 #ifdef CONFIG_MMU 498 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout); 499 #endif 500 501 /** 502 * __account_locked_vm - account locked pages to an mm's locked_vm 503 * @mm: mm to account against 504 * @pages: number of pages to account 505 * @inc: %true if @pages should be considered positive, %false if not 506 * @task: task used to check RLIMIT_MEMLOCK 507 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 508 * 509 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 510 * that mmap_lock is held as writer. 511 * 512 * Return: 513 * * 0 on success 514 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 515 */ 516 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 517 struct task_struct *task, bool bypass_rlim) 518 { 519 unsigned long locked_vm, limit; 520 int ret = 0; 521 522 mmap_assert_write_locked(mm); 523 524 locked_vm = mm->locked_vm; 525 if (inc) { 526 if (!bypass_rlim) { 527 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 528 if (locked_vm + pages > limit) 529 ret = -ENOMEM; 530 } 531 if (!ret) 532 mm->locked_vm = locked_vm + pages; 533 } else { 534 WARN_ON_ONCE(pages > locked_vm); 535 mm->locked_vm = locked_vm - pages; 536 } 537 538 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 539 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 540 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 541 ret ? " - exceeded" : ""); 542 543 return ret; 544 } 545 EXPORT_SYMBOL_GPL(__account_locked_vm); 546 547 /** 548 * account_locked_vm - account locked pages to an mm's locked_vm 549 * @mm: mm to account against, may be NULL 550 * @pages: number of pages to account 551 * @inc: %true if @pages should be considered positive, %false if not 552 * 553 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 554 * 555 * Return: 556 * * 0 on success, or if mm is NULL 557 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 558 */ 559 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 560 { 561 int ret; 562 563 if (pages == 0 || !mm) 564 return 0; 565 566 mmap_write_lock(mm); 567 ret = __account_locked_vm(mm, pages, inc, current, 568 capable(CAP_IPC_LOCK)); 569 mmap_write_unlock(mm); 570 571 return ret; 572 } 573 EXPORT_SYMBOL_GPL(account_locked_vm); 574 575 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 576 unsigned long len, unsigned long prot, 577 unsigned long flag, unsigned long pgoff) 578 { 579 unsigned long ret; 580 struct mm_struct *mm = current->mm; 581 unsigned long populate; 582 LIST_HEAD(uf); 583 584 ret = security_mmap_file(file, prot, flag); 585 if (!ret) { 586 if (mmap_write_lock_killable(mm)) 587 return -EINTR; 588 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, 589 &uf); 590 mmap_write_unlock(mm); 591 userfaultfd_unmap_complete(mm, &uf); 592 if (populate) 593 mm_populate(ret, populate); 594 } 595 return ret; 596 } 597 598 unsigned long vm_mmap(struct file *file, unsigned long addr, 599 unsigned long len, unsigned long prot, 600 unsigned long flag, unsigned long offset) 601 { 602 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 603 return -EINVAL; 604 if (unlikely(offset_in_page(offset))) 605 return -EINVAL; 606 607 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 608 } 609 EXPORT_SYMBOL(vm_mmap); 610 611 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 612 { 613 /* 614 * We want to attempt a large physically contiguous block first because 615 * it is less likely to fragment multiple larger blocks and therefore 616 * contribute to a long term fragmentation less than vmalloc fallback. 617 * However make sure that larger requests are not too disruptive - no 618 * OOM killer and no allocation failure warnings as we have a fallback. 619 */ 620 if (size > PAGE_SIZE) { 621 flags |= __GFP_NOWARN; 622 623 if (!(flags & __GFP_RETRY_MAYFAIL)) 624 flags |= __GFP_NORETRY; 625 626 /* nofail semantic is implemented by the vmalloc fallback */ 627 flags &= ~__GFP_NOFAIL; 628 } 629 630 return flags; 631 } 632 633 /** 634 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 635 * failure, fall back to non-contiguous (vmalloc) allocation. 636 * @size: size of the request. 637 * @b: which set of kmalloc buckets to allocate from. 638 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 639 * @node: numa node to allocate from 640 * 641 * Uses kmalloc to get the memory but if the allocation fails then falls back 642 * to the vmalloc allocator. Use kvfree for freeing the memory. 643 * 644 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 645 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 646 * preferable to the vmalloc fallback, due to visible performance drawbacks. 647 * 648 * Return: pointer to the allocated memory of %NULL in case of failure 649 */ 650 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 651 { 652 void *ret; 653 654 /* 655 * It doesn't really make sense to fallback to vmalloc for sub page 656 * requests 657 */ 658 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b), 659 kmalloc_gfp_adjust(flags, size), 660 node); 661 if (ret || size <= PAGE_SIZE) 662 return ret; 663 664 /* non-sleeping allocations are not supported by vmalloc */ 665 if (!gfpflags_allow_blocking(flags)) 666 return NULL; 667 668 /* Don't even allow crazy sizes */ 669 if (unlikely(size > INT_MAX)) { 670 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 671 return NULL; 672 } 673 674 /* 675 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 676 * since the callers already cannot assume anything 677 * about the resulting pointer, and cannot play 678 * protection games. 679 */ 680 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 681 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 682 node, __builtin_return_address(0)); 683 } 684 EXPORT_SYMBOL(__kvmalloc_node_noprof); 685 686 /** 687 * kvfree() - Free memory. 688 * @addr: Pointer to allocated memory. 689 * 690 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 691 * It is slightly more efficient to use kfree() or vfree() if you are certain 692 * that you know which one to use. 693 * 694 * Context: Either preemptible task context or not-NMI interrupt. 695 */ 696 void kvfree(const void *addr) 697 { 698 if (is_vmalloc_addr(addr)) 699 vfree(addr); 700 else 701 kfree(addr); 702 } 703 EXPORT_SYMBOL(kvfree); 704 705 /** 706 * kvfree_sensitive - Free a data object containing sensitive information. 707 * @addr: address of the data object to be freed. 708 * @len: length of the data object. 709 * 710 * Use the special memzero_explicit() function to clear the content of a 711 * kvmalloc'ed object containing sensitive data to make sure that the 712 * compiler won't optimize out the data clearing. 713 */ 714 void kvfree_sensitive(const void *addr, size_t len) 715 { 716 if (likely(!ZERO_OR_NULL_PTR(addr))) { 717 memzero_explicit((void *)addr, len); 718 kvfree(addr); 719 } 720 } 721 EXPORT_SYMBOL(kvfree_sensitive); 722 723 /** 724 * kvrealloc - reallocate memory; contents remain unchanged 725 * @p: object to reallocate memory for 726 * @size: the size to reallocate 727 * @flags: the flags for the page level allocator 728 * 729 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 730 * and @p is not a %NULL pointer, the object pointed to is freed. 731 * 732 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 733 * initial memory allocation, every subsequent call to this API for the same 734 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 735 * __GFP_ZERO is not fully honored by this API. 736 * 737 * In any case, the contents of the object pointed to are preserved up to the 738 * lesser of the new and old sizes. 739 * 740 * This function must not be called concurrently with itself or kvfree() for the 741 * same memory allocation. 742 * 743 * Return: pointer to the allocated memory or %NULL in case of error 744 */ 745 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 746 { 747 void *n; 748 749 if (is_vmalloc_addr(p)) 750 return vrealloc_noprof(p, size, flags); 751 752 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); 753 if (!n) { 754 /* We failed to krealloc(), fall back to kvmalloc(). */ 755 n = kvmalloc_noprof(size, flags); 756 if (!n) 757 return NULL; 758 759 if (p) { 760 /* We already know that `p` is not a vmalloc address. */ 761 kasan_disable_current(); 762 memcpy(n, kasan_reset_tag(p), ksize(p)); 763 kasan_enable_current(); 764 765 kfree(p); 766 } 767 } 768 769 return n; 770 } 771 EXPORT_SYMBOL(kvrealloc_noprof); 772 773 /** 774 * __vmalloc_array - allocate memory for a virtually contiguous array. 775 * @n: number of elements. 776 * @size: element size. 777 * @flags: the type of memory to allocate (see kmalloc). 778 */ 779 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 780 { 781 size_t bytes; 782 783 if (unlikely(check_mul_overflow(n, size, &bytes))) 784 return NULL; 785 return __vmalloc_noprof(bytes, flags); 786 } 787 EXPORT_SYMBOL(__vmalloc_array_noprof); 788 789 /** 790 * vmalloc_array - allocate memory for a virtually contiguous array. 791 * @n: number of elements. 792 * @size: element size. 793 */ 794 void *vmalloc_array_noprof(size_t n, size_t size) 795 { 796 return __vmalloc_array_noprof(n, size, GFP_KERNEL); 797 } 798 EXPORT_SYMBOL(vmalloc_array_noprof); 799 800 /** 801 * __vcalloc - allocate and zero memory for a virtually contiguous array. 802 * @n: number of elements. 803 * @size: element size. 804 * @flags: the type of memory to allocate (see kmalloc). 805 */ 806 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) 807 { 808 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO); 809 } 810 EXPORT_SYMBOL(__vcalloc_noprof); 811 812 /** 813 * vcalloc - allocate and zero memory for a virtually contiguous array. 814 * @n: number of elements. 815 * @size: element size. 816 */ 817 void *vcalloc_noprof(size_t n, size_t size) 818 { 819 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO); 820 } 821 EXPORT_SYMBOL(vcalloc_noprof); 822 823 struct anon_vma *folio_anon_vma(struct folio *folio) 824 { 825 unsigned long mapping = (unsigned long)folio->mapping; 826 827 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 828 return NULL; 829 return (void *)(mapping - PAGE_MAPPING_ANON); 830 } 831 832 /** 833 * folio_mapping - Find the mapping where this folio is stored. 834 * @folio: The folio. 835 * 836 * For folios which are in the page cache, return the mapping that this 837 * page belongs to. Folios in the swap cache return the swap mapping 838 * this page is stored in (which is different from the mapping for the 839 * swap file or swap device where the data is stored). 840 * 841 * You can call this for folios which aren't in the swap cache or page 842 * cache and it will return NULL. 843 */ 844 struct address_space *folio_mapping(struct folio *folio) 845 { 846 struct address_space *mapping; 847 848 /* This happens if someone calls flush_dcache_page on slab page */ 849 if (unlikely(folio_test_slab(folio))) 850 return NULL; 851 852 if (unlikely(folio_test_swapcache(folio))) 853 return swap_address_space(folio->swap); 854 855 mapping = folio->mapping; 856 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 857 return NULL; 858 859 return mapping; 860 } 861 EXPORT_SYMBOL(folio_mapping); 862 863 /** 864 * folio_copy - Copy the contents of one folio to another. 865 * @dst: Folio to copy to. 866 * @src: Folio to copy from. 867 * 868 * The bytes in the folio represented by @src are copied to @dst. 869 * Assumes the caller has validated that @dst is at least as large as @src. 870 * Can be called in atomic context for order-0 folios, but if the folio is 871 * larger, it may sleep. 872 */ 873 void folio_copy(struct folio *dst, struct folio *src) 874 { 875 long i = 0; 876 long nr = folio_nr_pages(src); 877 878 for (;;) { 879 copy_highpage(folio_page(dst, i), folio_page(src, i)); 880 if (++i == nr) 881 break; 882 cond_resched(); 883 } 884 } 885 EXPORT_SYMBOL(folio_copy); 886 887 int folio_mc_copy(struct folio *dst, struct folio *src) 888 { 889 long nr = folio_nr_pages(src); 890 long i = 0; 891 892 for (;;) { 893 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i))) 894 return -EHWPOISON; 895 if (++i == nr) 896 break; 897 cond_resched(); 898 } 899 900 return 0; 901 } 902 EXPORT_SYMBOL(folio_mc_copy); 903 904 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 905 int sysctl_overcommit_ratio __read_mostly = 50; 906 unsigned long sysctl_overcommit_kbytes __read_mostly; 907 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 908 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 909 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 910 911 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer, 912 size_t *lenp, loff_t *ppos) 913 { 914 int ret; 915 916 ret = proc_dointvec(table, write, buffer, lenp, ppos); 917 if (ret == 0 && write) 918 sysctl_overcommit_kbytes = 0; 919 return ret; 920 } 921 922 static void sync_overcommit_as(struct work_struct *dummy) 923 { 924 percpu_counter_sync(&vm_committed_as); 925 } 926 927 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer, 928 size_t *lenp, loff_t *ppos) 929 { 930 struct ctl_table t; 931 int new_policy = -1; 932 int ret; 933 934 /* 935 * The deviation of sync_overcommit_as could be big with loose policy 936 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 937 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 938 * with the strict "NEVER", and to avoid possible race condition (even 939 * though user usually won't too frequently do the switching to policy 940 * OVERCOMMIT_NEVER), the switch is done in the following order: 941 * 1. changing the batch 942 * 2. sync percpu count on each CPU 943 * 3. switch the policy 944 */ 945 if (write) { 946 t = *table; 947 t.data = &new_policy; 948 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 949 if (ret || new_policy == -1) 950 return ret; 951 952 mm_compute_batch(new_policy); 953 if (new_policy == OVERCOMMIT_NEVER) 954 schedule_on_each_cpu(sync_overcommit_as); 955 sysctl_overcommit_memory = new_policy; 956 } else { 957 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 958 } 959 960 return ret; 961 } 962 963 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer, 964 size_t *lenp, loff_t *ppos) 965 { 966 int ret; 967 968 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 969 if (ret == 0 && write) 970 sysctl_overcommit_ratio = 0; 971 return ret; 972 } 973 974 /* 975 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 976 */ 977 unsigned long vm_commit_limit(void) 978 { 979 unsigned long allowed; 980 981 if (sysctl_overcommit_kbytes) 982 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 983 else 984 allowed = ((totalram_pages() - hugetlb_total_pages()) 985 * sysctl_overcommit_ratio / 100); 986 allowed += total_swap_pages; 987 988 return allowed; 989 } 990 991 /* 992 * Make sure vm_committed_as in one cacheline and not cacheline shared with 993 * other variables. It can be updated by several CPUs frequently. 994 */ 995 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 996 997 /* 998 * The global memory commitment made in the system can be a metric 999 * that can be used to drive ballooning decisions when Linux is hosted 1000 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 1001 * balancing memory across competing virtual machines that are hosted. 1002 * Several metrics drive this policy engine including the guest reported 1003 * memory commitment. 1004 * 1005 * The time cost of this is very low for small platforms, and for big 1006 * platform like a 2S/36C/72T Skylake server, in worst case where 1007 * vm_committed_as's spinlock is under severe contention, the time cost 1008 * could be about 30~40 microseconds. 1009 */ 1010 unsigned long vm_memory_committed(void) 1011 { 1012 return percpu_counter_sum_positive(&vm_committed_as); 1013 } 1014 EXPORT_SYMBOL_GPL(vm_memory_committed); 1015 1016 /* 1017 * Check that a process has enough memory to allocate a new virtual 1018 * mapping. 0 means there is enough memory for the allocation to 1019 * succeed and -ENOMEM implies there is not. 1020 * 1021 * We currently support three overcommit policies, which are set via the 1022 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 1023 * 1024 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 1025 * Additional code 2002 Jul 20 by Robert Love. 1026 * 1027 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 1028 * 1029 * Note this is a helper function intended to be used by LSMs which 1030 * wish to use this logic. 1031 */ 1032 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 1033 { 1034 long allowed; 1035 unsigned long bytes_failed; 1036 1037 vm_acct_memory(pages); 1038 1039 /* 1040 * Sometimes we want to use more memory than we have 1041 */ 1042 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1043 return 0; 1044 1045 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1046 if (pages > totalram_pages() + total_swap_pages) 1047 goto error; 1048 return 0; 1049 } 1050 1051 allowed = vm_commit_limit(); 1052 /* 1053 * Reserve some for root 1054 */ 1055 if (!cap_sys_admin) 1056 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1057 1058 /* 1059 * Don't let a single process grow so big a user can't recover 1060 */ 1061 if (mm) { 1062 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1063 1064 allowed -= min_t(long, mm->total_vm / 32, reserve); 1065 } 1066 1067 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1068 return 0; 1069 error: 1070 bytes_failed = pages << PAGE_SHIFT; 1071 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n", 1072 __func__, current->pid, current->comm, bytes_failed); 1073 vm_unacct_memory(pages); 1074 1075 return -ENOMEM; 1076 } 1077 1078 /** 1079 * get_cmdline() - copy the cmdline value to a buffer. 1080 * @task: the task whose cmdline value to copy. 1081 * @buffer: the buffer to copy to. 1082 * @buflen: the length of the buffer. Larger cmdline values are truncated 1083 * to this length. 1084 * 1085 * Return: the size of the cmdline field copied. Note that the copy does 1086 * not guarantee an ending NULL byte. 1087 */ 1088 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1089 { 1090 int res = 0; 1091 unsigned int len; 1092 struct mm_struct *mm = get_task_mm(task); 1093 unsigned long arg_start, arg_end, env_start, env_end; 1094 if (!mm) 1095 goto out; 1096 if (!mm->arg_end) 1097 goto out_mm; /* Shh! No looking before we're done */ 1098 1099 spin_lock(&mm->arg_lock); 1100 arg_start = mm->arg_start; 1101 arg_end = mm->arg_end; 1102 env_start = mm->env_start; 1103 env_end = mm->env_end; 1104 spin_unlock(&mm->arg_lock); 1105 1106 len = arg_end - arg_start; 1107 1108 if (len > buflen) 1109 len = buflen; 1110 1111 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1112 1113 /* 1114 * If the nul at the end of args has been overwritten, then 1115 * assume application is using setproctitle(3). 1116 */ 1117 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1118 len = strnlen(buffer, res); 1119 if (len < res) { 1120 res = len; 1121 } else { 1122 len = env_end - env_start; 1123 if (len > buflen - res) 1124 len = buflen - res; 1125 res += access_process_vm(task, env_start, 1126 buffer+res, len, 1127 FOLL_FORCE); 1128 res = strnlen(buffer, res); 1129 } 1130 } 1131 out_mm: 1132 mmput(mm); 1133 out: 1134 return res; 1135 } 1136 1137 int __weak memcmp_pages(struct page *page1, struct page *page2) 1138 { 1139 char *addr1, *addr2; 1140 int ret; 1141 1142 addr1 = kmap_local_page(page1); 1143 addr2 = kmap_local_page(page2); 1144 ret = memcmp(addr1, addr2, PAGE_SIZE); 1145 kunmap_local(addr2); 1146 kunmap_local(addr1); 1147 return ret; 1148 } 1149 1150 #ifdef CONFIG_PRINTK 1151 /** 1152 * mem_dump_obj - Print available provenance information 1153 * @object: object for which to find provenance information. 1154 * 1155 * This function uses pr_cont(), so that the caller is expected to have 1156 * printed out whatever preamble is appropriate. The provenance information 1157 * depends on the type of object and on how much debugging is enabled. 1158 * For example, for a slab-cache object, the slab name is printed, and, 1159 * if available, the return address and stack trace from the allocation 1160 * and last free path of that object. 1161 */ 1162 void mem_dump_obj(void *object) 1163 { 1164 const char *type; 1165 1166 if (kmem_dump_obj(object)) 1167 return; 1168 1169 if (vmalloc_dump_obj(object)) 1170 return; 1171 1172 if (is_vmalloc_addr(object)) 1173 type = "vmalloc memory"; 1174 else if (virt_addr_valid(object)) 1175 type = "non-slab/vmalloc memory"; 1176 else if (object == NULL) 1177 type = "NULL pointer"; 1178 else if (object == ZERO_SIZE_PTR) 1179 type = "zero-size pointer"; 1180 else 1181 type = "non-paged memory"; 1182 1183 pr_cont(" %s\n", type); 1184 } 1185 EXPORT_SYMBOL_GPL(mem_dump_obj); 1186 #endif 1187 1188 /* 1189 * A driver might set a page logically offline -- PageOffline() -- and 1190 * turn the page inaccessible in the hypervisor; after that, access to page 1191 * content can be fatal. 1192 * 1193 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1194 * pages after checking PageOffline(); however, these PFN walkers can race 1195 * with drivers that set PageOffline(). 1196 * 1197 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1198 * synchronize with such drivers, achieving that a page cannot be set 1199 * PageOffline() while frozen. 1200 * 1201 * page_offline_begin()/page_offline_end() is used by drivers that care about 1202 * such races when setting a page PageOffline(). 1203 */ 1204 static DECLARE_RWSEM(page_offline_rwsem); 1205 1206 void page_offline_freeze(void) 1207 { 1208 down_read(&page_offline_rwsem); 1209 } 1210 1211 void page_offline_thaw(void) 1212 { 1213 up_read(&page_offline_rwsem); 1214 } 1215 1216 void page_offline_begin(void) 1217 { 1218 down_write(&page_offline_rwsem); 1219 } 1220 EXPORT_SYMBOL(page_offline_begin); 1221 1222 void page_offline_end(void) 1223 { 1224 up_write(&page_offline_rwsem); 1225 } 1226 EXPORT_SYMBOL(page_offline_end); 1227 1228 #ifndef flush_dcache_folio 1229 void flush_dcache_folio(struct folio *folio) 1230 { 1231 long i, nr = folio_nr_pages(folio); 1232 1233 for (i = 0; i < nr; i++) 1234 flush_dcache_page(folio_page(folio, i)); 1235 } 1236 EXPORT_SYMBOL(flush_dcache_folio); 1237 #endif 1238