1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task_stack.h> 11 #include <linux/security.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/mman.h> 15 #include <linux/hugetlb.h> 16 #include <linux/vmalloc.h> 17 #include <linux/userfaultfd_k.h> 18 19 #include <linux/uaccess.h> 20 21 #include "internal.h" 22 23 /** 24 * kfree_const - conditionally free memory 25 * @x: pointer to the memory 26 * 27 * Function calls kfree only if @x is not in .rodata section. 28 */ 29 void kfree_const(const void *x) 30 { 31 if (!is_kernel_rodata((unsigned long)x)) 32 kfree(x); 33 } 34 EXPORT_SYMBOL(kfree_const); 35 36 /** 37 * kstrdup - allocate space for and copy an existing string 38 * @s: the string to duplicate 39 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 40 * 41 * Return: newly allocated copy of @s or %NULL in case of error 42 */ 43 char *kstrdup(const char *s, gfp_t gfp) 44 { 45 size_t len; 46 char *buf; 47 48 if (!s) 49 return NULL; 50 51 len = strlen(s) + 1; 52 buf = kmalloc_track_caller(len, gfp); 53 if (buf) 54 memcpy(buf, s, len); 55 return buf; 56 } 57 EXPORT_SYMBOL(kstrdup); 58 59 /** 60 * kstrdup_const - conditionally duplicate an existing const string 61 * @s: the string to duplicate 62 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 63 * 64 * Note: Strings allocated by kstrdup_const should be freed by kfree_const. 65 * 66 * Return: source string if it is in .rodata section otherwise 67 * fallback to kstrdup. 68 */ 69 const char *kstrdup_const(const char *s, gfp_t gfp) 70 { 71 if (is_kernel_rodata((unsigned long)s)) 72 return s; 73 74 return kstrdup(s, gfp); 75 } 76 EXPORT_SYMBOL(kstrdup_const); 77 78 /** 79 * kstrndup - allocate space for and copy an existing string 80 * @s: the string to duplicate 81 * @max: read at most @max chars from @s 82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 83 * 84 * Note: Use kmemdup_nul() instead if the size is known exactly. 85 * 86 * Return: newly allocated copy of @s or %NULL in case of error 87 */ 88 char *kstrndup(const char *s, size_t max, gfp_t gfp) 89 { 90 size_t len; 91 char *buf; 92 93 if (!s) 94 return NULL; 95 96 len = strnlen(s, max); 97 buf = kmalloc_track_caller(len+1, gfp); 98 if (buf) { 99 memcpy(buf, s, len); 100 buf[len] = '\0'; 101 } 102 return buf; 103 } 104 EXPORT_SYMBOL(kstrndup); 105 106 /** 107 * kmemdup - duplicate region of memory 108 * 109 * @src: memory region to duplicate 110 * @len: memory region length 111 * @gfp: GFP mask to use 112 * 113 * Return: newly allocated copy of @src or %NULL in case of error 114 */ 115 void *kmemdup(const void *src, size_t len, gfp_t gfp) 116 { 117 void *p; 118 119 p = kmalloc_track_caller(len, gfp); 120 if (p) 121 memcpy(p, src, len); 122 return p; 123 } 124 EXPORT_SYMBOL(kmemdup); 125 126 /** 127 * kmemdup_nul - Create a NUL-terminated string from unterminated data 128 * @s: The data to stringify 129 * @len: The size of the data 130 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 131 * 132 * Return: newly allocated copy of @s with NUL-termination or %NULL in 133 * case of error 134 */ 135 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 136 { 137 char *buf; 138 139 if (!s) 140 return NULL; 141 142 buf = kmalloc_track_caller(len + 1, gfp); 143 if (buf) { 144 memcpy(buf, s, len); 145 buf[len] = '\0'; 146 } 147 return buf; 148 } 149 EXPORT_SYMBOL(kmemdup_nul); 150 151 /** 152 * memdup_user - duplicate memory region from user space 153 * 154 * @src: source address in user space 155 * @len: number of bytes to copy 156 * 157 * Return: an ERR_PTR() on failure. Result is physically 158 * contiguous, to be freed by kfree(). 159 */ 160 void *memdup_user(const void __user *src, size_t len) 161 { 162 void *p; 163 164 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 165 if (!p) 166 return ERR_PTR(-ENOMEM); 167 168 if (copy_from_user(p, src, len)) { 169 kfree(p); 170 return ERR_PTR(-EFAULT); 171 } 172 173 return p; 174 } 175 EXPORT_SYMBOL(memdup_user); 176 177 /** 178 * vmemdup_user - duplicate memory region from user space 179 * 180 * @src: source address in user space 181 * @len: number of bytes to copy 182 * 183 * Return: an ERR_PTR() on failure. Result may be not 184 * physically contiguous. Use kvfree() to free. 185 */ 186 void *vmemdup_user(const void __user *src, size_t len) 187 { 188 void *p; 189 190 p = kvmalloc(len, GFP_USER); 191 if (!p) 192 return ERR_PTR(-ENOMEM); 193 194 if (copy_from_user(p, src, len)) { 195 kvfree(p); 196 return ERR_PTR(-EFAULT); 197 } 198 199 return p; 200 } 201 EXPORT_SYMBOL(vmemdup_user); 202 203 /** 204 * strndup_user - duplicate an existing string from user space 205 * @s: The string to duplicate 206 * @n: Maximum number of bytes to copy, including the trailing NUL. 207 * 208 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 209 */ 210 char *strndup_user(const char __user *s, long n) 211 { 212 char *p; 213 long length; 214 215 length = strnlen_user(s, n); 216 217 if (!length) 218 return ERR_PTR(-EFAULT); 219 220 if (length > n) 221 return ERR_PTR(-EINVAL); 222 223 p = memdup_user(s, length); 224 225 if (IS_ERR(p)) 226 return p; 227 228 p[length - 1] = '\0'; 229 230 return p; 231 } 232 EXPORT_SYMBOL(strndup_user); 233 234 /** 235 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 236 * 237 * @src: source address in user space 238 * @len: number of bytes to copy 239 * 240 * Return: an ERR_PTR() on failure. 241 */ 242 void *memdup_user_nul(const void __user *src, size_t len) 243 { 244 char *p; 245 246 /* 247 * Always use GFP_KERNEL, since copy_from_user() can sleep and 248 * cause pagefault, which makes it pointless to use GFP_NOFS 249 * or GFP_ATOMIC. 250 */ 251 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 252 if (!p) 253 return ERR_PTR(-ENOMEM); 254 255 if (copy_from_user(p, src, len)) { 256 kfree(p); 257 return ERR_PTR(-EFAULT); 258 } 259 p[len] = '\0'; 260 261 return p; 262 } 263 EXPORT_SYMBOL(memdup_user_nul); 264 265 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 266 struct vm_area_struct *prev, struct rb_node *rb_parent) 267 { 268 struct vm_area_struct *next; 269 270 vma->vm_prev = prev; 271 if (prev) { 272 next = prev->vm_next; 273 prev->vm_next = vma; 274 } else { 275 mm->mmap = vma; 276 if (rb_parent) 277 next = rb_entry(rb_parent, 278 struct vm_area_struct, vm_rb); 279 else 280 next = NULL; 281 } 282 vma->vm_next = next; 283 if (next) 284 next->vm_prev = vma; 285 } 286 287 /* Check if the vma is being used as a stack by this task */ 288 int vma_is_stack_for_current(struct vm_area_struct *vma) 289 { 290 struct task_struct * __maybe_unused t = current; 291 292 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 293 } 294 295 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 296 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 297 { 298 mm->mmap_base = TASK_UNMAPPED_BASE; 299 mm->get_unmapped_area = arch_get_unmapped_area; 300 } 301 #endif 302 303 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 304 unsigned long len, unsigned long prot, 305 unsigned long flag, unsigned long pgoff) 306 { 307 unsigned long ret; 308 struct mm_struct *mm = current->mm; 309 unsigned long populate; 310 LIST_HEAD(uf); 311 312 ret = security_mmap_file(file, prot, flag); 313 if (!ret) { 314 if (down_write_killable(&mm->mmap_sem)) 315 return -EINTR; 316 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 317 &populate, &uf); 318 up_write(&mm->mmap_sem); 319 userfaultfd_unmap_complete(mm, &uf); 320 if (populate) 321 mm_populate(ret, populate); 322 } 323 return ret; 324 } 325 326 unsigned long vm_mmap(struct file *file, unsigned long addr, 327 unsigned long len, unsigned long prot, 328 unsigned long flag, unsigned long offset) 329 { 330 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 331 return -EINVAL; 332 if (unlikely(offset_in_page(offset))) 333 return -EINVAL; 334 335 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 336 } 337 EXPORT_SYMBOL(vm_mmap); 338 339 /** 340 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 341 * failure, fall back to non-contiguous (vmalloc) allocation. 342 * @size: size of the request. 343 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 344 * @node: numa node to allocate from 345 * 346 * Uses kmalloc to get the memory but if the allocation fails then falls back 347 * to the vmalloc allocator. Use kvfree for freeing the memory. 348 * 349 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 350 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 351 * preferable to the vmalloc fallback, due to visible performance drawbacks. 352 * 353 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 354 * fall back to vmalloc. 355 * 356 * Return: pointer to the allocated memory of %NULL in case of failure 357 */ 358 void *kvmalloc_node(size_t size, gfp_t flags, int node) 359 { 360 gfp_t kmalloc_flags = flags; 361 void *ret; 362 363 /* 364 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 365 * so the given set of flags has to be compatible. 366 */ 367 if ((flags & GFP_KERNEL) != GFP_KERNEL) 368 return kmalloc_node(size, flags, node); 369 370 /* 371 * We want to attempt a large physically contiguous block first because 372 * it is less likely to fragment multiple larger blocks and therefore 373 * contribute to a long term fragmentation less than vmalloc fallback. 374 * However make sure that larger requests are not too disruptive - no 375 * OOM killer and no allocation failure warnings as we have a fallback. 376 */ 377 if (size > PAGE_SIZE) { 378 kmalloc_flags |= __GFP_NOWARN; 379 380 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 381 kmalloc_flags |= __GFP_NORETRY; 382 } 383 384 ret = kmalloc_node(size, kmalloc_flags, node); 385 386 /* 387 * It doesn't really make sense to fallback to vmalloc for sub page 388 * requests 389 */ 390 if (ret || size <= PAGE_SIZE) 391 return ret; 392 393 return __vmalloc_node_flags_caller(size, node, flags, 394 __builtin_return_address(0)); 395 } 396 EXPORT_SYMBOL(kvmalloc_node); 397 398 /** 399 * kvfree() - Free memory. 400 * @addr: Pointer to allocated memory. 401 * 402 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 403 * It is slightly more efficient to use kfree() or vfree() if you are certain 404 * that you know which one to use. 405 * 406 * Context: Either preemptible task context or not-NMI interrupt. 407 */ 408 void kvfree(const void *addr) 409 { 410 if (is_vmalloc_addr(addr)) 411 vfree(addr); 412 else 413 kfree(addr); 414 } 415 EXPORT_SYMBOL(kvfree); 416 417 static inline void *__page_rmapping(struct page *page) 418 { 419 unsigned long mapping; 420 421 mapping = (unsigned long)page->mapping; 422 mapping &= ~PAGE_MAPPING_FLAGS; 423 424 return (void *)mapping; 425 } 426 427 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 428 void *page_rmapping(struct page *page) 429 { 430 page = compound_head(page); 431 return __page_rmapping(page); 432 } 433 434 /* 435 * Return true if this page is mapped into pagetables. 436 * For compound page it returns true if any subpage of compound page is mapped. 437 */ 438 bool page_mapped(struct page *page) 439 { 440 int i; 441 442 if (likely(!PageCompound(page))) 443 return atomic_read(&page->_mapcount) >= 0; 444 page = compound_head(page); 445 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 446 return true; 447 if (PageHuge(page)) 448 return false; 449 for (i = 0; i < (1 << compound_order(page)); i++) { 450 if (atomic_read(&page[i]._mapcount) >= 0) 451 return true; 452 } 453 return false; 454 } 455 EXPORT_SYMBOL(page_mapped); 456 457 struct anon_vma *page_anon_vma(struct page *page) 458 { 459 unsigned long mapping; 460 461 page = compound_head(page); 462 mapping = (unsigned long)page->mapping; 463 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 464 return NULL; 465 return __page_rmapping(page); 466 } 467 468 struct address_space *page_mapping(struct page *page) 469 { 470 struct address_space *mapping; 471 472 page = compound_head(page); 473 474 /* This happens if someone calls flush_dcache_page on slab page */ 475 if (unlikely(PageSlab(page))) 476 return NULL; 477 478 if (unlikely(PageSwapCache(page))) { 479 swp_entry_t entry; 480 481 entry.val = page_private(page); 482 return swap_address_space(entry); 483 } 484 485 mapping = page->mapping; 486 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 487 return NULL; 488 489 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 490 } 491 EXPORT_SYMBOL(page_mapping); 492 493 /* 494 * For file cache pages, return the address_space, otherwise return NULL 495 */ 496 struct address_space *page_mapping_file(struct page *page) 497 { 498 if (unlikely(PageSwapCache(page))) 499 return NULL; 500 return page_mapping(page); 501 } 502 503 /* Slow path of page_mapcount() for compound pages */ 504 int __page_mapcount(struct page *page) 505 { 506 int ret; 507 508 ret = atomic_read(&page->_mapcount) + 1; 509 /* 510 * For file THP page->_mapcount contains total number of mapping 511 * of the page: no need to look into compound_mapcount. 512 */ 513 if (!PageAnon(page) && !PageHuge(page)) 514 return ret; 515 page = compound_head(page); 516 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 517 if (PageDoubleMap(page)) 518 ret--; 519 return ret; 520 } 521 EXPORT_SYMBOL_GPL(__page_mapcount); 522 523 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 524 int sysctl_overcommit_ratio __read_mostly = 50; 525 unsigned long sysctl_overcommit_kbytes __read_mostly; 526 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 527 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 528 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 529 530 int overcommit_ratio_handler(struct ctl_table *table, int write, 531 void __user *buffer, size_t *lenp, 532 loff_t *ppos) 533 { 534 int ret; 535 536 ret = proc_dointvec(table, write, buffer, lenp, ppos); 537 if (ret == 0 && write) 538 sysctl_overcommit_kbytes = 0; 539 return ret; 540 } 541 542 int overcommit_kbytes_handler(struct ctl_table *table, int write, 543 void __user *buffer, size_t *lenp, 544 loff_t *ppos) 545 { 546 int ret; 547 548 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 549 if (ret == 0 && write) 550 sysctl_overcommit_ratio = 0; 551 return ret; 552 } 553 554 /* 555 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 556 */ 557 unsigned long vm_commit_limit(void) 558 { 559 unsigned long allowed; 560 561 if (sysctl_overcommit_kbytes) 562 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 563 else 564 allowed = ((totalram_pages() - hugetlb_total_pages()) 565 * sysctl_overcommit_ratio / 100); 566 allowed += total_swap_pages; 567 568 return allowed; 569 } 570 571 /* 572 * Make sure vm_committed_as in one cacheline and not cacheline shared with 573 * other variables. It can be updated by several CPUs frequently. 574 */ 575 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 576 577 /* 578 * The global memory commitment made in the system can be a metric 579 * that can be used to drive ballooning decisions when Linux is hosted 580 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 581 * balancing memory across competing virtual machines that are hosted. 582 * Several metrics drive this policy engine including the guest reported 583 * memory commitment. 584 */ 585 unsigned long vm_memory_committed(void) 586 { 587 return percpu_counter_read_positive(&vm_committed_as); 588 } 589 EXPORT_SYMBOL_GPL(vm_memory_committed); 590 591 /* 592 * Check that a process has enough memory to allocate a new virtual 593 * mapping. 0 means there is enough memory for the allocation to 594 * succeed and -ENOMEM implies there is not. 595 * 596 * We currently support three overcommit policies, which are set via the 597 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 598 * 599 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 600 * Additional code 2002 Jul 20 by Robert Love. 601 * 602 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 603 * 604 * Note this is a helper function intended to be used by LSMs which 605 * wish to use this logic. 606 */ 607 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 608 { 609 long allowed; 610 611 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 612 -(s64)vm_committed_as_batch * num_online_cpus(), 613 "memory commitment underflow"); 614 615 vm_acct_memory(pages); 616 617 /* 618 * Sometimes we want to use more memory than we have 619 */ 620 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 621 return 0; 622 623 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 624 if (pages > totalram_pages() + total_swap_pages) 625 goto error; 626 return 0; 627 } 628 629 allowed = vm_commit_limit(); 630 /* 631 * Reserve some for root 632 */ 633 if (!cap_sys_admin) 634 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 635 636 /* 637 * Don't let a single process grow so big a user can't recover 638 */ 639 if (mm) { 640 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 641 642 allowed -= min_t(long, mm->total_vm / 32, reserve); 643 } 644 645 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 646 return 0; 647 error: 648 vm_unacct_memory(pages); 649 650 return -ENOMEM; 651 } 652 653 /** 654 * get_cmdline() - copy the cmdline value to a buffer. 655 * @task: the task whose cmdline value to copy. 656 * @buffer: the buffer to copy to. 657 * @buflen: the length of the buffer. Larger cmdline values are truncated 658 * to this length. 659 * 660 * Return: the size of the cmdline field copied. Note that the copy does 661 * not guarantee an ending NULL byte. 662 */ 663 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 664 { 665 int res = 0; 666 unsigned int len; 667 struct mm_struct *mm = get_task_mm(task); 668 unsigned long arg_start, arg_end, env_start, env_end; 669 if (!mm) 670 goto out; 671 if (!mm->arg_end) 672 goto out_mm; /* Shh! No looking before we're done */ 673 674 spin_lock(&mm->arg_lock); 675 arg_start = mm->arg_start; 676 arg_end = mm->arg_end; 677 env_start = mm->env_start; 678 env_end = mm->env_end; 679 spin_unlock(&mm->arg_lock); 680 681 len = arg_end - arg_start; 682 683 if (len > buflen) 684 len = buflen; 685 686 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 687 688 /* 689 * If the nul at the end of args has been overwritten, then 690 * assume application is using setproctitle(3). 691 */ 692 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 693 len = strnlen(buffer, res); 694 if (len < res) { 695 res = len; 696 } else { 697 len = env_end - env_start; 698 if (len > buflen - res) 699 len = buflen - res; 700 res += access_process_vm(task, env_start, 701 buffer+res, len, 702 FOLL_FORCE); 703 res = strnlen(buffer, res); 704 } 705 } 706 out_mm: 707 mmput(mm); 708 out: 709 return res; 710 } 711