xref: /linux/mm/util.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/security.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mman.h>
15 #include <linux/hugetlb.h>
16 #include <linux/vmalloc.h>
17 #include <linux/userfaultfd_k.h>
18 
19 #include <linux/uaccess.h>
20 
21 #include "internal.h"
22 
23 /**
24  * kfree_const - conditionally free memory
25  * @x: pointer to the memory
26  *
27  * Function calls kfree only if @x is not in .rodata section.
28  */
29 void kfree_const(const void *x)
30 {
31 	if (!is_kernel_rodata((unsigned long)x))
32 		kfree(x);
33 }
34 EXPORT_SYMBOL(kfree_const);
35 
36 /**
37  * kstrdup - allocate space for and copy an existing string
38  * @s: the string to duplicate
39  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
40  *
41  * Return: newly allocated copy of @s or %NULL in case of error
42  */
43 char *kstrdup(const char *s, gfp_t gfp)
44 {
45 	size_t len;
46 	char *buf;
47 
48 	if (!s)
49 		return NULL;
50 
51 	len = strlen(s) + 1;
52 	buf = kmalloc_track_caller(len, gfp);
53 	if (buf)
54 		memcpy(buf, s, len);
55 	return buf;
56 }
57 EXPORT_SYMBOL(kstrdup);
58 
59 /**
60  * kstrdup_const - conditionally duplicate an existing const string
61  * @s: the string to duplicate
62  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
63  *
64  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
65  *
66  * Return: source string if it is in .rodata section otherwise
67  * fallback to kstrdup.
68  */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 	if (is_kernel_rodata((unsigned long)s))
72 		return s;
73 
74 	return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77 
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  *
84  * Note: Use kmemdup_nul() instead if the size is known exactly.
85  *
86  * Return: newly allocated copy of @s or %NULL in case of error
87  */
88 char *kstrndup(const char *s, size_t max, gfp_t gfp)
89 {
90 	size_t len;
91 	char *buf;
92 
93 	if (!s)
94 		return NULL;
95 
96 	len = strnlen(s, max);
97 	buf = kmalloc_track_caller(len+1, gfp);
98 	if (buf) {
99 		memcpy(buf, s, len);
100 		buf[len] = '\0';
101 	}
102 	return buf;
103 }
104 EXPORT_SYMBOL(kstrndup);
105 
106 /**
107  * kmemdup - duplicate region of memory
108  *
109  * @src: memory region to duplicate
110  * @len: memory region length
111  * @gfp: GFP mask to use
112  *
113  * Return: newly allocated copy of @src or %NULL in case of error
114  */
115 void *kmemdup(const void *src, size_t len, gfp_t gfp)
116 {
117 	void *p;
118 
119 	p = kmalloc_track_caller(len, gfp);
120 	if (p)
121 		memcpy(p, src, len);
122 	return p;
123 }
124 EXPORT_SYMBOL(kmemdup);
125 
126 /**
127  * kmemdup_nul - Create a NUL-terminated string from unterminated data
128  * @s: The data to stringify
129  * @len: The size of the data
130  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
131  *
132  * Return: newly allocated copy of @s with NUL-termination or %NULL in
133  * case of error
134  */
135 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
136 {
137 	char *buf;
138 
139 	if (!s)
140 		return NULL;
141 
142 	buf = kmalloc_track_caller(len + 1, gfp);
143 	if (buf) {
144 		memcpy(buf, s, len);
145 		buf[len] = '\0';
146 	}
147 	return buf;
148 }
149 EXPORT_SYMBOL(kmemdup_nul);
150 
151 /**
152  * memdup_user - duplicate memory region from user space
153  *
154  * @src: source address in user space
155  * @len: number of bytes to copy
156  *
157  * Return: an ERR_PTR() on failure.  Result is physically
158  * contiguous, to be freed by kfree().
159  */
160 void *memdup_user(const void __user *src, size_t len)
161 {
162 	void *p;
163 
164 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
165 	if (!p)
166 		return ERR_PTR(-ENOMEM);
167 
168 	if (copy_from_user(p, src, len)) {
169 		kfree(p);
170 		return ERR_PTR(-EFAULT);
171 	}
172 
173 	return p;
174 }
175 EXPORT_SYMBOL(memdup_user);
176 
177 /**
178  * vmemdup_user - duplicate memory region from user space
179  *
180  * @src: source address in user space
181  * @len: number of bytes to copy
182  *
183  * Return: an ERR_PTR() on failure.  Result may be not
184  * physically contiguous.  Use kvfree() to free.
185  */
186 void *vmemdup_user(const void __user *src, size_t len)
187 {
188 	void *p;
189 
190 	p = kvmalloc(len, GFP_USER);
191 	if (!p)
192 		return ERR_PTR(-ENOMEM);
193 
194 	if (copy_from_user(p, src, len)) {
195 		kvfree(p);
196 		return ERR_PTR(-EFAULT);
197 	}
198 
199 	return p;
200 }
201 EXPORT_SYMBOL(vmemdup_user);
202 
203 /**
204  * strndup_user - duplicate an existing string from user space
205  * @s: The string to duplicate
206  * @n: Maximum number of bytes to copy, including the trailing NUL.
207  *
208  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
209  */
210 char *strndup_user(const char __user *s, long n)
211 {
212 	char *p;
213 	long length;
214 
215 	length = strnlen_user(s, n);
216 
217 	if (!length)
218 		return ERR_PTR(-EFAULT);
219 
220 	if (length > n)
221 		return ERR_PTR(-EINVAL);
222 
223 	p = memdup_user(s, length);
224 
225 	if (IS_ERR(p))
226 		return p;
227 
228 	p[length - 1] = '\0';
229 
230 	return p;
231 }
232 EXPORT_SYMBOL(strndup_user);
233 
234 /**
235  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
236  *
237  * @src: source address in user space
238  * @len: number of bytes to copy
239  *
240  * Return: an ERR_PTR() on failure.
241  */
242 void *memdup_user_nul(const void __user *src, size_t len)
243 {
244 	char *p;
245 
246 	/*
247 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
248 	 * cause pagefault, which makes it pointless to use GFP_NOFS
249 	 * or GFP_ATOMIC.
250 	 */
251 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
252 	if (!p)
253 		return ERR_PTR(-ENOMEM);
254 
255 	if (copy_from_user(p, src, len)) {
256 		kfree(p);
257 		return ERR_PTR(-EFAULT);
258 	}
259 	p[len] = '\0';
260 
261 	return p;
262 }
263 EXPORT_SYMBOL(memdup_user_nul);
264 
265 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
266 		struct vm_area_struct *prev, struct rb_node *rb_parent)
267 {
268 	struct vm_area_struct *next;
269 
270 	vma->vm_prev = prev;
271 	if (prev) {
272 		next = prev->vm_next;
273 		prev->vm_next = vma;
274 	} else {
275 		mm->mmap = vma;
276 		if (rb_parent)
277 			next = rb_entry(rb_parent,
278 					struct vm_area_struct, vm_rb);
279 		else
280 			next = NULL;
281 	}
282 	vma->vm_next = next;
283 	if (next)
284 		next->vm_prev = vma;
285 }
286 
287 /* Check if the vma is being used as a stack by this task */
288 int vma_is_stack_for_current(struct vm_area_struct *vma)
289 {
290 	struct task_struct * __maybe_unused t = current;
291 
292 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
293 }
294 
295 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
296 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
297 {
298 	mm->mmap_base = TASK_UNMAPPED_BASE;
299 	mm->get_unmapped_area = arch_get_unmapped_area;
300 }
301 #endif
302 
303 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
304 	unsigned long len, unsigned long prot,
305 	unsigned long flag, unsigned long pgoff)
306 {
307 	unsigned long ret;
308 	struct mm_struct *mm = current->mm;
309 	unsigned long populate;
310 	LIST_HEAD(uf);
311 
312 	ret = security_mmap_file(file, prot, flag);
313 	if (!ret) {
314 		if (down_write_killable(&mm->mmap_sem))
315 			return -EINTR;
316 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
317 				    &populate, &uf);
318 		up_write(&mm->mmap_sem);
319 		userfaultfd_unmap_complete(mm, &uf);
320 		if (populate)
321 			mm_populate(ret, populate);
322 	}
323 	return ret;
324 }
325 
326 unsigned long vm_mmap(struct file *file, unsigned long addr,
327 	unsigned long len, unsigned long prot,
328 	unsigned long flag, unsigned long offset)
329 {
330 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
331 		return -EINVAL;
332 	if (unlikely(offset_in_page(offset)))
333 		return -EINVAL;
334 
335 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
336 }
337 EXPORT_SYMBOL(vm_mmap);
338 
339 /**
340  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
341  * failure, fall back to non-contiguous (vmalloc) allocation.
342  * @size: size of the request.
343  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
344  * @node: numa node to allocate from
345  *
346  * Uses kmalloc to get the memory but if the allocation fails then falls back
347  * to the vmalloc allocator. Use kvfree for freeing the memory.
348  *
349  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
350  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
351  * preferable to the vmalloc fallback, due to visible performance drawbacks.
352  *
353  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
354  * fall back to vmalloc.
355  *
356  * Return: pointer to the allocated memory of %NULL in case of failure
357  */
358 void *kvmalloc_node(size_t size, gfp_t flags, int node)
359 {
360 	gfp_t kmalloc_flags = flags;
361 	void *ret;
362 
363 	/*
364 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
365 	 * so the given set of flags has to be compatible.
366 	 */
367 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
368 		return kmalloc_node(size, flags, node);
369 
370 	/*
371 	 * We want to attempt a large physically contiguous block first because
372 	 * it is less likely to fragment multiple larger blocks and therefore
373 	 * contribute to a long term fragmentation less than vmalloc fallback.
374 	 * However make sure that larger requests are not too disruptive - no
375 	 * OOM killer and no allocation failure warnings as we have a fallback.
376 	 */
377 	if (size > PAGE_SIZE) {
378 		kmalloc_flags |= __GFP_NOWARN;
379 
380 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
381 			kmalloc_flags |= __GFP_NORETRY;
382 	}
383 
384 	ret = kmalloc_node(size, kmalloc_flags, node);
385 
386 	/*
387 	 * It doesn't really make sense to fallback to vmalloc for sub page
388 	 * requests
389 	 */
390 	if (ret || size <= PAGE_SIZE)
391 		return ret;
392 
393 	return __vmalloc_node_flags_caller(size, node, flags,
394 			__builtin_return_address(0));
395 }
396 EXPORT_SYMBOL(kvmalloc_node);
397 
398 /**
399  * kvfree() - Free memory.
400  * @addr: Pointer to allocated memory.
401  *
402  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
403  * It is slightly more efficient to use kfree() or vfree() if you are certain
404  * that you know which one to use.
405  *
406  * Context: Either preemptible task context or not-NMI interrupt.
407  */
408 void kvfree(const void *addr)
409 {
410 	if (is_vmalloc_addr(addr))
411 		vfree(addr);
412 	else
413 		kfree(addr);
414 }
415 EXPORT_SYMBOL(kvfree);
416 
417 static inline void *__page_rmapping(struct page *page)
418 {
419 	unsigned long mapping;
420 
421 	mapping = (unsigned long)page->mapping;
422 	mapping &= ~PAGE_MAPPING_FLAGS;
423 
424 	return (void *)mapping;
425 }
426 
427 /* Neutral page->mapping pointer to address_space or anon_vma or other */
428 void *page_rmapping(struct page *page)
429 {
430 	page = compound_head(page);
431 	return __page_rmapping(page);
432 }
433 
434 /*
435  * Return true if this page is mapped into pagetables.
436  * For compound page it returns true if any subpage of compound page is mapped.
437  */
438 bool page_mapped(struct page *page)
439 {
440 	int i;
441 
442 	if (likely(!PageCompound(page)))
443 		return atomic_read(&page->_mapcount) >= 0;
444 	page = compound_head(page);
445 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
446 		return true;
447 	if (PageHuge(page))
448 		return false;
449 	for (i = 0; i < (1 << compound_order(page)); i++) {
450 		if (atomic_read(&page[i]._mapcount) >= 0)
451 			return true;
452 	}
453 	return false;
454 }
455 EXPORT_SYMBOL(page_mapped);
456 
457 struct anon_vma *page_anon_vma(struct page *page)
458 {
459 	unsigned long mapping;
460 
461 	page = compound_head(page);
462 	mapping = (unsigned long)page->mapping;
463 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
464 		return NULL;
465 	return __page_rmapping(page);
466 }
467 
468 struct address_space *page_mapping(struct page *page)
469 {
470 	struct address_space *mapping;
471 
472 	page = compound_head(page);
473 
474 	/* This happens if someone calls flush_dcache_page on slab page */
475 	if (unlikely(PageSlab(page)))
476 		return NULL;
477 
478 	if (unlikely(PageSwapCache(page))) {
479 		swp_entry_t entry;
480 
481 		entry.val = page_private(page);
482 		return swap_address_space(entry);
483 	}
484 
485 	mapping = page->mapping;
486 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
487 		return NULL;
488 
489 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
490 }
491 EXPORT_SYMBOL(page_mapping);
492 
493 /*
494  * For file cache pages, return the address_space, otherwise return NULL
495  */
496 struct address_space *page_mapping_file(struct page *page)
497 {
498 	if (unlikely(PageSwapCache(page)))
499 		return NULL;
500 	return page_mapping(page);
501 }
502 
503 /* Slow path of page_mapcount() for compound pages */
504 int __page_mapcount(struct page *page)
505 {
506 	int ret;
507 
508 	ret = atomic_read(&page->_mapcount) + 1;
509 	/*
510 	 * For file THP page->_mapcount contains total number of mapping
511 	 * of the page: no need to look into compound_mapcount.
512 	 */
513 	if (!PageAnon(page) && !PageHuge(page))
514 		return ret;
515 	page = compound_head(page);
516 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
517 	if (PageDoubleMap(page))
518 		ret--;
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(__page_mapcount);
522 
523 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
524 int sysctl_overcommit_ratio __read_mostly = 50;
525 unsigned long sysctl_overcommit_kbytes __read_mostly;
526 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
527 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
528 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
529 
530 int overcommit_ratio_handler(struct ctl_table *table, int write,
531 			     void __user *buffer, size_t *lenp,
532 			     loff_t *ppos)
533 {
534 	int ret;
535 
536 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
537 	if (ret == 0 && write)
538 		sysctl_overcommit_kbytes = 0;
539 	return ret;
540 }
541 
542 int overcommit_kbytes_handler(struct ctl_table *table, int write,
543 			     void __user *buffer, size_t *lenp,
544 			     loff_t *ppos)
545 {
546 	int ret;
547 
548 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
549 	if (ret == 0 && write)
550 		sysctl_overcommit_ratio = 0;
551 	return ret;
552 }
553 
554 /*
555  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
556  */
557 unsigned long vm_commit_limit(void)
558 {
559 	unsigned long allowed;
560 
561 	if (sysctl_overcommit_kbytes)
562 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
563 	else
564 		allowed = ((totalram_pages() - hugetlb_total_pages())
565 			   * sysctl_overcommit_ratio / 100);
566 	allowed += total_swap_pages;
567 
568 	return allowed;
569 }
570 
571 /*
572  * Make sure vm_committed_as in one cacheline and not cacheline shared with
573  * other variables. It can be updated by several CPUs frequently.
574  */
575 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
576 
577 /*
578  * The global memory commitment made in the system can be a metric
579  * that can be used to drive ballooning decisions when Linux is hosted
580  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
581  * balancing memory across competing virtual machines that are hosted.
582  * Several metrics drive this policy engine including the guest reported
583  * memory commitment.
584  */
585 unsigned long vm_memory_committed(void)
586 {
587 	return percpu_counter_read_positive(&vm_committed_as);
588 }
589 EXPORT_SYMBOL_GPL(vm_memory_committed);
590 
591 /*
592  * Check that a process has enough memory to allocate a new virtual
593  * mapping. 0 means there is enough memory for the allocation to
594  * succeed and -ENOMEM implies there is not.
595  *
596  * We currently support three overcommit policies, which are set via the
597  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
598  *
599  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
600  * Additional code 2002 Jul 20 by Robert Love.
601  *
602  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
603  *
604  * Note this is a helper function intended to be used by LSMs which
605  * wish to use this logic.
606  */
607 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
608 {
609 	long allowed;
610 
611 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
612 			-(s64)vm_committed_as_batch * num_online_cpus(),
613 			"memory commitment underflow");
614 
615 	vm_acct_memory(pages);
616 
617 	/*
618 	 * Sometimes we want to use more memory than we have
619 	 */
620 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
621 		return 0;
622 
623 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
624 		if (pages > totalram_pages() + total_swap_pages)
625 			goto error;
626 		return 0;
627 	}
628 
629 	allowed = vm_commit_limit();
630 	/*
631 	 * Reserve some for root
632 	 */
633 	if (!cap_sys_admin)
634 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
635 
636 	/*
637 	 * Don't let a single process grow so big a user can't recover
638 	 */
639 	if (mm) {
640 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
641 
642 		allowed -= min_t(long, mm->total_vm / 32, reserve);
643 	}
644 
645 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
646 		return 0;
647 error:
648 	vm_unacct_memory(pages);
649 
650 	return -ENOMEM;
651 }
652 
653 /**
654  * get_cmdline() - copy the cmdline value to a buffer.
655  * @task:     the task whose cmdline value to copy.
656  * @buffer:   the buffer to copy to.
657  * @buflen:   the length of the buffer. Larger cmdline values are truncated
658  *            to this length.
659  *
660  * Return: the size of the cmdline field copied. Note that the copy does
661  * not guarantee an ending NULL byte.
662  */
663 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
664 {
665 	int res = 0;
666 	unsigned int len;
667 	struct mm_struct *mm = get_task_mm(task);
668 	unsigned long arg_start, arg_end, env_start, env_end;
669 	if (!mm)
670 		goto out;
671 	if (!mm->arg_end)
672 		goto out_mm;	/* Shh! No looking before we're done */
673 
674 	spin_lock(&mm->arg_lock);
675 	arg_start = mm->arg_start;
676 	arg_end = mm->arg_end;
677 	env_start = mm->env_start;
678 	env_end = mm->env_end;
679 	spin_unlock(&mm->arg_lock);
680 
681 	len = arg_end - arg_start;
682 
683 	if (len > buflen)
684 		len = buflen;
685 
686 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
687 
688 	/*
689 	 * If the nul at the end of args has been overwritten, then
690 	 * assume application is using setproctitle(3).
691 	 */
692 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
693 		len = strnlen(buffer, res);
694 		if (len < res) {
695 			res = len;
696 		} else {
697 			len = env_end - env_start;
698 			if (len > buflen - res)
699 				len = buflen - res;
700 			res += access_process_vm(task, env_start,
701 						 buffer+res, len,
702 						 FOLL_FORCE);
703 			res = strnlen(buffer, res);
704 		}
705 	}
706 out_mm:
707 	mmput(mm);
708 out:
709 	return res;
710 }
711