1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 #include "swap.h" 31 32 /** 33 * kfree_const - conditionally free memory 34 * @x: pointer to the memory 35 * 36 * Function calls kfree only if @x is not in .rodata section. 37 */ 38 void kfree_const(const void *x) 39 { 40 if (!is_kernel_rodata((unsigned long)x)) 41 kfree(x); 42 } 43 EXPORT_SYMBOL(kfree_const); 44 45 /** 46 * kstrdup - allocate space for and copy an existing string 47 * @s: the string to duplicate 48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 49 * 50 * Return: newly allocated copy of @s or %NULL in case of error 51 */ 52 noinline 53 char *kstrdup(const char *s, gfp_t gfp) 54 { 55 size_t len; 56 char *buf; 57 58 if (!s) 59 return NULL; 60 61 len = strlen(s) + 1; 62 buf = kmalloc_track_caller(len, gfp); 63 if (buf) 64 memcpy(buf, s, len); 65 return buf; 66 } 67 EXPORT_SYMBOL(kstrdup); 68 69 /** 70 * kstrdup_const - conditionally duplicate an existing const string 71 * @s: the string to duplicate 72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 73 * 74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 75 * must not be passed to krealloc(). 76 * 77 * Return: source string if it is in .rodata section otherwise 78 * fallback to kstrdup. 79 */ 80 const char *kstrdup_const(const char *s, gfp_t gfp) 81 { 82 if (is_kernel_rodata((unsigned long)s)) 83 return s; 84 85 return kstrdup(s, gfp); 86 } 87 EXPORT_SYMBOL(kstrdup_const); 88 89 /** 90 * kstrndup - allocate space for and copy an existing string 91 * @s: the string to duplicate 92 * @max: read at most @max chars from @s 93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 94 * 95 * Note: Use kmemdup_nul() instead if the size is known exactly. 96 * 97 * Return: newly allocated copy of @s or %NULL in case of error 98 */ 99 char *kstrndup(const char *s, size_t max, gfp_t gfp) 100 { 101 size_t len; 102 char *buf; 103 104 if (!s) 105 return NULL; 106 107 len = strnlen(s, max); 108 buf = kmalloc_track_caller(len+1, gfp); 109 if (buf) { 110 memcpy(buf, s, len); 111 buf[len] = '\0'; 112 } 113 return buf; 114 } 115 EXPORT_SYMBOL(kstrndup); 116 117 /** 118 * kmemdup - duplicate region of memory 119 * 120 * @src: memory region to duplicate 121 * @len: memory region length 122 * @gfp: GFP mask to use 123 * 124 * Return: newly allocated copy of @src or %NULL in case of error, 125 * result is physically contiguous. Use kfree() to free. 126 */ 127 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) 128 { 129 void *p; 130 131 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); 132 if (p) 133 memcpy(p, src, len); 134 return p; 135 } 136 EXPORT_SYMBOL(kmemdup_noprof); 137 138 /** 139 * kmemdup_array - duplicate a given array. 140 * 141 * @src: array to duplicate. 142 * @count: number of elements to duplicate from array. 143 * @element_size: size of each element of array. 144 * @gfp: GFP mask to use. 145 * 146 * Return: duplicated array of @src or %NULL in case of error, 147 * result is physically contiguous. Use kfree() to free. 148 */ 149 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp) 150 { 151 return kmemdup(src, size_mul(element_size, count), gfp); 152 } 153 EXPORT_SYMBOL(kmemdup_array); 154 155 /** 156 * kvmemdup - duplicate region of memory 157 * 158 * @src: memory region to duplicate 159 * @len: memory region length 160 * @gfp: GFP mask to use 161 * 162 * Return: newly allocated copy of @src or %NULL in case of error, 163 * result may be not physically contiguous. Use kvfree() to free. 164 */ 165 void *kvmemdup(const void *src, size_t len, gfp_t gfp) 166 { 167 void *p; 168 169 p = kvmalloc(len, gfp); 170 if (p) 171 memcpy(p, src, len); 172 return p; 173 } 174 EXPORT_SYMBOL(kvmemdup); 175 176 /** 177 * kmemdup_nul - Create a NUL-terminated string from unterminated data 178 * @s: The data to stringify 179 * @len: The size of the data 180 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 181 * 182 * Return: newly allocated copy of @s with NUL-termination or %NULL in 183 * case of error 184 */ 185 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 186 { 187 char *buf; 188 189 if (!s) 190 return NULL; 191 192 buf = kmalloc_track_caller(len + 1, gfp); 193 if (buf) { 194 memcpy(buf, s, len); 195 buf[len] = '\0'; 196 } 197 return buf; 198 } 199 EXPORT_SYMBOL(kmemdup_nul); 200 201 static kmem_buckets *user_buckets __ro_after_init; 202 203 static int __init init_user_buckets(void) 204 { 205 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL); 206 207 return 0; 208 } 209 subsys_initcall(init_user_buckets); 210 211 /** 212 * memdup_user - duplicate memory region from user space 213 * 214 * @src: source address in user space 215 * @len: number of bytes to copy 216 * 217 * Return: an ERR_PTR() on failure. Result is physically 218 * contiguous, to be freed by kfree(). 219 */ 220 void *memdup_user(const void __user *src, size_t len) 221 { 222 void *p; 223 224 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN); 225 if (!p) 226 return ERR_PTR(-ENOMEM); 227 228 if (copy_from_user(p, src, len)) { 229 kfree(p); 230 return ERR_PTR(-EFAULT); 231 } 232 233 return p; 234 } 235 EXPORT_SYMBOL(memdup_user); 236 237 /** 238 * vmemdup_user - duplicate memory region from user space 239 * 240 * @src: source address in user space 241 * @len: number of bytes to copy 242 * 243 * Return: an ERR_PTR() on failure. Result may be not 244 * physically contiguous. Use kvfree() to free. 245 */ 246 void *vmemdup_user(const void __user *src, size_t len) 247 { 248 void *p; 249 250 p = kmem_buckets_valloc(user_buckets, len, GFP_USER); 251 if (!p) 252 return ERR_PTR(-ENOMEM); 253 254 if (copy_from_user(p, src, len)) { 255 kvfree(p); 256 return ERR_PTR(-EFAULT); 257 } 258 259 return p; 260 } 261 EXPORT_SYMBOL(vmemdup_user); 262 263 /** 264 * strndup_user - duplicate an existing string from user space 265 * @s: The string to duplicate 266 * @n: Maximum number of bytes to copy, including the trailing NUL. 267 * 268 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 269 */ 270 char *strndup_user(const char __user *s, long n) 271 { 272 char *p; 273 long length; 274 275 length = strnlen_user(s, n); 276 277 if (!length) 278 return ERR_PTR(-EFAULT); 279 280 if (length > n) 281 return ERR_PTR(-EINVAL); 282 283 p = memdup_user(s, length); 284 285 if (IS_ERR(p)) 286 return p; 287 288 p[length - 1] = '\0'; 289 290 return p; 291 } 292 EXPORT_SYMBOL(strndup_user); 293 294 /** 295 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 296 * 297 * @src: source address in user space 298 * @len: number of bytes to copy 299 * 300 * Return: an ERR_PTR() on failure. 301 */ 302 void *memdup_user_nul(const void __user *src, size_t len) 303 { 304 char *p; 305 306 /* 307 * Always use GFP_KERNEL, since copy_from_user() can sleep and 308 * cause pagefault, which makes it pointless to use GFP_NOFS 309 * or GFP_ATOMIC. 310 */ 311 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 312 if (!p) 313 return ERR_PTR(-ENOMEM); 314 315 if (copy_from_user(p, src, len)) { 316 kfree(p); 317 return ERR_PTR(-EFAULT); 318 } 319 p[len] = '\0'; 320 321 return p; 322 } 323 EXPORT_SYMBOL(memdup_user_nul); 324 325 /* Check if the vma is being used as a stack by this task */ 326 int vma_is_stack_for_current(struct vm_area_struct *vma) 327 { 328 struct task_struct * __maybe_unused t = current; 329 330 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 331 } 332 333 /* 334 * Change backing file, only valid to use during initial VMA setup. 335 */ 336 void vma_set_file(struct vm_area_struct *vma, struct file *file) 337 { 338 /* Changing an anonymous vma with this is illegal */ 339 get_file(file); 340 swap(vma->vm_file, file); 341 fput(file); 342 } 343 EXPORT_SYMBOL(vma_set_file); 344 345 #ifndef STACK_RND_MASK 346 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 347 #endif 348 349 unsigned long randomize_stack_top(unsigned long stack_top) 350 { 351 unsigned long random_variable = 0; 352 353 if (current->flags & PF_RANDOMIZE) { 354 random_variable = get_random_long(); 355 random_variable &= STACK_RND_MASK; 356 random_variable <<= PAGE_SHIFT; 357 } 358 #ifdef CONFIG_STACK_GROWSUP 359 return PAGE_ALIGN(stack_top) + random_variable; 360 #else 361 return PAGE_ALIGN(stack_top) - random_variable; 362 #endif 363 } 364 365 /** 366 * randomize_page - Generate a random, page aligned address 367 * @start: The smallest acceptable address the caller will take. 368 * @range: The size of the area, starting at @start, within which the 369 * random address must fall. 370 * 371 * If @start + @range would overflow, @range is capped. 372 * 373 * NOTE: Historical use of randomize_range, which this replaces, presumed that 374 * @start was already page aligned. We now align it regardless. 375 * 376 * Return: A page aligned address within [start, start + range). On error, 377 * @start is returned. 378 */ 379 unsigned long randomize_page(unsigned long start, unsigned long range) 380 { 381 if (!PAGE_ALIGNED(start)) { 382 range -= PAGE_ALIGN(start) - start; 383 start = PAGE_ALIGN(start); 384 } 385 386 if (start > ULONG_MAX - range) 387 range = ULONG_MAX - start; 388 389 range >>= PAGE_SHIFT; 390 391 if (range == 0) 392 return start; 393 394 return start + (get_random_long() % range << PAGE_SHIFT); 395 } 396 397 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 398 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 399 { 400 /* Is the current task 32bit ? */ 401 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 402 return randomize_page(mm->brk, SZ_32M); 403 404 return randomize_page(mm->brk, SZ_1G); 405 } 406 407 unsigned long arch_mmap_rnd(void) 408 { 409 unsigned long rnd; 410 411 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 412 if (is_compat_task()) 413 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 414 else 415 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 416 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 417 418 return rnd << PAGE_SHIFT; 419 } 420 421 static int mmap_is_legacy(struct rlimit *rlim_stack) 422 { 423 if (current->personality & ADDR_COMPAT_LAYOUT) 424 return 1; 425 426 /* On parisc the stack always grows up - so a unlimited stack should 427 * not be an indicator to use the legacy memory layout. */ 428 if (rlim_stack->rlim_cur == RLIM_INFINITY && 429 !IS_ENABLED(CONFIG_STACK_GROWSUP)) 430 return 1; 431 432 return sysctl_legacy_va_layout; 433 } 434 435 /* 436 * Leave enough space between the mmap area and the stack to honour ulimit in 437 * the face of randomisation. 438 */ 439 #define MIN_GAP (SZ_128M) 440 #define MAX_GAP (STACK_TOP / 6 * 5) 441 442 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 443 { 444 #ifdef CONFIG_STACK_GROWSUP 445 /* 446 * For an upwards growing stack the calculation is much simpler. 447 * Memory for the maximum stack size is reserved at the top of the 448 * task. mmap_base starts directly below the stack and grows 449 * downwards. 450 */ 451 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); 452 #else 453 unsigned long gap = rlim_stack->rlim_cur; 454 unsigned long pad = stack_guard_gap; 455 456 /* Account for stack randomization if necessary */ 457 if (current->flags & PF_RANDOMIZE) 458 pad += (STACK_RND_MASK << PAGE_SHIFT); 459 460 /* Values close to RLIM_INFINITY can overflow. */ 461 if (gap + pad > gap) 462 gap += pad; 463 464 if (gap < MIN_GAP) 465 gap = MIN_GAP; 466 else if (gap > MAX_GAP) 467 gap = MAX_GAP; 468 469 return PAGE_ALIGN(STACK_TOP - gap - rnd); 470 #endif 471 } 472 473 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 474 { 475 unsigned long random_factor = 0UL; 476 477 if (current->flags & PF_RANDOMIZE) 478 random_factor = arch_mmap_rnd(); 479 480 if (mmap_is_legacy(rlim_stack)) { 481 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 482 clear_bit(MMF_TOPDOWN, &mm->flags); 483 } else { 484 mm->mmap_base = mmap_base(random_factor, rlim_stack); 485 set_bit(MMF_TOPDOWN, &mm->flags); 486 } 487 } 488 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 489 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 490 { 491 mm->mmap_base = TASK_UNMAPPED_BASE; 492 clear_bit(MMF_TOPDOWN, &mm->flags); 493 } 494 #endif 495 496 /** 497 * __account_locked_vm - account locked pages to an mm's locked_vm 498 * @mm: mm to account against 499 * @pages: number of pages to account 500 * @inc: %true if @pages should be considered positive, %false if not 501 * @task: task used to check RLIMIT_MEMLOCK 502 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 503 * 504 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 505 * that mmap_lock is held as writer. 506 * 507 * Return: 508 * * 0 on success 509 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 510 */ 511 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 512 struct task_struct *task, bool bypass_rlim) 513 { 514 unsigned long locked_vm, limit; 515 int ret = 0; 516 517 mmap_assert_write_locked(mm); 518 519 locked_vm = mm->locked_vm; 520 if (inc) { 521 if (!bypass_rlim) { 522 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 523 if (locked_vm + pages > limit) 524 ret = -ENOMEM; 525 } 526 if (!ret) 527 mm->locked_vm = locked_vm + pages; 528 } else { 529 WARN_ON_ONCE(pages > locked_vm); 530 mm->locked_vm = locked_vm - pages; 531 } 532 533 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 534 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 535 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 536 ret ? " - exceeded" : ""); 537 538 return ret; 539 } 540 EXPORT_SYMBOL_GPL(__account_locked_vm); 541 542 /** 543 * account_locked_vm - account locked pages to an mm's locked_vm 544 * @mm: mm to account against, may be NULL 545 * @pages: number of pages to account 546 * @inc: %true if @pages should be considered positive, %false if not 547 * 548 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 549 * 550 * Return: 551 * * 0 on success, or if mm is NULL 552 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 553 */ 554 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 555 { 556 int ret; 557 558 if (pages == 0 || !mm) 559 return 0; 560 561 mmap_write_lock(mm); 562 ret = __account_locked_vm(mm, pages, inc, current, 563 capable(CAP_IPC_LOCK)); 564 mmap_write_unlock(mm); 565 566 return ret; 567 } 568 EXPORT_SYMBOL_GPL(account_locked_vm); 569 570 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 571 unsigned long len, unsigned long prot, 572 unsigned long flag, unsigned long pgoff) 573 { 574 unsigned long ret; 575 struct mm_struct *mm = current->mm; 576 unsigned long populate; 577 LIST_HEAD(uf); 578 579 ret = security_mmap_file(file, prot, flag); 580 if (!ret) { 581 if (mmap_write_lock_killable(mm)) 582 return -EINTR; 583 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, 584 &uf); 585 mmap_write_unlock(mm); 586 userfaultfd_unmap_complete(mm, &uf); 587 if (populate) 588 mm_populate(ret, populate); 589 } 590 return ret; 591 } 592 593 unsigned long vm_mmap(struct file *file, unsigned long addr, 594 unsigned long len, unsigned long prot, 595 unsigned long flag, unsigned long offset) 596 { 597 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 598 return -EINVAL; 599 if (unlikely(offset_in_page(offset))) 600 return -EINVAL; 601 602 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 603 } 604 EXPORT_SYMBOL(vm_mmap); 605 606 /** 607 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 608 * failure, fall back to non-contiguous (vmalloc) allocation. 609 * @size: size of the request. 610 * @b: which set of kmalloc buckets to allocate from. 611 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 612 * @node: numa node to allocate from 613 * 614 * Uses kmalloc to get the memory but if the allocation fails then falls back 615 * to the vmalloc allocator. Use kvfree for freeing the memory. 616 * 617 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 618 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 619 * preferable to the vmalloc fallback, due to visible performance drawbacks. 620 * 621 * Return: pointer to the allocated memory of %NULL in case of failure 622 */ 623 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 624 { 625 gfp_t kmalloc_flags = flags; 626 void *ret; 627 628 /* 629 * We want to attempt a large physically contiguous block first because 630 * it is less likely to fragment multiple larger blocks and therefore 631 * contribute to a long term fragmentation less than vmalloc fallback. 632 * However make sure that larger requests are not too disruptive - no 633 * OOM killer and no allocation failure warnings as we have a fallback. 634 */ 635 if (size > PAGE_SIZE) { 636 kmalloc_flags |= __GFP_NOWARN; 637 638 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 639 kmalloc_flags |= __GFP_NORETRY; 640 641 /* nofail semantic is implemented by the vmalloc fallback */ 642 kmalloc_flags &= ~__GFP_NOFAIL; 643 } 644 645 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b), kmalloc_flags, node); 646 647 /* 648 * It doesn't really make sense to fallback to vmalloc for sub page 649 * requests 650 */ 651 if (ret || size <= PAGE_SIZE) 652 return ret; 653 654 /* non-sleeping allocations are not supported by vmalloc */ 655 if (!gfpflags_allow_blocking(flags)) 656 return NULL; 657 658 /* Don't even allow crazy sizes */ 659 if (unlikely(size > INT_MAX)) { 660 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 661 return NULL; 662 } 663 664 /* 665 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 666 * since the callers already cannot assume anything 667 * about the resulting pointer, and cannot play 668 * protection games. 669 */ 670 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 671 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 672 node, __builtin_return_address(0)); 673 } 674 EXPORT_SYMBOL(__kvmalloc_node_noprof); 675 676 /** 677 * kvfree() - Free memory. 678 * @addr: Pointer to allocated memory. 679 * 680 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 681 * It is slightly more efficient to use kfree() or vfree() if you are certain 682 * that you know which one to use. 683 * 684 * Context: Either preemptible task context or not-NMI interrupt. 685 */ 686 void kvfree(const void *addr) 687 { 688 if (is_vmalloc_addr(addr)) 689 vfree(addr); 690 else 691 kfree(addr); 692 } 693 EXPORT_SYMBOL(kvfree); 694 695 /** 696 * kvfree_sensitive - Free a data object containing sensitive information. 697 * @addr: address of the data object to be freed. 698 * @len: length of the data object. 699 * 700 * Use the special memzero_explicit() function to clear the content of a 701 * kvmalloc'ed object containing sensitive data to make sure that the 702 * compiler won't optimize out the data clearing. 703 */ 704 void kvfree_sensitive(const void *addr, size_t len) 705 { 706 if (likely(!ZERO_OR_NULL_PTR(addr))) { 707 memzero_explicit((void *)addr, len); 708 kvfree(addr); 709 } 710 } 711 EXPORT_SYMBOL(kvfree_sensitive); 712 713 void *kvrealloc_noprof(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 714 { 715 void *newp; 716 717 if (oldsize >= newsize) 718 return (void *)p; 719 newp = kvmalloc_noprof(newsize, flags); 720 if (!newp) 721 return NULL; 722 memcpy(newp, p, oldsize); 723 kvfree(p); 724 return newp; 725 } 726 EXPORT_SYMBOL(kvrealloc_noprof); 727 728 /** 729 * __vmalloc_array - allocate memory for a virtually contiguous array. 730 * @n: number of elements. 731 * @size: element size. 732 * @flags: the type of memory to allocate (see kmalloc). 733 */ 734 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 735 { 736 size_t bytes; 737 738 if (unlikely(check_mul_overflow(n, size, &bytes))) 739 return NULL; 740 return __vmalloc_noprof(bytes, flags); 741 } 742 EXPORT_SYMBOL(__vmalloc_array_noprof); 743 744 /** 745 * vmalloc_array - allocate memory for a virtually contiguous array. 746 * @n: number of elements. 747 * @size: element size. 748 */ 749 void *vmalloc_array_noprof(size_t n, size_t size) 750 { 751 return __vmalloc_array_noprof(n, size, GFP_KERNEL); 752 } 753 EXPORT_SYMBOL(vmalloc_array_noprof); 754 755 /** 756 * __vcalloc - allocate and zero memory for a virtually contiguous array. 757 * @n: number of elements. 758 * @size: element size. 759 * @flags: the type of memory to allocate (see kmalloc). 760 */ 761 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) 762 { 763 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO); 764 } 765 EXPORT_SYMBOL(__vcalloc_noprof); 766 767 /** 768 * vcalloc - allocate and zero memory for a virtually contiguous array. 769 * @n: number of elements. 770 * @size: element size. 771 */ 772 void *vcalloc_noprof(size_t n, size_t size) 773 { 774 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO); 775 } 776 EXPORT_SYMBOL(vcalloc_noprof); 777 778 struct anon_vma *folio_anon_vma(struct folio *folio) 779 { 780 unsigned long mapping = (unsigned long)folio->mapping; 781 782 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 783 return NULL; 784 return (void *)(mapping - PAGE_MAPPING_ANON); 785 } 786 787 /** 788 * folio_mapping - Find the mapping where this folio is stored. 789 * @folio: The folio. 790 * 791 * For folios which are in the page cache, return the mapping that this 792 * page belongs to. Folios in the swap cache return the swap mapping 793 * this page is stored in (which is different from the mapping for the 794 * swap file or swap device where the data is stored). 795 * 796 * You can call this for folios which aren't in the swap cache or page 797 * cache and it will return NULL. 798 */ 799 struct address_space *folio_mapping(struct folio *folio) 800 { 801 struct address_space *mapping; 802 803 /* This happens if someone calls flush_dcache_page on slab page */ 804 if (unlikely(folio_test_slab(folio))) 805 return NULL; 806 807 if (unlikely(folio_test_swapcache(folio))) 808 return swap_address_space(folio->swap); 809 810 mapping = folio->mapping; 811 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 812 return NULL; 813 814 return mapping; 815 } 816 EXPORT_SYMBOL(folio_mapping); 817 818 /** 819 * folio_copy - Copy the contents of one folio to another. 820 * @dst: Folio to copy to. 821 * @src: Folio to copy from. 822 * 823 * The bytes in the folio represented by @src are copied to @dst. 824 * Assumes the caller has validated that @dst is at least as large as @src. 825 * Can be called in atomic context for order-0 folios, but if the folio is 826 * larger, it may sleep. 827 */ 828 void folio_copy(struct folio *dst, struct folio *src) 829 { 830 long i = 0; 831 long nr = folio_nr_pages(src); 832 833 for (;;) { 834 copy_highpage(folio_page(dst, i), folio_page(src, i)); 835 if (++i == nr) 836 break; 837 cond_resched(); 838 } 839 } 840 EXPORT_SYMBOL(folio_copy); 841 842 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 843 int sysctl_overcommit_ratio __read_mostly = 50; 844 unsigned long sysctl_overcommit_kbytes __read_mostly; 845 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 846 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 847 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 848 849 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 850 size_t *lenp, loff_t *ppos) 851 { 852 int ret; 853 854 ret = proc_dointvec(table, write, buffer, lenp, ppos); 855 if (ret == 0 && write) 856 sysctl_overcommit_kbytes = 0; 857 return ret; 858 } 859 860 static void sync_overcommit_as(struct work_struct *dummy) 861 { 862 percpu_counter_sync(&vm_committed_as); 863 } 864 865 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 866 size_t *lenp, loff_t *ppos) 867 { 868 struct ctl_table t; 869 int new_policy = -1; 870 int ret; 871 872 /* 873 * The deviation of sync_overcommit_as could be big with loose policy 874 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 875 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 876 * with the strict "NEVER", and to avoid possible race condition (even 877 * though user usually won't too frequently do the switching to policy 878 * OVERCOMMIT_NEVER), the switch is done in the following order: 879 * 1. changing the batch 880 * 2. sync percpu count on each CPU 881 * 3. switch the policy 882 */ 883 if (write) { 884 t = *table; 885 t.data = &new_policy; 886 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 887 if (ret || new_policy == -1) 888 return ret; 889 890 mm_compute_batch(new_policy); 891 if (new_policy == OVERCOMMIT_NEVER) 892 schedule_on_each_cpu(sync_overcommit_as); 893 sysctl_overcommit_memory = new_policy; 894 } else { 895 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 896 } 897 898 return ret; 899 } 900 901 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 902 size_t *lenp, loff_t *ppos) 903 { 904 int ret; 905 906 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 907 if (ret == 0 && write) 908 sysctl_overcommit_ratio = 0; 909 return ret; 910 } 911 912 /* 913 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 914 */ 915 unsigned long vm_commit_limit(void) 916 { 917 unsigned long allowed; 918 919 if (sysctl_overcommit_kbytes) 920 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 921 else 922 allowed = ((totalram_pages() - hugetlb_total_pages()) 923 * sysctl_overcommit_ratio / 100); 924 allowed += total_swap_pages; 925 926 return allowed; 927 } 928 929 /* 930 * Make sure vm_committed_as in one cacheline and not cacheline shared with 931 * other variables. It can be updated by several CPUs frequently. 932 */ 933 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 934 935 /* 936 * The global memory commitment made in the system can be a metric 937 * that can be used to drive ballooning decisions when Linux is hosted 938 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 939 * balancing memory across competing virtual machines that are hosted. 940 * Several metrics drive this policy engine including the guest reported 941 * memory commitment. 942 * 943 * The time cost of this is very low for small platforms, and for big 944 * platform like a 2S/36C/72T Skylake server, in worst case where 945 * vm_committed_as's spinlock is under severe contention, the time cost 946 * could be about 30~40 microseconds. 947 */ 948 unsigned long vm_memory_committed(void) 949 { 950 return percpu_counter_sum_positive(&vm_committed_as); 951 } 952 EXPORT_SYMBOL_GPL(vm_memory_committed); 953 954 /* 955 * Check that a process has enough memory to allocate a new virtual 956 * mapping. 0 means there is enough memory for the allocation to 957 * succeed and -ENOMEM implies there is not. 958 * 959 * We currently support three overcommit policies, which are set via the 960 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 961 * 962 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 963 * Additional code 2002 Jul 20 by Robert Love. 964 * 965 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 966 * 967 * Note this is a helper function intended to be used by LSMs which 968 * wish to use this logic. 969 */ 970 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 971 { 972 long allowed; 973 unsigned long bytes_failed; 974 975 vm_acct_memory(pages); 976 977 /* 978 * Sometimes we want to use more memory than we have 979 */ 980 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 981 return 0; 982 983 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 984 if (pages > totalram_pages() + total_swap_pages) 985 goto error; 986 return 0; 987 } 988 989 allowed = vm_commit_limit(); 990 /* 991 * Reserve some for root 992 */ 993 if (!cap_sys_admin) 994 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 995 996 /* 997 * Don't let a single process grow so big a user can't recover 998 */ 999 if (mm) { 1000 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1001 1002 allowed -= min_t(long, mm->total_vm / 32, reserve); 1003 } 1004 1005 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1006 return 0; 1007 error: 1008 bytes_failed = pages << PAGE_SHIFT; 1009 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n", 1010 __func__, current->pid, current->comm, bytes_failed); 1011 vm_unacct_memory(pages); 1012 1013 return -ENOMEM; 1014 } 1015 1016 /** 1017 * get_cmdline() - copy the cmdline value to a buffer. 1018 * @task: the task whose cmdline value to copy. 1019 * @buffer: the buffer to copy to. 1020 * @buflen: the length of the buffer. Larger cmdline values are truncated 1021 * to this length. 1022 * 1023 * Return: the size of the cmdline field copied. Note that the copy does 1024 * not guarantee an ending NULL byte. 1025 */ 1026 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1027 { 1028 int res = 0; 1029 unsigned int len; 1030 struct mm_struct *mm = get_task_mm(task); 1031 unsigned long arg_start, arg_end, env_start, env_end; 1032 if (!mm) 1033 goto out; 1034 if (!mm->arg_end) 1035 goto out_mm; /* Shh! No looking before we're done */ 1036 1037 spin_lock(&mm->arg_lock); 1038 arg_start = mm->arg_start; 1039 arg_end = mm->arg_end; 1040 env_start = mm->env_start; 1041 env_end = mm->env_end; 1042 spin_unlock(&mm->arg_lock); 1043 1044 len = arg_end - arg_start; 1045 1046 if (len > buflen) 1047 len = buflen; 1048 1049 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1050 1051 /* 1052 * If the nul at the end of args has been overwritten, then 1053 * assume application is using setproctitle(3). 1054 */ 1055 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1056 len = strnlen(buffer, res); 1057 if (len < res) { 1058 res = len; 1059 } else { 1060 len = env_end - env_start; 1061 if (len > buflen - res) 1062 len = buflen - res; 1063 res += access_process_vm(task, env_start, 1064 buffer+res, len, 1065 FOLL_FORCE); 1066 res = strnlen(buffer, res); 1067 } 1068 } 1069 out_mm: 1070 mmput(mm); 1071 out: 1072 return res; 1073 } 1074 1075 int __weak memcmp_pages(struct page *page1, struct page *page2) 1076 { 1077 char *addr1, *addr2; 1078 int ret; 1079 1080 addr1 = kmap_local_page(page1); 1081 addr2 = kmap_local_page(page2); 1082 ret = memcmp(addr1, addr2, PAGE_SIZE); 1083 kunmap_local(addr2); 1084 kunmap_local(addr1); 1085 return ret; 1086 } 1087 1088 #ifdef CONFIG_PRINTK 1089 /** 1090 * mem_dump_obj - Print available provenance information 1091 * @object: object for which to find provenance information. 1092 * 1093 * This function uses pr_cont(), so that the caller is expected to have 1094 * printed out whatever preamble is appropriate. The provenance information 1095 * depends on the type of object and on how much debugging is enabled. 1096 * For example, for a slab-cache object, the slab name is printed, and, 1097 * if available, the return address and stack trace from the allocation 1098 * and last free path of that object. 1099 */ 1100 void mem_dump_obj(void *object) 1101 { 1102 const char *type; 1103 1104 if (kmem_dump_obj(object)) 1105 return; 1106 1107 if (vmalloc_dump_obj(object)) 1108 return; 1109 1110 if (is_vmalloc_addr(object)) 1111 type = "vmalloc memory"; 1112 else if (virt_addr_valid(object)) 1113 type = "non-slab/vmalloc memory"; 1114 else if (object == NULL) 1115 type = "NULL pointer"; 1116 else if (object == ZERO_SIZE_PTR) 1117 type = "zero-size pointer"; 1118 else 1119 type = "non-paged memory"; 1120 1121 pr_cont(" %s\n", type); 1122 } 1123 EXPORT_SYMBOL_GPL(mem_dump_obj); 1124 #endif 1125 1126 /* 1127 * A driver might set a page logically offline -- PageOffline() -- and 1128 * turn the page inaccessible in the hypervisor; after that, access to page 1129 * content can be fatal. 1130 * 1131 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1132 * pages after checking PageOffline(); however, these PFN walkers can race 1133 * with drivers that set PageOffline(). 1134 * 1135 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1136 * synchronize with such drivers, achieving that a page cannot be set 1137 * PageOffline() while frozen. 1138 * 1139 * page_offline_begin()/page_offline_end() is used by drivers that care about 1140 * such races when setting a page PageOffline(). 1141 */ 1142 static DECLARE_RWSEM(page_offline_rwsem); 1143 1144 void page_offline_freeze(void) 1145 { 1146 down_read(&page_offline_rwsem); 1147 } 1148 1149 void page_offline_thaw(void) 1150 { 1151 up_read(&page_offline_rwsem); 1152 } 1153 1154 void page_offline_begin(void) 1155 { 1156 down_write(&page_offline_rwsem); 1157 } 1158 EXPORT_SYMBOL(page_offline_begin); 1159 1160 void page_offline_end(void) 1161 { 1162 up_write(&page_offline_rwsem); 1163 } 1164 EXPORT_SYMBOL(page_offline_end); 1165 1166 #ifndef flush_dcache_folio 1167 void flush_dcache_folio(struct folio *folio) 1168 { 1169 long i, nr = folio_nr_pages(folio); 1170 1171 for (i = 0; i < nr; i++) 1172 flush_dcache_page(folio_page(folio, i)); 1173 } 1174 EXPORT_SYMBOL(flush_dcache_folio); 1175 #endif 1176