xref: /linux/mm/util.c (revision 41797f75486d8ca3b98d7658c2a506ac7879a8e5)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/export.h>
5 #include <linux/err.h>
6 #include <linux/sched.h>
7 #include <asm/uaccess.h>
8 
9 #include "internal.h"
10 
11 #define CREATE_TRACE_POINTS
12 #include <trace/events/kmem.h>
13 
14 /**
15  * kstrdup - allocate space for and copy an existing string
16  * @s: the string to duplicate
17  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
18  */
19 char *kstrdup(const char *s, gfp_t gfp)
20 {
21 	size_t len;
22 	char *buf;
23 
24 	if (!s)
25 		return NULL;
26 
27 	len = strlen(s) + 1;
28 	buf = kmalloc_track_caller(len, gfp);
29 	if (buf)
30 		memcpy(buf, s, len);
31 	return buf;
32 }
33 EXPORT_SYMBOL(kstrdup);
34 
35 /**
36  * kstrndup - allocate space for and copy an existing string
37  * @s: the string to duplicate
38  * @max: read at most @max chars from @s
39  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
40  */
41 char *kstrndup(const char *s, size_t max, gfp_t gfp)
42 {
43 	size_t len;
44 	char *buf;
45 
46 	if (!s)
47 		return NULL;
48 
49 	len = strnlen(s, max);
50 	buf = kmalloc_track_caller(len+1, gfp);
51 	if (buf) {
52 		memcpy(buf, s, len);
53 		buf[len] = '\0';
54 	}
55 	return buf;
56 }
57 EXPORT_SYMBOL(kstrndup);
58 
59 /**
60  * kmemdup - duplicate region of memory
61  *
62  * @src: memory region to duplicate
63  * @len: memory region length
64  * @gfp: GFP mask to use
65  */
66 void *kmemdup(const void *src, size_t len, gfp_t gfp)
67 {
68 	void *p;
69 
70 	p = kmalloc_track_caller(len, gfp);
71 	if (p)
72 		memcpy(p, src, len);
73 	return p;
74 }
75 EXPORT_SYMBOL(kmemdup);
76 
77 /**
78  * memdup_user - duplicate memory region from user space
79  *
80  * @src: source address in user space
81  * @len: number of bytes to copy
82  *
83  * Returns an ERR_PTR() on failure.
84  */
85 void *memdup_user(const void __user *src, size_t len)
86 {
87 	void *p;
88 
89 	/*
90 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
91 	 * cause pagefault, which makes it pointless to use GFP_NOFS
92 	 * or GFP_ATOMIC.
93 	 */
94 	p = kmalloc_track_caller(len, GFP_KERNEL);
95 	if (!p)
96 		return ERR_PTR(-ENOMEM);
97 
98 	if (copy_from_user(p, src, len)) {
99 		kfree(p);
100 		return ERR_PTR(-EFAULT);
101 	}
102 
103 	return p;
104 }
105 EXPORT_SYMBOL(memdup_user);
106 
107 /**
108  * __krealloc - like krealloc() but don't free @p.
109  * @p: object to reallocate memory for.
110  * @new_size: how many bytes of memory are required.
111  * @flags: the type of memory to allocate.
112  *
113  * This function is like krealloc() except it never frees the originally
114  * allocated buffer. Use this if you don't want to free the buffer immediately
115  * like, for example, with RCU.
116  */
117 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
118 {
119 	void *ret;
120 	size_t ks = 0;
121 
122 	if (unlikely(!new_size))
123 		return ZERO_SIZE_PTR;
124 
125 	if (p)
126 		ks = ksize(p);
127 
128 	if (ks >= new_size)
129 		return (void *)p;
130 
131 	ret = kmalloc_track_caller(new_size, flags);
132 	if (ret && p)
133 		memcpy(ret, p, ks);
134 
135 	return ret;
136 }
137 EXPORT_SYMBOL(__krealloc);
138 
139 /**
140  * krealloc - reallocate memory. The contents will remain unchanged.
141  * @p: object to reallocate memory for.
142  * @new_size: how many bytes of memory are required.
143  * @flags: the type of memory to allocate.
144  *
145  * The contents of the object pointed to are preserved up to the
146  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
147  * behaves exactly like kmalloc().  If @size is 0 and @p is not a
148  * %NULL pointer, the object pointed to is freed.
149  */
150 void *krealloc(const void *p, size_t new_size, gfp_t flags)
151 {
152 	void *ret;
153 
154 	if (unlikely(!new_size)) {
155 		kfree(p);
156 		return ZERO_SIZE_PTR;
157 	}
158 
159 	ret = __krealloc(p, new_size, flags);
160 	if (ret && p != ret)
161 		kfree(p);
162 
163 	return ret;
164 }
165 EXPORT_SYMBOL(krealloc);
166 
167 /**
168  * kzfree - like kfree but zero memory
169  * @p: object to free memory of
170  *
171  * The memory of the object @p points to is zeroed before freed.
172  * If @p is %NULL, kzfree() does nothing.
173  *
174  * Note: this function zeroes the whole allocated buffer which can be a good
175  * deal bigger than the requested buffer size passed to kmalloc(). So be
176  * careful when using this function in performance sensitive code.
177  */
178 void kzfree(const void *p)
179 {
180 	size_t ks;
181 	void *mem = (void *)p;
182 
183 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
184 		return;
185 	ks = ksize(mem);
186 	memset(mem, 0, ks);
187 	kfree(mem);
188 }
189 EXPORT_SYMBOL(kzfree);
190 
191 /*
192  * strndup_user - duplicate an existing string from user space
193  * @s: The string to duplicate
194  * @n: Maximum number of bytes to copy, including the trailing NUL.
195  */
196 char *strndup_user(const char __user *s, long n)
197 {
198 	char *p;
199 	long length;
200 
201 	length = strnlen_user(s, n);
202 
203 	if (!length)
204 		return ERR_PTR(-EFAULT);
205 
206 	if (length > n)
207 		return ERR_PTR(-EINVAL);
208 
209 	p = memdup_user(s, length);
210 
211 	if (IS_ERR(p))
212 		return p;
213 
214 	p[length - 1] = '\0';
215 
216 	return p;
217 }
218 EXPORT_SYMBOL(strndup_user);
219 
220 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
221 		struct vm_area_struct *prev, struct rb_node *rb_parent)
222 {
223 	struct vm_area_struct *next;
224 
225 	vma->vm_prev = prev;
226 	if (prev) {
227 		next = prev->vm_next;
228 		prev->vm_next = vma;
229 	} else {
230 		mm->mmap = vma;
231 		if (rb_parent)
232 			next = rb_entry(rb_parent,
233 					struct vm_area_struct, vm_rb);
234 		else
235 			next = NULL;
236 	}
237 	vma->vm_next = next;
238 	if (next)
239 		next->vm_prev = vma;
240 }
241 
242 /* Check if the vma is being used as a stack by this task */
243 static int vm_is_stack_for_task(struct task_struct *t,
244 				struct vm_area_struct *vma)
245 {
246 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
247 }
248 
249 /*
250  * Check if the vma is being used as a stack.
251  * If is_group is non-zero, check in the entire thread group or else
252  * just check in the current task. Returns the pid of the task that
253  * the vma is stack for.
254  */
255 pid_t vm_is_stack(struct task_struct *task,
256 		  struct vm_area_struct *vma, int in_group)
257 {
258 	pid_t ret = 0;
259 
260 	if (vm_is_stack_for_task(task, vma))
261 		return task->pid;
262 
263 	if (in_group) {
264 		struct task_struct *t;
265 		rcu_read_lock();
266 		if (!pid_alive(task))
267 			goto done;
268 
269 		t = task;
270 		do {
271 			if (vm_is_stack_for_task(t, vma)) {
272 				ret = t->pid;
273 				goto done;
274 			}
275 		} while_each_thread(task, t);
276 done:
277 		rcu_read_unlock();
278 	}
279 
280 	return ret;
281 }
282 
283 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
284 void arch_pick_mmap_layout(struct mm_struct *mm)
285 {
286 	mm->mmap_base = TASK_UNMAPPED_BASE;
287 	mm->get_unmapped_area = arch_get_unmapped_area;
288 	mm->unmap_area = arch_unmap_area;
289 }
290 #endif
291 
292 /*
293  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
294  * back to the regular GUP.
295  * If the architecture not support this function, simply return with no
296  * page pinned
297  */
298 int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
299 				 int nr_pages, int write, struct page **pages)
300 {
301 	return 0;
302 }
303 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
304 
305 /**
306  * get_user_pages_fast() - pin user pages in memory
307  * @start:	starting user address
308  * @nr_pages:	number of pages from start to pin
309  * @write:	whether pages will be written to
310  * @pages:	array that receives pointers to the pages pinned.
311  *		Should be at least nr_pages long.
312  *
313  * Returns number of pages pinned. This may be fewer than the number
314  * requested. If nr_pages is 0 or negative, returns 0. If no pages
315  * were pinned, returns -errno.
316  *
317  * get_user_pages_fast provides equivalent functionality to get_user_pages,
318  * operating on current and current->mm, with force=0 and vma=NULL. However
319  * unlike get_user_pages, it must be called without mmap_sem held.
320  *
321  * get_user_pages_fast may take mmap_sem and page table locks, so no
322  * assumptions can be made about lack of locking. get_user_pages_fast is to be
323  * implemented in a way that is advantageous (vs get_user_pages()) when the
324  * user memory area is already faulted in and present in ptes. However if the
325  * pages have to be faulted in, it may turn out to be slightly slower so
326  * callers need to carefully consider what to use. On many architectures,
327  * get_user_pages_fast simply falls back to get_user_pages.
328  */
329 int __attribute__((weak)) get_user_pages_fast(unsigned long start,
330 				int nr_pages, int write, struct page **pages)
331 {
332 	struct mm_struct *mm = current->mm;
333 	int ret;
334 
335 	down_read(&mm->mmap_sem);
336 	ret = get_user_pages(current, mm, start, nr_pages,
337 					write, 0, pages, NULL);
338 	up_read(&mm->mmap_sem);
339 
340 	return ret;
341 }
342 EXPORT_SYMBOL_GPL(get_user_pages_fast);
343 
344 /* Tracepoints definitions. */
345 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
346 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
347 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
348 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
349 EXPORT_TRACEPOINT_SYMBOL(kfree);
350 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
351