1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 #include "swap.h" 31 32 /** 33 * kfree_const - conditionally free memory 34 * @x: pointer to the memory 35 * 36 * Function calls kfree only if @x is not in .rodata section. 37 */ 38 void kfree_const(const void *x) 39 { 40 if (!is_kernel_rodata((unsigned long)x)) 41 kfree(x); 42 } 43 EXPORT_SYMBOL(kfree_const); 44 45 /** 46 * kstrdup - allocate space for and copy an existing string 47 * @s: the string to duplicate 48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 49 * 50 * Return: newly allocated copy of @s or %NULL in case of error 51 */ 52 noinline 53 char *kstrdup(const char *s, gfp_t gfp) 54 { 55 size_t len; 56 char *buf; 57 58 if (!s) 59 return NULL; 60 61 len = strlen(s) + 1; 62 buf = kmalloc_track_caller(len, gfp); 63 if (buf) 64 memcpy(buf, s, len); 65 return buf; 66 } 67 EXPORT_SYMBOL(kstrdup); 68 69 /** 70 * kstrdup_const - conditionally duplicate an existing const string 71 * @s: the string to duplicate 72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 73 * 74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 75 * must not be passed to krealloc(). 76 * 77 * Return: source string if it is in .rodata section otherwise 78 * fallback to kstrdup. 79 */ 80 const char *kstrdup_const(const char *s, gfp_t gfp) 81 { 82 if (is_kernel_rodata((unsigned long)s)) 83 return s; 84 85 return kstrdup(s, gfp); 86 } 87 EXPORT_SYMBOL(kstrdup_const); 88 89 /** 90 * kstrndup - allocate space for and copy an existing string 91 * @s: the string to duplicate 92 * @max: read at most @max chars from @s 93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 94 * 95 * Note: Use kmemdup_nul() instead if the size is known exactly. 96 * 97 * Return: newly allocated copy of @s or %NULL in case of error 98 */ 99 char *kstrndup(const char *s, size_t max, gfp_t gfp) 100 { 101 size_t len; 102 char *buf; 103 104 if (!s) 105 return NULL; 106 107 len = strnlen(s, max); 108 buf = kmalloc_track_caller(len+1, gfp); 109 if (buf) { 110 memcpy(buf, s, len); 111 buf[len] = '\0'; 112 } 113 return buf; 114 } 115 EXPORT_SYMBOL(kstrndup); 116 117 /** 118 * kmemdup - duplicate region of memory 119 * 120 * @src: memory region to duplicate 121 * @len: memory region length 122 * @gfp: GFP mask to use 123 * 124 * Return: newly allocated copy of @src or %NULL in case of error, 125 * result is physically contiguous. Use kfree() to free. 126 */ 127 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) 128 { 129 void *p; 130 131 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); 132 if (p) 133 memcpy(p, src, len); 134 return p; 135 } 136 EXPORT_SYMBOL(kmemdup_noprof); 137 138 /** 139 * kmemdup_array - duplicate a given array. 140 * 141 * @src: array to duplicate. 142 * @element_size: size of each element of array. 143 * @count: number of elements to duplicate from array. 144 * @gfp: GFP mask to use. 145 * 146 * Return: duplicated array of @src or %NULL in case of error, 147 * result is physically contiguous. Use kfree() to free. 148 */ 149 void *kmemdup_array(const void *src, size_t element_size, size_t count, gfp_t gfp) 150 { 151 return kmemdup(src, size_mul(element_size, count), gfp); 152 } 153 EXPORT_SYMBOL(kmemdup_array); 154 155 /** 156 * kvmemdup - duplicate region of memory 157 * 158 * @src: memory region to duplicate 159 * @len: memory region length 160 * @gfp: GFP mask to use 161 * 162 * Return: newly allocated copy of @src or %NULL in case of error, 163 * result may be not physically contiguous. Use kvfree() to free. 164 */ 165 void *kvmemdup(const void *src, size_t len, gfp_t gfp) 166 { 167 void *p; 168 169 p = kvmalloc(len, gfp); 170 if (p) 171 memcpy(p, src, len); 172 return p; 173 } 174 EXPORT_SYMBOL(kvmemdup); 175 176 /** 177 * kmemdup_nul - Create a NUL-terminated string from unterminated data 178 * @s: The data to stringify 179 * @len: The size of the data 180 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 181 * 182 * Return: newly allocated copy of @s with NUL-termination or %NULL in 183 * case of error 184 */ 185 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 186 { 187 char *buf; 188 189 if (!s) 190 return NULL; 191 192 buf = kmalloc_track_caller(len + 1, gfp); 193 if (buf) { 194 memcpy(buf, s, len); 195 buf[len] = '\0'; 196 } 197 return buf; 198 } 199 EXPORT_SYMBOL(kmemdup_nul); 200 201 /** 202 * memdup_user - duplicate memory region from user space 203 * 204 * @src: source address in user space 205 * @len: number of bytes to copy 206 * 207 * Return: an ERR_PTR() on failure. Result is physically 208 * contiguous, to be freed by kfree(). 209 */ 210 void *memdup_user(const void __user *src, size_t len) 211 { 212 void *p; 213 214 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 215 if (!p) 216 return ERR_PTR(-ENOMEM); 217 218 if (copy_from_user(p, src, len)) { 219 kfree(p); 220 return ERR_PTR(-EFAULT); 221 } 222 223 return p; 224 } 225 EXPORT_SYMBOL(memdup_user); 226 227 /** 228 * vmemdup_user - duplicate memory region from user space 229 * 230 * @src: source address in user space 231 * @len: number of bytes to copy 232 * 233 * Return: an ERR_PTR() on failure. Result may be not 234 * physically contiguous. Use kvfree() to free. 235 */ 236 void *vmemdup_user(const void __user *src, size_t len) 237 { 238 void *p; 239 240 p = kvmalloc(len, GFP_USER); 241 if (!p) 242 return ERR_PTR(-ENOMEM); 243 244 if (copy_from_user(p, src, len)) { 245 kvfree(p); 246 return ERR_PTR(-EFAULT); 247 } 248 249 return p; 250 } 251 EXPORT_SYMBOL(vmemdup_user); 252 253 /** 254 * strndup_user - duplicate an existing string from user space 255 * @s: The string to duplicate 256 * @n: Maximum number of bytes to copy, including the trailing NUL. 257 * 258 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 259 */ 260 char *strndup_user(const char __user *s, long n) 261 { 262 char *p; 263 long length; 264 265 length = strnlen_user(s, n); 266 267 if (!length) 268 return ERR_PTR(-EFAULT); 269 270 if (length > n) 271 return ERR_PTR(-EINVAL); 272 273 p = memdup_user(s, length); 274 275 if (IS_ERR(p)) 276 return p; 277 278 p[length - 1] = '\0'; 279 280 return p; 281 } 282 EXPORT_SYMBOL(strndup_user); 283 284 /** 285 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 286 * 287 * @src: source address in user space 288 * @len: number of bytes to copy 289 * 290 * Return: an ERR_PTR() on failure. 291 */ 292 void *memdup_user_nul(const void __user *src, size_t len) 293 { 294 char *p; 295 296 /* 297 * Always use GFP_KERNEL, since copy_from_user() can sleep and 298 * cause pagefault, which makes it pointless to use GFP_NOFS 299 * or GFP_ATOMIC. 300 */ 301 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 302 if (!p) 303 return ERR_PTR(-ENOMEM); 304 305 if (copy_from_user(p, src, len)) { 306 kfree(p); 307 return ERR_PTR(-EFAULT); 308 } 309 p[len] = '\0'; 310 311 return p; 312 } 313 EXPORT_SYMBOL(memdup_user_nul); 314 315 /* Check if the vma is being used as a stack by this task */ 316 int vma_is_stack_for_current(struct vm_area_struct *vma) 317 { 318 struct task_struct * __maybe_unused t = current; 319 320 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 321 } 322 323 /* 324 * Change backing file, only valid to use during initial VMA setup. 325 */ 326 void vma_set_file(struct vm_area_struct *vma, struct file *file) 327 { 328 /* Changing an anonymous vma with this is illegal */ 329 get_file(file); 330 swap(vma->vm_file, file); 331 fput(file); 332 } 333 EXPORT_SYMBOL(vma_set_file); 334 335 #ifndef STACK_RND_MASK 336 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 337 #endif 338 339 unsigned long randomize_stack_top(unsigned long stack_top) 340 { 341 unsigned long random_variable = 0; 342 343 if (current->flags & PF_RANDOMIZE) { 344 random_variable = get_random_long(); 345 random_variable &= STACK_RND_MASK; 346 random_variable <<= PAGE_SHIFT; 347 } 348 #ifdef CONFIG_STACK_GROWSUP 349 return PAGE_ALIGN(stack_top) + random_variable; 350 #else 351 return PAGE_ALIGN(stack_top) - random_variable; 352 #endif 353 } 354 355 /** 356 * randomize_page - Generate a random, page aligned address 357 * @start: The smallest acceptable address the caller will take. 358 * @range: The size of the area, starting at @start, within which the 359 * random address must fall. 360 * 361 * If @start + @range would overflow, @range is capped. 362 * 363 * NOTE: Historical use of randomize_range, which this replaces, presumed that 364 * @start was already page aligned. We now align it regardless. 365 * 366 * Return: A page aligned address within [start, start + range). On error, 367 * @start is returned. 368 */ 369 unsigned long randomize_page(unsigned long start, unsigned long range) 370 { 371 if (!PAGE_ALIGNED(start)) { 372 range -= PAGE_ALIGN(start) - start; 373 start = PAGE_ALIGN(start); 374 } 375 376 if (start > ULONG_MAX - range) 377 range = ULONG_MAX - start; 378 379 range >>= PAGE_SHIFT; 380 381 if (range == 0) 382 return start; 383 384 return start + (get_random_long() % range << PAGE_SHIFT); 385 } 386 387 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 388 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 389 { 390 /* Is the current task 32bit ? */ 391 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 392 return randomize_page(mm->brk, SZ_32M); 393 394 return randomize_page(mm->brk, SZ_1G); 395 } 396 397 unsigned long arch_mmap_rnd(void) 398 { 399 unsigned long rnd; 400 401 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 402 if (is_compat_task()) 403 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 404 else 405 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 406 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 407 408 return rnd << PAGE_SHIFT; 409 } 410 411 static int mmap_is_legacy(struct rlimit *rlim_stack) 412 { 413 if (current->personality & ADDR_COMPAT_LAYOUT) 414 return 1; 415 416 /* On parisc the stack always grows up - so a unlimited stack should 417 * not be an indicator to use the legacy memory layout. */ 418 if (rlim_stack->rlim_cur == RLIM_INFINITY && 419 !IS_ENABLED(CONFIG_STACK_GROWSUP)) 420 return 1; 421 422 return sysctl_legacy_va_layout; 423 } 424 425 /* 426 * Leave enough space between the mmap area and the stack to honour ulimit in 427 * the face of randomisation. 428 */ 429 #define MIN_GAP (SZ_128M) 430 #define MAX_GAP (STACK_TOP / 6 * 5) 431 432 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 433 { 434 #ifdef CONFIG_STACK_GROWSUP 435 /* 436 * For an upwards growing stack the calculation is much simpler. 437 * Memory for the maximum stack size is reserved at the top of the 438 * task. mmap_base starts directly below the stack and grows 439 * downwards. 440 */ 441 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); 442 #else 443 unsigned long gap = rlim_stack->rlim_cur; 444 unsigned long pad = stack_guard_gap; 445 446 /* Account for stack randomization if necessary */ 447 if (current->flags & PF_RANDOMIZE) 448 pad += (STACK_RND_MASK << PAGE_SHIFT); 449 450 /* Values close to RLIM_INFINITY can overflow. */ 451 if (gap + pad > gap) 452 gap += pad; 453 454 if (gap < MIN_GAP) 455 gap = MIN_GAP; 456 else if (gap > MAX_GAP) 457 gap = MAX_GAP; 458 459 return PAGE_ALIGN(STACK_TOP - gap - rnd); 460 #endif 461 } 462 463 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 464 { 465 unsigned long random_factor = 0UL; 466 467 if (current->flags & PF_RANDOMIZE) 468 random_factor = arch_mmap_rnd(); 469 470 if (mmap_is_legacy(rlim_stack)) { 471 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 472 clear_bit(MMF_TOPDOWN, &mm->flags); 473 } else { 474 mm->mmap_base = mmap_base(random_factor, rlim_stack); 475 set_bit(MMF_TOPDOWN, &mm->flags); 476 } 477 } 478 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 479 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 480 { 481 mm->mmap_base = TASK_UNMAPPED_BASE; 482 clear_bit(MMF_TOPDOWN, &mm->flags); 483 } 484 #endif 485 486 /** 487 * __account_locked_vm - account locked pages to an mm's locked_vm 488 * @mm: mm to account against 489 * @pages: number of pages to account 490 * @inc: %true if @pages should be considered positive, %false if not 491 * @task: task used to check RLIMIT_MEMLOCK 492 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 493 * 494 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 495 * that mmap_lock is held as writer. 496 * 497 * Return: 498 * * 0 on success 499 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 500 */ 501 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 502 struct task_struct *task, bool bypass_rlim) 503 { 504 unsigned long locked_vm, limit; 505 int ret = 0; 506 507 mmap_assert_write_locked(mm); 508 509 locked_vm = mm->locked_vm; 510 if (inc) { 511 if (!bypass_rlim) { 512 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 513 if (locked_vm + pages > limit) 514 ret = -ENOMEM; 515 } 516 if (!ret) 517 mm->locked_vm = locked_vm + pages; 518 } else { 519 WARN_ON_ONCE(pages > locked_vm); 520 mm->locked_vm = locked_vm - pages; 521 } 522 523 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 524 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 525 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 526 ret ? " - exceeded" : ""); 527 528 return ret; 529 } 530 EXPORT_SYMBOL_GPL(__account_locked_vm); 531 532 /** 533 * account_locked_vm - account locked pages to an mm's locked_vm 534 * @mm: mm to account against, may be NULL 535 * @pages: number of pages to account 536 * @inc: %true if @pages should be considered positive, %false if not 537 * 538 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 539 * 540 * Return: 541 * * 0 on success, or if mm is NULL 542 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 543 */ 544 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 545 { 546 int ret; 547 548 if (pages == 0 || !mm) 549 return 0; 550 551 mmap_write_lock(mm); 552 ret = __account_locked_vm(mm, pages, inc, current, 553 capable(CAP_IPC_LOCK)); 554 mmap_write_unlock(mm); 555 556 return ret; 557 } 558 EXPORT_SYMBOL_GPL(account_locked_vm); 559 560 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 561 unsigned long len, unsigned long prot, 562 unsigned long flag, unsigned long pgoff) 563 { 564 unsigned long ret; 565 struct mm_struct *mm = current->mm; 566 unsigned long populate; 567 LIST_HEAD(uf); 568 569 ret = security_mmap_file(file, prot, flag); 570 if (!ret) { 571 if (mmap_write_lock_killable(mm)) 572 return -EINTR; 573 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, 574 &uf); 575 mmap_write_unlock(mm); 576 userfaultfd_unmap_complete(mm, &uf); 577 if (populate) 578 mm_populate(ret, populate); 579 } 580 return ret; 581 } 582 583 unsigned long vm_mmap(struct file *file, unsigned long addr, 584 unsigned long len, unsigned long prot, 585 unsigned long flag, unsigned long offset) 586 { 587 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 588 return -EINVAL; 589 if (unlikely(offset_in_page(offset))) 590 return -EINVAL; 591 592 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 593 } 594 EXPORT_SYMBOL(vm_mmap); 595 596 /** 597 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 598 * failure, fall back to non-contiguous (vmalloc) allocation. 599 * @size: size of the request. 600 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 601 * @node: numa node to allocate from 602 * 603 * Uses kmalloc to get the memory but if the allocation fails then falls back 604 * to the vmalloc allocator. Use kvfree for freeing the memory. 605 * 606 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 607 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 608 * preferable to the vmalloc fallback, due to visible performance drawbacks. 609 * 610 * Return: pointer to the allocated memory of %NULL in case of failure 611 */ 612 void *kvmalloc_node_noprof(size_t size, gfp_t flags, int node) 613 { 614 gfp_t kmalloc_flags = flags; 615 void *ret; 616 617 /* 618 * We want to attempt a large physically contiguous block first because 619 * it is less likely to fragment multiple larger blocks and therefore 620 * contribute to a long term fragmentation less than vmalloc fallback. 621 * However make sure that larger requests are not too disruptive - no 622 * OOM killer and no allocation failure warnings as we have a fallback. 623 */ 624 if (size > PAGE_SIZE) { 625 kmalloc_flags |= __GFP_NOWARN; 626 627 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 628 kmalloc_flags |= __GFP_NORETRY; 629 630 /* nofail semantic is implemented by the vmalloc fallback */ 631 kmalloc_flags &= ~__GFP_NOFAIL; 632 } 633 634 ret = kmalloc_node_noprof(size, kmalloc_flags, node); 635 636 /* 637 * It doesn't really make sense to fallback to vmalloc for sub page 638 * requests 639 */ 640 if (ret || size <= PAGE_SIZE) 641 return ret; 642 643 /* non-sleeping allocations are not supported by vmalloc */ 644 if (!gfpflags_allow_blocking(flags)) 645 return NULL; 646 647 /* Don't even allow crazy sizes */ 648 if (unlikely(size > INT_MAX)) { 649 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 650 return NULL; 651 } 652 653 /* 654 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 655 * since the callers already cannot assume anything 656 * about the resulting pointer, and cannot play 657 * protection games. 658 */ 659 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 660 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 661 node, __builtin_return_address(0)); 662 } 663 EXPORT_SYMBOL(kvmalloc_node_noprof); 664 665 /** 666 * kvfree() - Free memory. 667 * @addr: Pointer to allocated memory. 668 * 669 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 670 * It is slightly more efficient to use kfree() or vfree() if you are certain 671 * that you know which one to use. 672 * 673 * Context: Either preemptible task context or not-NMI interrupt. 674 */ 675 void kvfree(const void *addr) 676 { 677 if (is_vmalloc_addr(addr)) 678 vfree(addr); 679 else 680 kfree(addr); 681 } 682 EXPORT_SYMBOL(kvfree); 683 684 /** 685 * kvfree_sensitive - Free a data object containing sensitive information. 686 * @addr: address of the data object to be freed. 687 * @len: length of the data object. 688 * 689 * Use the special memzero_explicit() function to clear the content of a 690 * kvmalloc'ed object containing sensitive data to make sure that the 691 * compiler won't optimize out the data clearing. 692 */ 693 void kvfree_sensitive(const void *addr, size_t len) 694 { 695 if (likely(!ZERO_OR_NULL_PTR(addr))) { 696 memzero_explicit((void *)addr, len); 697 kvfree(addr); 698 } 699 } 700 EXPORT_SYMBOL(kvfree_sensitive); 701 702 void *kvrealloc_noprof(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 703 { 704 void *newp; 705 706 if (oldsize >= newsize) 707 return (void *)p; 708 newp = kvmalloc_noprof(newsize, flags); 709 if (!newp) 710 return NULL; 711 memcpy(newp, p, oldsize); 712 kvfree(p); 713 return newp; 714 } 715 EXPORT_SYMBOL(kvrealloc_noprof); 716 717 /** 718 * __vmalloc_array - allocate memory for a virtually contiguous array. 719 * @n: number of elements. 720 * @size: element size. 721 * @flags: the type of memory to allocate (see kmalloc). 722 */ 723 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) 724 { 725 size_t bytes; 726 727 if (unlikely(check_mul_overflow(n, size, &bytes))) 728 return NULL; 729 return __vmalloc_noprof(bytes, flags); 730 } 731 EXPORT_SYMBOL(__vmalloc_array_noprof); 732 733 /** 734 * vmalloc_array - allocate memory for a virtually contiguous array. 735 * @n: number of elements. 736 * @size: element size. 737 */ 738 void *vmalloc_array_noprof(size_t n, size_t size) 739 { 740 return __vmalloc_array_noprof(n, size, GFP_KERNEL); 741 } 742 EXPORT_SYMBOL(vmalloc_array_noprof); 743 744 /** 745 * __vcalloc - allocate and zero memory for a virtually contiguous array. 746 * @n: number of elements. 747 * @size: element size. 748 * @flags: the type of memory to allocate (see kmalloc). 749 */ 750 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) 751 { 752 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO); 753 } 754 EXPORT_SYMBOL(__vcalloc_noprof); 755 756 /** 757 * vcalloc - allocate and zero memory for a virtually contiguous array. 758 * @n: number of elements. 759 * @size: element size. 760 */ 761 void *vcalloc_noprof(size_t n, size_t size) 762 { 763 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO); 764 } 765 EXPORT_SYMBOL(vcalloc_noprof); 766 767 struct anon_vma *folio_anon_vma(struct folio *folio) 768 { 769 unsigned long mapping = (unsigned long)folio->mapping; 770 771 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 772 return NULL; 773 return (void *)(mapping - PAGE_MAPPING_ANON); 774 } 775 776 /** 777 * folio_mapping - Find the mapping where this folio is stored. 778 * @folio: The folio. 779 * 780 * For folios which are in the page cache, return the mapping that this 781 * page belongs to. Folios in the swap cache return the swap mapping 782 * this page is stored in (which is different from the mapping for the 783 * swap file or swap device where the data is stored). 784 * 785 * You can call this for folios which aren't in the swap cache or page 786 * cache and it will return NULL. 787 */ 788 struct address_space *folio_mapping(struct folio *folio) 789 { 790 struct address_space *mapping; 791 792 /* This happens if someone calls flush_dcache_page on slab page */ 793 if (unlikely(folio_test_slab(folio))) 794 return NULL; 795 796 if (unlikely(folio_test_swapcache(folio))) 797 return swap_address_space(folio->swap); 798 799 mapping = folio->mapping; 800 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 801 return NULL; 802 803 return mapping; 804 } 805 EXPORT_SYMBOL(folio_mapping); 806 807 /** 808 * folio_copy - Copy the contents of one folio to another. 809 * @dst: Folio to copy to. 810 * @src: Folio to copy from. 811 * 812 * The bytes in the folio represented by @src are copied to @dst. 813 * Assumes the caller has validated that @dst is at least as large as @src. 814 * Can be called in atomic context for order-0 folios, but if the folio is 815 * larger, it may sleep. 816 */ 817 void folio_copy(struct folio *dst, struct folio *src) 818 { 819 long i = 0; 820 long nr = folio_nr_pages(src); 821 822 for (;;) { 823 copy_highpage(folio_page(dst, i), folio_page(src, i)); 824 if (++i == nr) 825 break; 826 cond_resched(); 827 } 828 } 829 EXPORT_SYMBOL(folio_copy); 830 831 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 832 int sysctl_overcommit_ratio __read_mostly = 50; 833 unsigned long sysctl_overcommit_kbytes __read_mostly; 834 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 835 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 836 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 837 838 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 839 size_t *lenp, loff_t *ppos) 840 { 841 int ret; 842 843 ret = proc_dointvec(table, write, buffer, lenp, ppos); 844 if (ret == 0 && write) 845 sysctl_overcommit_kbytes = 0; 846 return ret; 847 } 848 849 static void sync_overcommit_as(struct work_struct *dummy) 850 { 851 percpu_counter_sync(&vm_committed_as); 852 } 853 854 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 855 size_t *lenp, loff_t *ppos) 856 { 857 struct ctl_table t; 858 int new_policy = -1; 859 int ret; 860 861 /* 862 * The deviation of sync_overcommit_as could be big with loose policy 863 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 864 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 865 * with the strict "NEVER", and to avoid possible race condition (even 866 * though user usually won't too frequently do the switching to policy 867 * OVERCOMMIT_NEVER), the switch is done in the following order: 868 * 1. changing the batch 869 * 2. sync percpu count on each CPU 870 * 3. switch the policy 871 */ 872 if (write) { 873 t = *table; 874 t.data = &new_policy; 875 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 876 if (ret || new_policy == -1) 877 return ret; 878 879 mm_compute_batch(new_policy); 880 if (new_policy == OVERCOMMIT_NEVER) 881 schedule_on_each_cpu(sync_overcommit_as); 882 sysctl_overcommit_memory = new_policy; 883 } else { 884 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 885 } 886 887 return ret; 888 } 889 890 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 891 size_t *lenp, loff_t *ppos) 892 { 893 int ret; 894 895 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 896 if (ret == 0 && write) 897 sysctl_overcommit_ratio = 0; 898 return ret; 899 } 900 901 /* 902 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 903 */ 904 unsigned long vm_commit_limit(void) 905 { 906 unsigned long allowed; 907 908 if (sysctl_overcommit_kbytes) 909 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 910 else 911 allowed = ((totalram_pages() - hugetlb_total_pages()) 912 * sysctl_overcommit_ratio / 100); 913 allowed += total_swap_pages; 914 915 return allowed; 916 } 917 918 /* 919 * Make sure vm_committed_as in one cacheline and not cacheline shared with 920 * other variables. It can be updated by several CPUs frequently. 921 */ 922 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 923 924 /* 925 * The global memory commitment made in the system can be a metric 926 * that can be used to drive ballooning decisions when Linux is hosted 927 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 928 * balancing memory across competing virtual machines that are hosted. 929 * Several metrics drive this policy engine including the guest reported 930 * memory commitment. 931 * 932 * The time cost of this is very low for small platforms, and for big 933 * platform like a 2S/36C/72T Skylake server, in worst case where 934 * vm_committed_as's spinlock is under severe contention, the time cost 935 * could be about 30~40 microseconds. 936 */ 937 unsigned long vm_memory_committed(void) 938 { 939 return percpu_counter_sum_positive(&vm_committed_as); 940 } 941 EXPORT_SYMBOL_GPL(vm_memory_committed); 942 943 /* 944 * Check that a process has enough memory to allocate a new virtual 945 * mapping. 0 means there is enough memory for the allocation to 946 * succeed and -ENOMEM implies there is not. 947 * 948 * We currently support three overcommit policies, which are set via the 949 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 950 * 951 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 952 * Additional code 2002 Jul 20 by Robert Love. 953 * 954 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 955 * 956 * Note this is a helper function intended to be used by LSMs which 957 * wish to use this logic. 958 */ 959 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 960 { 961 long allowed; 962 unsigned long bytes_failed; 963 964 vm_acct_memory(pages); 965 966 /* 967 * Sometimes we want to use more memory than we have 968 */ 969 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 970 return 0; 971 972 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 973 if (pages > totalram_pages() + total_swap_pages) 974 goto error; 975 return 0; 976 } 977 978 allowed = vm_commit_limit(); 979 /* 980 * Reserve some for root 981 */ 982 if (!cap_sys_admin) 983 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 984 985 /* 986 * Don't let a single process grow so big a user can't recover 987 */ 988 if (mm) { 989 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 990 991 allowed -= min_t(long, mm->total_vm / 32, reserve); 992 } 993 994 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 995 return 0; 996 error: 997 bytes_failed = pages << PAGE_SHIFT; 998 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n", 999 __func__, current->pid, current->comm, bytes_failed); 1000 vm_unacct_memory(pages); 1001 1002 return -ENOMEM; 1003 } 1004 1005 /** 1006 * get_cmdline() - copy the cmdline value to a buffer. 1007 * @task: the task whose cmdline value to copy. 1008 * @buffer: the buffer to copy to. 1009 * @buflen: the length of the buffer. Larger cmdline values are truncated 1010 * to this length. 1011 * 1012 * Return: the size of the cmdline field copied. Note that the copy does 1013 * not guarantee an ending NULL byte. 1014 */ 1015 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1016 { 1017 int res = 0; 1018 unsigned int len; 1019 struct mm_struct *mm = get_task_mm(task); 1020 unsigned long arg_start, arg_end, env_start, env_end; 1021 if (!mm) 1022 goto out; 1023 if (!mm->arg_end) 1024 goto out_mm; /* Shh! No looking before we're done */ 1025 1026 spin_lock(&mm->arg_lock); 1027 arg_start = mm->arg_start; 1028 arg_end = mm->arg_end; 1029 env_start = mm->env_start; 1030 env_end = mm->env_end; 1031 spin_unlock(&mm->arg_lock); 1032 1033 len = arg_end - arg_start; 1034 1035 if (len > buflen) 1036 len = buflen; 1037 1038 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1039 1040 /* 1041 * If the nul at the end of args has been overwritten, then 1042 * assume application is using setproctitle(3). 1043 */ 1044 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1045 len = strnlen(buffer, res); 1046 if (len < res) { 1047 res = len; 1048 } else { 1049 len = env_end - env_start; 1050 if (len > buflen - res) 1051 len = buflen - res; 1052 res += access_process_vm(task, env_start, 1053 buffer+res, len, 1054 FOLL_FORCE); 1055 res = strnlen(buffer, res); 1056 } 1057 } 1058 out_mm: 1059 mmput(mm); 1060 out: 1061 return res; 1062 } 1063 1064 int __weak memcmp_pages(struct page *page1, struct page *page2) 1065 { 1066 char *addr1, *addr2; 1067 int ret; 1068 1069 addr1 = kmap_local_page(page1); 1070 addr2 = kmap_local_page(page2); 1071 ret = memcmp(addr1, addr2, PAGE_SIZE); 1072 kunmap_local(addr2); 1073 kunmap_local(addr1); 1074 return ret; 1075 } 1076 1077 #ifdef CONFIG_PRINTK 1078 /** 1079 * mem_dump_obj - Print available provenance information 1080 * @object: object for which to find provenance information. 1081 * 1082 * This function uses pr_cont(), so that the caller is expected to have 1083 * printed out whatever preamble is appropriate. The provenance information 1084 * depends on the type of object and on how much debugging is enabled. 1085 * For example, for a slab-cache object, the slab name is printed, and, 1086 * if available, the return address and stack trace from the allocation 1087 * and last free path of that object. 1088 */ 1089 void mem_dump_obj(void *object) 1090 { 1091 const char *type; 1092 1093 if (kmem_dump_obj(object)) 1094 return; 1095 1096 if (vmalloc_dump_obj(object)) 1097 return; 1098 1099 if (is_vmalloc_addr(object)) 1100 type = "vmalloc memory"; 1101 else if (virt_addr_valid(object)) 1102 type = "non-slab/vmalloc memory"; 1103 else if (object == NULL) 1104 type = "NULL pointer"; 1105 else if (object == ZERO_SIZE_PTR) 1106 type = "zero-size pointer"; 1107 else 1108 type = "non-paged memory"; 1109 1110 pr_cont(" %s\n", type); 1111 } 1112 EXPORT_SYMBOL_GPL(mem_dump_obj); 1113 #endif 1114 1115 /* 1116 * A driver might set a page logically offline -- PageOffline() -- and 1117 * turn the page inaccessible in the hypervisor; after that, access to page 1118 * content can be fatal. 1119 * 1120 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1121 * pages after checking PageOffline(); however, these PFN walkers can race 1122 * with drivers that set PageOffline(). 1123 * 1124 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1125 * synchronize with such drivers, achieving that a page cannot be set 1126 * PageOffline() while frozen. 1127 * 1128 * page_offline_begin()/page_offline_end() is used by drivers that care about 1129 * such races when setting a page PageOffline(). 1130 */ 1131 static DECLARE_RWSEM(page_offline_rwsem); 1132 1133 void page_offline_freeze(void) 1134 { 1135 down_read(&page_offline_rwsem); 1136 } 1137 1138 void page_offline_thaw(void) 1139 { 1140 up_read(&page_offline_rwsem); 1141 } 1142 1143 void page_offline_begin(void) 1144 { 1145 down_write(&page_offline_rwsem); 1146 } 1147 EXPORT_SYMBOL(page_offline_begin); 1148 1149 void page_offline_end(void) 1150 { 1151 up_write(&page_offline_rwsem); 1152 } 1153 EXPORT_SYMBOL(page_offline_end); 1154 1155 #ifndef flush_dcache_folio 1156 void flush_dcache_folio(struct folio *folio) 1157 { 1158 long i, nr = folio_nr_pages(folio); 1159 1160 for (i = 0; i < nr; i++) 1161 flush_dcache_page(folio_page(folio, i)); 1162 } 1163 EXPORT_SYMBOL(flush_dcache_folio); 1164 #endif 1165