xref: /linux/mm/util.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #include "swap.h"
31 
32 /**
33  * kfree_const - conditionally free memory
34  * @x: pointer to the memory
35  *
36  * Function calls kfree only if @x is not in .rodata section.
37  */
38 void kfree_const(const void *x)
39 {
40 	if (!is_kernel_rodata((unsigned long)x))
41 		kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  *
50  * Return: newly allocated copy of @s or %NULL in case of error
51  */
52 noinline
53 char *kstrdup(const char *s, gfp_t gfp)
54 {
55 	size_t len;
56 	char *buf;
57 
58 	if (!s)
59 		return NULL;
60 
61 	len = strlen(s) + 1;
62 	buf = kmalloc_track_caller(len, gfp);
63 	if (buf)
64 		memcpy(buf, s, len);
65 	return buf;
66 }
67 EXPORT_SYMBOL(kstrdup);
68 
69 /**
70  * kstrdup_const - conditionally duplicate an existing const string
71  * @s: the string to duplicate
72  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73  *
74  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75  * must not be passed to krealloc().
76  *
77  * Return: source string if it is in .rodata section otherwise
78  * fallback to kstrdup.
79  */
80 const char *kstrdup_const(const char *s, gfp_t gfp)
81 {
82 	if (is_kernel_rodata((unsigned long)s))
83 		return s;
84 
85 	return kstrdup(s, gfp);
86 }
87 EXPORT_SYMBOL(kstrdup_const);
88 
89 /**
90  * kstrndup - allocate space for and copy an existing string
91  * @s: the string to duplicate
92  * @max: read at most @max chars from @s
93  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
94  *
95  * Note: Use kmemdup_nul() instead if the size is known exactly.
96  *
97  * Return: newly allocated copy of @s or %NULL in case of error
98  */
99 char *kstrndup(const char *s, size_t max, gfp_t gfp)
100 {
101 	size_t len;
102 	char *buf;
103 
104 	if (!s)
105 		return NULL;
106 
107 	len = strnlen(s, max);
108 	buf = kmalloc_track_caller(len+1, gfp);
109 	if (buf) {
110 		memcpy(buf, s, len);
111 		buf[len] = '\0';
112 	}
113 	return buf;
114 }
115 EXPORT_SYMBOL(kstrndup);
116 
117 /**
118  * kmemdup - duplicate region of memory
119  *
120  * @src: memory region to duplicate
121  * @len: memory region length
122  * @gfp: GFP mask to use
123  *
124  * Return: newly allocated copy of @src or %NULL in case of error,
125  * result is physically contiguous. Use kfree() to free.
126  */
127 void *kmemdup(const void *src, size_t len, gfp_t gfp)
128 {
129 	void *p;
130 
131 	p = kmalloc_track_caller(len, gfp);
132 	if (p)
133 		memcpy(p, src, len);
134 	return p;
135 }
136 EXPORT_SYMBOL(kmemdup);
137 
138 /**
139  * kvmemdup - duplicate region of memory
140  *
141  * @src: memory region to duplicate
142  * @len: memory region length
143  * @gfp: GFP mask to use
144  *
145  * Return: newly allocated copy of @src or %NULL in case of error,
146  * result may be not physically contiguous. Use kvfree() to free.
147  */
148 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
149 {
150 	void *p;
151 
152 	p = kvmalloc(len, gfp);
153 	if (p)
154 		memcpy(p, src, len);
155 	return p;
156 }
157 EXPORT_SYMBOL(kvmemdup);
158 
159 /**
160  * kmemdup_nul - Create a NUL-terminated string from unterminated data
161  * @s: The data to stringify
162  * @len: The size of the data
163  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
164  *
165  * Return: newly allocated copy of @s with NUL-termination or %NULL in
166  * case of error
167  */
168 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
169 {
170 	char *buf;
171 
172 	if (!s)
173 		return NULL;
174 
175 	buf = kmalloc_track_caller(len + 1, gfp);
176 	if (buf) {
177 		memcpy(buf, s, len);
178 		buf[len] = '\0';
179 	}
180 	return buf;
181 }
182 EXPORT_SYMBOL(kmemdup_nul);
183 
184 /**
185  * memdup_user - duplicate memory region from user space
186  *
187  * @src: source address in user space
188  * @len: number of bytes to copy
189  *
190  * Return: an ERR_PTR() on failure.  Result is physically
191  * contiguous, to be freed by kfree().
192  */
193 void *memdup_user(const void __user *src, size_t len)
194 {
195 	void *p;
196 
197 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
198 	if (!p)
199 		return ERR_PTR(-ENOMEM);
200 
201 	if (copy_from_user(p, src, len)) {
202 		kfree(p);
203 		return ERR_PTR(-EFAULT);
204 	}
205 
206 	return p;
207 }
208 EXPORT_SYMBOL(memdup_user);
209 
210 /**
211  * vmemdup_user - duplicate memory region from user space
212  *
213  * @src: source address in user space
214  * @len: number of bytes to copy
215  *
216  * Return: an ERR_PTR() on failure.  Result may be not
217  * physically contiguous.  Use kvfree() to free.
218  */
219 void *vmemdup_user(const void __user *src, size_t len)
220 {
221 	void *p;
222 
223 	p = kvmalloc(len, GFP_USER);
224 	if (!p)
225 		return ERR_PTR(-ENOMEM);
226 
227 	if (copy_from_user(p, src, len)) {
228 		kvfree(p);
229 		return ERR_PTR(-EFAULT);
230 	}
231 
232 	return p;
233 }
234 EXPORT_SYMBOL(vmemdup_user);
235 
236 /**
237  * strndup_user - duplicate an existing string from user space
238  * @s: The string to duplicate
239  * @n: Maximum number of bytes to copy, including the trailing NUL.
240  *
241  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
242  */
243 char *strndup_user(const char __user *s, long n)
244 {
245 	char *p;
246 	long length;
247 
248 	length = strnlen_user(s, n);
249 
250 	if (!length)
251 		return ERR_PTR(-EFAULT);
252 
253 	if (length > n)
254 		return ERR_PTR(-EINVAL);
255 
256 	p = memdup_user(s, length);
257 
258 	if (IS_ERR(p))
259 		return p;
260 
261 	p[length - 1] = '\0';
262 
263 	return p;
264 }
265 EXPORT_SYMBOL(strndup_user);
266 
267 /**
268  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
269  *
270  * @src: source address in user space
271  * @len: number of bytes to copy
272  *
273  * Return: an ERR_PTR() on failure.
274  */
275 void *memdup_user_nul(const void __user *src, size_t len)
276 {
277 	char *p;
278 
279 	/*
280 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
281 	 * cause pagefault, which makes it pointless to use GFP_NOFS
282 	 * or GFP_ATOMIC.
283 	 */
284 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
285 	if (!p)
286 		return ERR_PTR(-ENOMEM);
287 
288 	if (copy_from_user(p, src, len)) {
289 		kfree(p);
290 		return ERR_PTR(-EFAULT);
291 	}
292 	p[len] = '\0';
293 
294 	return p;
295 }
296 EXPORT_SYMBOL(memdup_user_nul);
297 
298 /* Check if the vma is being used as a stack by this task */
299 int vma_is_stack_for_current(struct vm_area_struct *vma)
300 {
301 	struct task_struct * __maybe_unused t = current;
302 
303 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
304 }
305 
306 /*
307  * Change backing file, only valid to use during initial VMA setup.
308  */
309 void vma_set_file(struct vm_area_struct *vma, struct file *file)
310 {
311 	/* Changing an anonymous vma with this is illegal */
312 	get_file(file);
313 	swap(vma->vm_file, file);
314 	fput(file);
315 }
316 EXPORT_SYMBOL(vma_set_file);
317 
318 #ifndef STACK_RND_MASK
319 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
320 #endif
321 
322 unsigned long randomize_stack_top(unsigned long stack_top)
323 {
324 	unsigned long random_variable = 0;
325 
326 	if (current->flags & PF_RANDOMIZE) {
327 		random_variable = get_random_long();
328 		random_variable &= STACK_RND_MASK;
329 		random_variable <<= PAGE_SHIFT;
330 	}
331 #ifdef CONFIG_STACK_GROWSUP
332 	return PAGE_ALIGN(stack_top) + random_variable;
333 #else
334 	return PAGE_ALIGN(stack_top) - random_variable;
335 #endif
336 }
337 
338 /**
339  * randomize_page - Generate a random, page aligned address
340  * @start:	The smallest acceptable address the caller will take.
341  * @range:	The size of the area, starting at @start, within which the
342  *		random address must fall.
343  *
344  * If @start + @range would overflow, @range is capped.
345  *
346  * NOTE: Historical use of randomize_range, which this replaces, presumed that
347  * @start was already page aligned.  We now align it regardless.
348  *
349  * Return: A page aligned address within [start, start + range).  On error,
350  * @start is returned.
351  */
352 unsigned long randomize_page(unsigned long start, unsigned long range)
353 {
354 	if (!PAGE_ALIGNED(start)) {
355 		range -= PAGE_ALIGN(start) - start;
356 		start = PAGE_ALIGN(start);
357 	}
358 
359 	if (start > ULONG_MAX - range)
360 		range = ULONG_MAX - start;
361 
362 	range >>= PAGE_SHIFT;
363 
364 	if (range == 0)
365 		return start;
366 
367 	return start + (get_random_long() % range << PAGE_SHIFT);
368 }
369 
370 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
371 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
372 {
373 	/* Is the current task 32bit ? */
374 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
375 		return randomize_page(mm->brk, SZ_32M);
376 
377 	return randomize_page(mm->brk, SZ_1G);
378 }
379 
380 unsigned long arch_mmap_rnd(void)
381 {
382 	unsigned long rnd;
383 
384 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
385 	if (is_compat_task())
386 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
387 	else
388 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
389 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
390 
391 	return rnd << PAGE_SHIFT;
392 }
393 
394 static int mmap_is_legacy(struct rlimit *rlim_stack)
395 {
396 	if (current->personality & ADDR_COMPAT_LAYOUT)
397 		return 1;
398 
399 	/* On parisc the stack always grows up - so a unlimited stack should
400 	 * not be an indicator to use the legacy memory layout. */
401 	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
402 		!IS_ENABLED(CONFIG_STACK_GROWSUP))
403 		return 1;
404 
405 	return sysctl_legacy_va_layout;
406 }
407 
408 /*
409  * Leave enough space between the mmap area and the stack to honour ulimit in
410  * the face of randomisation.
411  */
412 #define MIN_GAP		(SZ_128M)
413 #define MAX_GAP		(STACK_TOP / 6 * 5)
414 
415 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
416 {
417 	unsigned long gap = rlim_stack->rlim_cur;
418 	unsigned long pad = stack_guard_gap;
419 
420 	/* Account for stack randomization if necessary */
421 	if (current->flags & PF_RANDOMIZE)
422 		pad += (STACK_RND_MASK << PAGE_SHIFT);
423 
424 	/* Values close to RLIM_INFINITY can overflow. */
425 	if (gap + pad > gap)
426 		gap += pad;
427 
428 	if (gap < MIN_GAP)
429 		gap = MIN_GAP;
430 	else if (gap > MAX_GAP)
431 		gap = MAX_GAP;
432 
433 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
434 }
435 
436 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
437 {
438 	unsigned long random_factor = 0UL;
439 
440 	if (current->flags & PF_RANDOMIZE)
441 		random_factor = arch_mmap_rnd();
442 
443 	if (mmap_is_legacy(rlim_stack)) {
444 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
445 		mm->get_unmapped_area = arch_get_unmapped_area;
446 	} else {
447 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
448 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
449 	}
450 }
451 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
452 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
453 {
454 	mm->mmap_base = TASK_UNMAPPED_BASE;
455 	mm->get_unmapped_area = arch_get_unmapped_area;
456 }
457 #endif
458 
459 /**
460  * __account_locked_vm - account locked pages to an mm's locked_vm
461  * @mm:          mm to account against
462  * @pages:       number of pages to account
463  * @inc:         %true if @pages should be considered positive, %false if not
464  * @task:        task used to check RLIMIT_MEMLOCK
465  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
466  *
467  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
468  * that mmap_lock is held as writer.
469  *
470  * Return:
471  * * 0       on success
472  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
473  */
474 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
475 			struct task_struct *task, bool bypass_rlim)
476 {
477 	unsigned long locked_vm, limit;
478 	int ret = 0;
479 
480 	mmap_assert_write_locked(mm);
481 
482 	locked_vm = mm->locked_vm;
483 	if (inc) {
484 		if (!bypass_rlim) {
485 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
486 			if (locked_vm + pages > limit)
487 				ret = -ENOMEM;
488 		}
489 		if (!ret)
490 			mm->locked_vm = locked_vm + pages;
491 	} else {
492 		WARN_ON_ONCE(pages > locked_vm);
493 		mm->locked_vm = locked_vm - pages;
494 	}
495 
496 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
497 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
498 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
499 		 ret ? " - exceeded" : "");
500 
501 	return ret;
502 }
503 EXPORT_SYMBOL_GPL(__account_locked_vm);
504 
505 /**
506  * account_locked_vm - account locked pages to an mm's locked_vm
507  * @mm:          mm to account against, may be NULL
508  * @pages:       number of pages to account
509  * @inc:         %true if @pages should be considered positive, %false if not
510  *
511  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
512  *
513  * Return:
514  * * 0       on success, or if mm is NULL
515  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
516  */
517 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
518 {
519 	int ret;
520 
521 	if (pages == 0 || !mm)
522 		return 0;
523 
524 	mmap_write_lock(mm);
525 	ret = __account_locked_vm(mm, pages, inc, current,
526 				  capable(CAP_IPC_LOCK));
527 	mmap_write_unlock(mm);
528 
529 	return ret;
530 }
531 EXPORT_SYMBOL_GPL(account_locked_vm);
532 
533 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
534 	unsigned long len, unsigned long prot,
535 	unsigned long flag, unsigned long pgoff)
536 {
537 	unsigned long ret;
538 	struct mm_struct *mm = current->mm;
539 	unsigned long populate;
540 	LIST_HEAD(uf);
541 
542 	ret = security_mmap_file(file, prot, flag);
543 	if (!ret) {
544 		if (mmap_write_lock_killable(mm))
545 			return -EINTR;
546 		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
547 			      &uf);
548 		mmap_write_unlock(mm);
549 		userfaultfd_unmap_complete(mm, &uf);
550 		if (populate)
551 			mm_populate(ret, populate);
552 	}
553 	return ret;
554 }
555 
556 unsigned long vm_mmap(struct file *file, unsigned long addr,
557 	unsigned long len, unsigned long prot,
558 	unsigned long flag, unsigned long offset)
559 {
560 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
561 		return -EINVAL;
562 	if (unlikely(offset_in_page(offset)))
563 		return -EINVAL;
564 
565 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
566 }
567 EXPORT_SYMBOL(vm_mmap);
568 
569 /**
570  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
571  * failure, fall back to non-contiguous (vmalloc) allocation.
572  * @size: size of the request.
573  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
574  * @node: numa node to allocate from
575  *
576  * Uses kmalloc to get the memory but if the allocation fails then falls back
577  * to the vmalloc allocator. Use kvfree for freeing the memory.
578  *
579  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
580  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
581  * preferable to the vmalloc fallback, due to visible performance drawbacks.
582  *
583  * Return: pointer to the allocated memory of %NULL in case of failure
584  */
585 void *kvmalloc_node(size_t size, gfp_t flags, int node)
586 {
587 	gfp_t kmalloc_flags = flags;
588 	void *ret;
589 
590 	/*
591 	 * We want to attempt a large physically contiguous block first because
592 	 * it is less likely to fragment multiple larger blocks and therefore
593 	 * contribute to a long term fragmentation less than vmalloc fallback.
594 	 * However make sure that larger requests are not too disruptive - no
595 	 * OOM killer and no allocation failure warnings as we have a fallback.
596 	 */
597 	if (size > PAGE_SIZE) {
598 		kmalloc_flags |= __GFP_NOWARN;
599 
600 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
601 			kmalloc_flags |= __GFP_NORETRY;
602 
603 		/* nofail semantic is implemented by the vmalloc fallback */
604 		kmalloc_flags &= ~__GFP_NOFAIL;
605 	}
606 
607 	ret = kmalloc_node(size, kmalloc_flags, node);
608 
609 	/*
610 	 * It doesn't really make sense to fallback to vmalloc for sub page
611 	 * requests
612 	 */
613 	if (ret || size <= PAGE_SIZE)
614 		return ret;
615 
616 	/* non-sleeping allocations are not supported by vmalloc */
617 	if (!gfpflags_allow_blocking(flags))
618 		return NULL;
619 
620 	/* Don't even allow crazy sizes */
621 	if (unlikely(size > INT_MAX)) {
622 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
623 		return NULL;
624 	}
625 
626 	/*
627 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
628 	 * since the callers already cannot assume anything
629 	 * about the resulting pointer, and cannot play
630 	 * protection games.
631 	 */
632 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
633 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
634 			node, __builtin_return_address(0));
635 }
636 EXPORT_SYMBOL(kvmalloc_node);
637 
638 /**
639  * kvfree() - Free memory.
640  * @addr: Pointer to allocated memory.
641  *
642  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
643  * It is slightly more efficient to use kfree() or vfree() if you are certain
644  * that you know which one to use.
645  *
646  * Context: Either preemptible task context or not-NMI interrupt.
647  */
648 void kvfree(const void *addr)
649 {
650 	if (is_vmalloc_addr(addr))
651 		vfree(addr);
652 	else
653 		kfree(addr);
654 }
655 EXPORT_SYMBOL(kvfree);
656 
657 /**
658  * kvfree_sensitive - Free a data object containing sensitive information.
659  * @addr: address of the data object to be freed.
660  * @len: length of the data object.
661  *
662  * Use the special memzero_explicit() function to clear the content of a
663  * kvmalloc'ed object containing sensitive data to make sure that the
664  * compiler won't optimize out the data clearing.
665  */
666 void kvfree_sensitive(const void *addr, size_t len)
667 {
668 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
669 		memzero_explicit((void *)addr, len);
670 		kvfree(addr);
671 	}
672 }
673 EXPORT_SYMBOL(kvfree_sensitive);
674 
675 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
676 {
677 	void *newp;
678 
679 	if (oldsize >= newsize)
680 		return (void *)p;
681 	newp = kvmalloc(newsize, flags);
682 	if (!newp)
683 		return NULL;
684 	memcpy(newp, p, oldsize);
685 	kvfree(p);
686 	return newp;
687 }
688 EXPORT_SYMBOL(kvrealloc);
689 
690 /**
691  * __vmalloc_array - allocate memory for a virtually contiguous array.
692  * @n: number of elements.
693  * @size: element size.
694  * @flags: the type of memory to allocate (see kmalloc).
695  */
696 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
697 {
698 	size_t bytes;
699 
700 	if (unlikely(check_mul_overflow(n, size, &bytes)))
701 		return NULL;
702 	return __vmalloc(bytes, flags);
703 }
704 EXPORT_SYMBOL(__vmalloc_array);
705 
706 /**
707  * vmalloc_array - allocate memory for a virtually contiguous array.
708  * @n: number of elements.
709  * @size: element size.
710  */
711 void *vmalloc_array(size_t n, size_t size)
712 {
713 	return __vmalloc_array(n, size, GFP_KERNEL);
714 }
715 EXPORT_SYMBOL(vmalloc_array);
716 
717 /**
718  * __vcalloc - allocate and zero memory for a virtually contiguous array.
719  * @n: number of elements.
720  * @size: element size.
721  * @flags: the type of memory to allocate (see kmalloc).
722  */
723 void *__vcalloc(size_t n, size_t size, gfp_t flags)
724 {
725 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
726 }
727 EXPORT_SYMBOL(__vcalloc);
728 
729 /**
730  * vcalloc - allocate and zero memory for a virtually contiguous array.
731  * @n: number of elements.
732  * @size: element size.
733  */
734 void *vcalloc(size_t n, size_t size)
735 {
736 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
737 }
738 EXPORT_SYMBOL(vcalloc);
739 
740 struct anon_vma *folio_anon_vma(struct folio *folio)
741 {
742 	unsigned long mapping = (unsigned long)folio->mapping;
743 
744 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
745 		return NULL;
746 	return (void *)(mapping - PAGE_MAPPING_ANON);
747 }
748 
749 /**
750  * folio_mapping - Find the mapping where this folio is stored.
751  * @folio: The folio.
752  *
753  * For folios which are in the page cache, return the mapping that this
754  * page belongs to.  Folios in the swap cache return the swap mapping
755  * this page is stored in (which is different from the mapping for the
756  * swap file or swap device where the data is stored).
757  *
758  * You can call this for folios which aren't in the swap cache or page
759  * cache and it will return NULL.
760  */
761 struct address_space *folio_mapping(struct folio *folio)
762 {
763 	struct address_space *mapping;
764 
765 	/* This happens if someone calls flush_dcache_page on slab page */
766 	if (unlikely(folio_test_slab(folio)))
767 		return NULL;
768 
769 	if (unlikely(folio_test_swapcache(folio)))
770 		return swap_address_space(folio->swap);
771 
772 	mapping = folio->mapping;
773 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
774 		return NULL;
775 
776 	return mapping;
777 }
778 EXPORT_SYMBOL(folio_mapping);
779 
780 /**
781  * folio_copy - Copy the contents of one folio to another.
782  * @dst: Folio to copy to.
783  * @src: Folio to copy from.
784  *
785  * The bytes in the folio represented by @src are copied to @dst.
786  * Assumes the caller has validated that @dst is at least as large as @src.
787  * Can be called in atomic context for order-0 folios, but if the folio is
788  * larger, it may sleep.
789  */
790 void folio_copy(struct folio *dst, struct folio *src)
791 {
792 	long i = 0;
793 	long nr = folio_nr_pages(src);
794 
795 	for (;;) {
796 		copy_highpage(folio_page(dst, i), folio_page(src, i));
797 		if (++i == nr)
798 			break;
799 		cond_resched();
800 	}
801 }
802 EXPORT_SYMBOL(folio_copy);
803 
804 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
805 int sysctl_overcommit_ratio __read_mostly = 50;
806 unsigned long sysctl_overcommit_kbytes __read_mostly;
807 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
808 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
809 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
810 
811 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
812 		size_t *lenp, loff_t *ppos)
813 {
814 	int ret;
815 
816 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
817 	if (ret == 0 && write)
818 		sysctl_overcommit_kbytes = 0;
819 	return ret;
820 }
821 
822 static void sync_overcommit_as(struct work_struct *dummy)
823 {
824 	percpu_counter_sync(&vm_committed_as);
825 }
826 
827 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
828 		size_t *lenp, loff_t *ppos)
829 {
830 	struct ctl_table t;
831 	int new_policy = -1;
832 	int ret;
833 
834 	/*
835 	 * The deviation of sync_overcommit_as could be big with loose policy
836 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
837 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
838 	 * with the strict "NEVER", and to avoid possible race condition (even
839 	 * though user usually won't too frequently do the switching to policy
840 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
841 	 *	1. changing the batch
842 	 *	2. sync percpu count on each CPU
843 	 *	3. switch the policy
844 	 */
845 	if (write) {
846 		t = *table;
847 		t.data = &new_policy;
848 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
849 		if (ret || new_policy == -1)
850 			return ret;
851 
852 		mm_compute_batch(new_policy);
853 		if (new_policy == OVERCOMMIT_NEVER)
854 			schedule_on_each_cpu(sync_overcommit_as);
855 		sysctl_overcommit_memory = new_policy;
856 	} else {
857 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
858 	}
859 
860 	return ret;
861 }
862 
863 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
864 		size_t *lenp, loff_t *ppos)
865 {
866 	int ret;
867 
868 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
869 	if (ret == 0 && write)
870 		sysctl_overcommit_ratio = 0;
871 	return ret;
872 }
873 
874 /*
875  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
876  */
877 unsigned long vm_commit_limit(void)
878 {
879 	unsigned long allowed;
880 
881 	if (sysctl_overcommit_kbytes)
882 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
883 	else
884 		allowed = ((totalram_pages() - hugetlb_total_pages())
885 			   * sysctl_overcommit_ratio / 100);
886 	allowed += total_swap_pages;
887 
888 	return allowed;
889 }
890 
891 /*
892  * Make sure vm_committed_as in one cacheline and not cacheline shared with
893  * other variables. It can be updated by several CPUs frequently.
894  */
895 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
896 
897 /*
898  * The global memory commitment made in the system can be a metric
899  * that can be used to drive ballooning decisions when Linux is hosted
900  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
901  * balancing memory across competing virtual machines that are hosted.
902  * Several metrics drive this policy engine including the guest reported
903  * memory commitment.
904  *
905  * The time cost of this is very low for small platforms, and for big
906  * platform like a 2S/36C/72T Skylake server, in worst case where
907  * vm_committed_as's spinlock is under severe contention, the time cost
908  * could be about 30~40 microseconds.
909  */
910 unsigned long vm_memory_committed(void)
911 {
912 	return percpu_counter_sum_positive(&vm_committed_as);
913 }
914 EXPORT_SYMBOL_GPL(vm_memory_committed);
915 
916 /*
917  * Check that a process has enough memory to allocate a new virtual
918  * mapping. 0 means there is enough memory for the allocation to
919  * succeed and -ENOMEM implies there is not.
920  *
921  * We currently support three overcommit policies, which are set via the
922  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
923  *
924  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
925  * Additional code 2002 Jul 20 by Robert Love.
926  *
927  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
928  *
929  * Note this is a helper function intended to be used by LSMs which
930  * wish to use this logic.
931  */
932 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
933 {
934 	long allowed;
935 
936 	vm_acct_memory(pages);
937 
938 	/*
939 	 * Sometimes we want to use more memory than we have
940 	 */
941 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
942 		return 0;
943 
944 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
945 		if (pages > totalram_pages() + total_swap_pages)
946 			goto error;
947 		return 0;
948 	}
949 
950 	allowed = vm_commit_limit();
951 	/*
952 	 * Reserve some for root
953 	 */
954 	if (!cap_sys_admin)
955 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
956 
957 	/*
958 	 * Don't let a single process grow so big a user can't recover
959 	 */
960 	if (mm) {
961 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
962 
963 		allowed -= min_t(long, mm->total_vm / 32, reserve);
964 	}
965 
966 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
967 		return 0;
968 error:
969 	pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
970 			    __func__, current->pid, current->comm);
971 	vm_unacct_memory(pages);
972 
973 	return -ENOMEM;
974 }
975 
976 /**
977  * get_cmdline() - copy the cmdline value to a buffer.
978  * @task:     the task whose cmdline value to copy.
979  * @buffer:   the buffer to copy to.
980  * @buflen:   the length of the buffer. Larger cmdline values are truncated
981  *            to this length.
982  *
983  * Return: the size of the cmdline field copied. Note that the copy does
984  * not guarantee an ending NULL byte.
985  */
986 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
987 {
988 	int res = 0;
989 	unsigned int len;
990 	struct mm_struct *mm = get_task_mm(task);
991 	unsigned long arg_start, arg_end, env_start, env_end;
992 	if (!mm)
993 		goto out;
994 	if (!mm->arg_end)
995 		goto out_mm;	/* Shh! No looking before we're done */
996 
997 	spin_lock(&mm->arg_lock);
998 	arg_start = mm->arg_start;
999 	arg_end = mm->arg_end;
1000 	env_start = mm->env_start;
1001 	env_end = mm->env_end;
1002 	spin_unlock(&mm->arg_lock);
1003 
1004 	len = arg_end - arg_start;
1005 
1006 	if (len > buflen)
1007 		len = buflen;
1008 
1009 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1010 
1011 	/*
1012 	 * If the nul at the end of args has been overwritten, then
1013 	 * assume application is using setproctitle(3).
1014 	 */
1015 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1016 		len = strnlen(buffer, res);
1017 		if (len < res) {
1018 			res = len;
1019 		} else {
1020 			len = env_end - env_start;
1021 			if (len > buflen - res)
1022 				len = buflen - res;
1023 			res += access_process_vm(task, env_start,
1024 						 buffer+res, len,
1025 						 FOLL_FORCE);
1026 			res = strnlen(buffer, res);
1027 		}
1028 	}
1029 out_mm:
1030 	mmput(mm);
1031 out:
1032 	return res;
1033 }
1034 
1035 int __weak memcmp_pages(struct page *page1, struct page *page2)
1036 {
1037 	char *addr1, *addr2;
1038 	int ret;
1039 
1040 	addr1 = kmap_atomic(page1);
1041 	addr2 = kmap_atomic(page2);
1042 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1043 	kunmap_atomic(addr2);
1044 	kunmap_atomic(addr1);
1045 	return ret;
1046 }
1047 
1048 #ifdef CONFIG_PRINTK
1049 /**
1050  * mem_dump_obj - Print available provenance information
1051  * @object: object for which to find provenance information.
1052  *
1053  * This function uses pr_cont(), so that the caller is expected to have
1054  * printed out whatever preamble is appropriate.  The provenance information
1055  * depends on the type of object and on how much debugging is enabled.
1056  * For example, for a slab-cache object, the slab name is printed, and,
1057  * if available, the return address and stack trace from the allocation
1058  * and last free path of that object.
1059  */
1060 void mem_dump_obj(void *object)
1061 {
1062 	const char *type;
1063 
1064 	if (kmem_dump_obj(object))
1065 		return;
1066 
1067 	if (vmalloc_dump_obj(object))
1068 		return;
1069 
1070 	if (is_vmalloc_addr(object))
1071 		type = "vmalloc memory";
1072 	else if (virt_addr_valid(object))
1073 		type = "non-slab/vmalloc memory";
1074 	else if (object == NULL)
1075 		type = "NULL pointer";
1076 	else if (object == ZERO_SIZE_PTR)
1077 		type = "zero-size pointer";
1078 	else
1079 		type = "non-paged memory";
1080 
1081 	pr_cont(" %s\n", type);
1082 }
1083 EXPORT_SYMBOL_GPL(mem_dump_obj);
1084 #endif
1085 
1086 /*
1087  * A driver might set a page logically offline -- PageOffline() -- and
1088  * turn the page inaccessible in the hypervisor; after that, access to page
1089  * content can be fatal.
1090  *
1091  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1092  * pages after checking PageOffline(); however, these PFN walkers can race
1093  * with drivers that set PageOffline().
1094  *
1095  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1096  * synchronize with such drivers, achieving that a page cannot be set
1097  * PageOffline() while frozen.
1098  *
1099  * page_offline_begin()/page_offline_end() is used by drivers that care about
1100  * such races when setting a page PageOffline().
1101  */
1102 static DECLARE_RWSEM(page_offline_rwsem);
1103 
1104 void page_offline_freeze(void)
1105 {
1106 	down_read(&page_offline_rwsem);
1107 }
1108 
1109 void page_offline_thaw(void)
1110 {
1111 	up_read(&page_offline_rwsem);
1112 }
1113 
1114 void page_offline_begin(void)
1115 {
1116 	down_write(&page_offline_rwsem);
1117 }
1118 EXPORT_SYMBOL(page_offline_begin);
1119 
1120 void page_offline_end(void)
1121 {
1122 	up_write(&page_offline_rwsem);
1123 }
1124 EXPORT_SYMBOL(page_offline_end);
1125 
1126 #ifndef flush_dcache_folio
1127 void flush_dcache_folio(struct folio *folio)
1128 {
1129 	long i, nr = folio_nr_pages(folio);
1130 
1131 	for (i = 0; i < nr; i++)
1132 		flush_dcache_page(folio_page(folio, i));
1133 }
1134 EXPORT_SYMBOL(flush_dcache_folio);
1135 #endif
1136