1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/userfaultfd.c 4 * 5 * Copyright (C) 2015 Red Hat, Inc. 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/userfaultfd_k.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/hugetlb.h> 17 #include <linux/shmem_fs.h> 18 #include <asm/tlbflush.h> 19 #include <asm/tlb.h> 20 #include "internal.h" 21 #include "swap.h" 22 23 static __always_inline 24 bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end) 25 { 26 /* Make sure that the dst range is fully within dst_vma. */ 27 if (dst_end > dst_vma->vm_end) 28 return false; 29 30 /* 31 * Check the vma is registered in uffd, this is required to 32 * enforce the VM_MAYWRITE check done at uffd registration 33 * time. 34 */ 35 if (!dst_vma->vm_userfaultfd_ctx.ctx) 36 return false; 37 38 return true; 39 } 40 41 static __always_inline 42 struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm, 43 unsigned long addr) 44 { 45 struct vm_area_struct *vma; 46 47 mmap_assert_locked(mm); 48 vma = vma_lookup(mm, addr); 49 if (!vma) 50 vma = ERR_PTR(-ENOENT); 51 else if (!(vma->vm_flags & VM_SHARED) && 52 unlikely(anon_vma_prepare(vma))) 53 vma = ERR_PTR(-ENOMEM); 54 55 return vma; 56 } 57 58 #ifdef CONFIG_PER_VMA_LOCK 59 /* 60 * uffd_lock_vma() - Lookup and lock vma corresponding to @address. 61 * @mm: mm to search vma in. 62 * @address: address that the vma should contain. 63 * 64 * Should be called without holding mmap_lock. 65 * 66 * Return: A locked vma containing @address, -ENOENT if no vma is found, or 67 * -ENOMEM if anon_vma couldn't be allocated. 68 */ 69 static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm, 70 unsigned long address) 71 { 72 struct vm_area_struct *vma; 73 74 vma = lock_vma_under_rcu(mm, address); 75 if (vma) { 76 /* 77 * We know we're going to need to use anon_vma, so check 78 * that early. 79 */ 80 if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma)) 81 vma_end_read(vma); 82 else 83 return vma; 84 } 85 86 mmap_read_lock(mm); 87 vma = find_vma_and_prepare_anon(mm, address); 88 if (!IS_ERR(vma)) { 89 bool locked = vma_start_read_locked(vma); 90 91 if (!locked) 92 vma = ERR_PTR(-EAGAIN); 93 } 94 95 mmap_read_unlock(mm); 96 return vma; 97 } 98 99 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm, 100 unsigned long dst_start, 101 unsigned long len) 102 { 103 struct vm_area_struct *dst_vma; 104 105 dst_vma = uffd_lock_vma(dst_mm, dst_start); 106 if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len)) 107 return dst_vma; 108 109 vma_end_read(dst_vma); 110 return ERR_PTR(-ENOENT); 111 } 112 113 static void uffd_mfill_unlock(struct vm_area_struct *vma) 114 { 115 vma_end_read(vma); 116 } 117 118 #else 119 120 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm, 121 unsigned long dst_start, 122 unsigned long len) 123 { 124 struct vm_area_struct *dst_vma; 125 126 mmap_read_lock(dst_mm); 127 dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start); 128 if (IS_ERR(dst_vma)) 129 goto out_unlock; 130 131 if (validate_dst_vma(dst_vma, dst_start + len)) 132 return dst_vma; 133 134 dst_vma = ERR_PTR(-ENOENT); 135 out_unlock: 136 mmap_read_unlock(dst_mm); 137 return dst_vma; 138 } 139 140 static void uffd_mfill_unlock(struct vm_area_struct *vma) 141 { 142 mmap_read_unlock(vma->vm_mm); 143 } 144 #endif 145 146 /* Check if dst_addr is outside of file's size. Must be called with ptl held. */ 147 static bool mfill_file_over_size(struct vm_area_struct *dst_vma, 148 unsigned long dst_addr) 149 { 150 struct inode *inode; 151 pgoff_t offset, max_off; 152 153 if (!dst_vma->vm_file) 154 return false; 155 156 inode = dst_vma->vm_file->f_inode; 157 offset = linear_page_index(dst_vma, dst_addr); 158 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 159 return offset >= max_off; 160 } 161 162 /* 163 * Install PTEs, to map dst_addr (within dst_vma) to page. 164 * 165 * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem 166 * and anon, and for both shared and private VMAs. 167 */ 168 int mfill_atomic_install_pte(pmd_t *dst_pmd, 169 struct vm_area_struct *dst_vma, 170 unsigned long dst_addr, struct page *page, 171 bool newly_allocated, uffd_flags_t flags) 172 { 173 int ret; 174 struct mm_struct *dst_mm = dst_vma->vm_mm; 175 pte_t _dst_pte, *dst_pte; 176 bool writable = dst_vma->vm_flags & VM_WRITE; 177 bool vm_shared = dst_vma->vm_flags & VM_SHARED; 178 spinlock_t *ptl; 179 struct folio *folio = page_folio(page); 180 bool page_in_cache = folio_mapping(folio); 181 182 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 183 _dst_pte = pte_mkdirty(_dst_pte); 184 if (page_in_cache && !vm_shared) 185 writable = false; 186 if (writable) 187 _dst_pte = pte_mkwrite(_dst_pte, dst_vma); 188 if (flags & MFILL_ATOMIC_WP) 189 _dst_pte = pte_mkuffd_wp(_dst_pte); 190 191 ret = -EAGAIN; 192 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 193 if (!dst_pte) 194 goto out; 195 196 if (mfill_file_over_size(dst_vma, dst_addr)) { 197 ret = -EFAULT; 198 goto out_unlock; 199 } 200 201 ret = -EEXIST; 202 /* 203 * We allow to overwrite a pte marker: consider when both MISSING|WP 204 * registered, we firstly wr-protect a none pte which has no page cache 205 * page backing it, then access the page. 206 */ 207 if (!pte_none_mostly(ptep_get(dst_pte))) 208 goto out_unlock; 209 210 if (page_in_cache) { 211 /* Usually, cache pages are already added to LRU */ 212 if (newly_allocated) 213 folio_add_lru(folio); 214 folio_add_file_rmap_pte(folio, page, dst_vma); 215 } else { 216 folio_add_new_anon_rmap(folio, dst_vma, dst_addr, RMAP_EXCLUSIVE); 217 folio_add_lru_vma(folio, dst_vma); 218 } 219 220 /* 221 * Must happen after rmap, as mm_counter() checks mapping (via 222 * PageAnon()), which is set by __page_set_anon_rmap(). 223 */ 224 inc_mm_counter(dst_mm, mm_counter(folio)); 225 226 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 227 228 /* No need to invalidate - it was non-present before */ 229 update_mmu_cache(dst_vma, dst_addr, dst_pte); 230 ret = 0; 231 out_unlock: 232 pte_unmap_unlock(dst_pte, ptl); 233 out: 234 return ret; 235 } 236 237 static int mfill_atomic_pte_copy(pmd_t *dst_pmd, 238 struct vm_area_struct *dst_vma, 239 unsigned long dst_addr, 240 unsigned long src_addr, 241 uffd_flags_t flags, 242 struct folio **foliop) 243 { 244 void *kaddr; 245 int ret; 246 struct folio *folio; 247 248 if (!*foliop) { 249 ret = -ENOMEM; 250 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma, 251 dst_addr); 252 if (!folio) 253 goto out; 254 255 kaddr = kmap_local_folio(folio, 0); 256 /* 257 * The read mmap_lock is held here. Despite the 258 * mmap_lock being read recursive a deadlock is still 259 * possible if a writer has taken a lock. For example: 260 * 261 * process A thread 1 takes read lock on own mmap_lock 262 * process A thread 2 calls mmap, blocks taking write lock 263 * process B thread 1 takes page fault, read lock on own mmap lock 264 * process B thread 2 calls mmap, blocks taking write lock 265 * process A thread 1 blocks taking read lock on process B 266 * process B thread 1 blocks taking read lock on process A 267 * 268 * Disable page faults to prevent potential deadlock 269 * and retry the copy outside the mmap_lock. 270 */ 271 pagefault_disable(); 272 ret = copy_from_user(kaddr, (const void __user *) src_addr, 273 PAGE_SIZE); 274 pagefault_enable(); 275 kunmap_local(kaddr); 276 277 /* fallback to copy_from_user outside mmap_lock */ 278 if (unlikely(ret)) { 279 ret = -ENOENT; 280 *foliop = folio; 281 /* don't free the page */ 282 goto out; 283 } 284 285 flush_dcache_folio(folio); 286 } else { 287 folio = *foliop; 288 *foliop = NULL; 289 } 290 291 /* 292 * The memory barrier inside __folio_mark_uptodate makes sure that 293 * preceding stores to the page contents become visible before 294 * the set_pte_at() write. 295 */ 296 __folio_mark_uptodate(folio); 297 298 ret = -ENOMEM; 299 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL)) 300 goto out_release; 301 302 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 303 &folio->page, true, flags); 304 if (ret) 305 goto out_release; 306 out: 307 return ret; 308 out_release: 309 folio_put(folio); 310 goto out; 311 } 312 313 static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd, 314 struct vm_area_struct *dst_vma, 315 unsigned long dst_addr) 316 { 317 struct folio *folio; 318 int ret = -ENOMEM; 319 320 folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr); 321 if (!folio) 322 return ret; 323 324 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL)) 325 goto out_put; 326 327 /* 328 * The memory barrier inside __folio_mark_uptodate makes sure that 329 * zeroing out the folio become visible before mapping the page 330 * using set_pte_at(). See do_anonymous_page(). 331 */ 332 __folio_mark_uptodate(folio); 333 334 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 335 &folio->page, true, 0); 336 if (ret) 337 goto out_put; 338 339 return 0; 340 out_put: 341 folio_put(folio); 342 return ret; 343 } 344 345 static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd, 346 struct vm_area_struct *dst_vma, 347 unsigned long dst_addr) 348 { 349 pte_t _dst_pte, *dst_pte; 350 spinlock_t *ptl; 351 int ret; 352 353 if (mm_forbids_zeropage(dst_vma->vm_mm)) 354 return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr); 355 356 _dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr), 357 dst_vma->vm_page_prot)); 358 ret = -EAGAIN; 359 dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl); 360 if (!dst_pte) 361 goto out; 362 if (mfill_file_over_size(dst_vma, dst_addr)) { 363 ret = -EFAULT; 364 goto out_unlock; 365 } 366 ret = -EEXIST; 367 if (!pte_none(ptep_get(dst_pte))) 368 goto out_unlock; 369 set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte); 370 /* No need to invalidate - it was non-present before */ 371 update_mmu_cache(dst_vma, dst_addr, dst_pte); 372 ret = 0; 373 out_unlock: 374 pte_unmap_unlock(dst_pte, ptl); 375 out: 376 return ret; 377 } 378 379 /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */ 380 static int mfill_atomic_pte_continue(pmd_t *dst_pmd, 381 struct vm_area_struct *dst_vma, 382 unsigned long dst_addr, 383 uffd_flags_t flags) 384 { 385 struct inode *inode = file_inode(dst_vma->vm_file); 386 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 387 struct folio *folio; 388 struct page *page; 389 int ret; 390 391 ret = shmem_get_folio(inode, pgoff, 0, &folio, SGP_NOALLOC); 392 /* Our caller expects us to return -EFAULT if we failed to find folio */ 393 if (ret == -ENOENT) 394 ret = -EFAULT; 395 if (ret) 396 goto out; 397 if (!folio) { 398 ret = -EFAULT; 399 goto out; 400 } 401 402 page = folio_file_page(folio, pgoff); 403 if (PageHWPoison(page)) { 404 ret = -EIO; 405 goto out_release; 406 } 407 408 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 409 page, false, flags); 410 if (ret) 411 goto out_release; 412 413 folio_unlock(folio); 414 ret = 0; 415 out: 416 return ret; 417 out_release: 418 folio_unlock(folio); 419 folio_put(folio); 420 goto out; 421 } 422 423 /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */ 424 static int mfill_atomic_pte_poison(pmd_t *dst_pmd, 425 struct vm_area_struct *dst_vma, 426 unsigned long dst_addr, 427 uffd_flags_t flags) 428 { 429 int ret; 430 struct mm_struct *dst_mm = dst_vma->vm_mm; 431 pte_t _dst_pte, *dst_pte; 432 spinlock_t *ptl; 433 434 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 435 ret = -EAGAIN; 436 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 437 if (!dst_pte) 438 goto out; 439 440 if (mfill_file_over_size(dst_vma, dst_addr)) { 441 ret = -EFAULT; 442 goto out_unlock; 443 } 444 445 ret = -EEXIST; 446 /* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */ 447 if (!pte_none(ptep_get(dst_pte))) 448 goto out_unlock; 449 450 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 451 452 /* No need to invalidate - it was non-present before */ 453 update_mmu_cache(dst_vma, dst_addr, dst_pte); 454 ret = 0; 455 out_unlock: 456 pte_unmap_unlock(dst_pte, ptl); 457 out: 458 return ret; 459 } 460 461 static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address) 462 { 463 pgd_t *pgd; 464 p4d_t *p4d; 465 pud_t *pud; 466 467 pgd = pgd_offset(mm, address); 468 p4d = p4d_alloc(mm, pgd, address); 469 if (!p4d) 470 return NULL; 471 pud = pud_alloc(mm, p4d, address); 472 if (!pud) 473 return NULL; 474 /* 475 * Note that we didn't run this because the pmd was 476 * missing, the *pmd may be already established and in 477 * turn it may also be a trans_huge_pmd. 478 */ 479 return pmd_alloc(mm, pud, address); 480 } 481 482 #ifdef CONFIG_HUGETLB_PAGE 483 /* 484 * mfill_atomic processing for HUGETLB vmas. Note that this routine is 485 * called with either vma-lock or mmap_lock held, it will release the lock 486 * before returning. 487 */ 488 static __always_inline ssize_t mfill_atomic_hugetlb( 489 struct userfaultfd_ctx *ctx, 490 struct vm_area_struct *dst_vma, 491 unsigned long dst_start, 492 unsigned long src_start, 493 unsigned long len, 494 uffd_flags_t flags) 495 { 496 struct mm_struct *dst_mm = dst_vma->vm_mm; 497 ssize_t err; 498 pte_t *dst_pte; 499 unsigned long src_addr, dst_addr; 500 long copied; 501 struct folio *folio; 502 unsigned long vma_hpagesize; 503 pgoff_t idx; 504 u32 hash; 505 struct address_space *mapping; 506 507 /* 508 * There is no default zero huge page for all huge page sizes as 509 * supported by hugetlb. A PMD_SIZE huge pages may exist as used 510 * by THP. Since we can not reliably insert a zero page, this 511 * feature is not supported. 512 */ 513 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) { 514 up_read(&ctx->map_changing_lock); 515 uffd_mfill_unlock(dst_vma); 516 return -EINVAL; 517 } 518 519 src_addr = src_start; 520 dst_addr = dst_start; 521 copied = 0; 522 folio = NULL; 523 vma_hpagesize = vma_kernel_pagesize(dst_vma); 524 525 /* 526 * Validate alignment based on huge page size 527 */ 528 err = -EINVAL; 529 if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1)) 530 goto out_unlock; 531 532 retry: 533 /* 534 * On routine entry dst_vma is set. If we had to drop mmap_lock and 535 * retry, dst_vma will be set to NULL and we must lookup again. 536 */ 537 if (!dst_vma) { 538 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len); 539 if (IS_ERR(dst_vma)) { 540 err = PTR_ERR(dst_vma); 541 goto out; 542 } 543 544 err = -ENOENT; 545 if (!is_vm_hugetlb_page(dst_vma)) 546 goto out_unlock_vma; 547 548 err = -EINVAL; 549 if (vma_hpagesize != vma_kernel_pagesize(dst_vma)) 550 goto out_unlock_vma; 551 552 /* 553 * If memory mappings are changing because of non-cooperative 554 * operation (e.g. mremap) running in parallel, bail out and 555 * request the user to retry later 556 */ 557 down_read(&ctx->map_changing_lock); 558 err = -EAGAIN; 559 if (atomic_read(&ctx->mmap_changing)) 560 goto out_unlock; 561 } 562 563 while (src_addr < src_start + len) { 564 BUG_ON(dst_addr >= dst_start + len); 565 566 /* 567 * Serialize via vma_lock and hugetlb_fault_mutex. 568 * vma_lock ensures the dst_pte remains valid even 569 * in the case of shared pmds. fault mutex prevents 570 * races with other faulting threads. 571 */ 572 idx = linear_page_index(dst_vma, dst_addr); 573 mapping = dst_vma->vm_file->f_mapping; 574 hash = hugetlb_fault_mutex_hash(mapping, idx); 575 mutex_lock(&hugetlb_fault_mutex_table[hash]); 576 hugetlb_vma_lock_read(dst_vma); 577 578 err = -ENOMEM; 579 dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize); 580 if (!dst_pte) { 581 hugetlb_vma_unlock_read(dst_vma); 582 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 583 goto out_unlock; 584 } 585 586 if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE) && 587 !huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 588 err = -EEXIST; 589 hugetlb_vma_unlock_read(dst_vma); 590 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 591 goto out_unlock; 592 } 593 594 err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr, 595 src_addr, flags, &folio); 596 597 hugetlb_vma_unlock_read(dst_vma); 598 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 599 600 cond_resched(); 601 602 if (unlikely(err == -ENOENT)) { 603 up_read(&ctx->map_changing_lock); 604 uffd_mfill_unlock(dst_vma); 605 BUG_ON(!folio); 606 607 err = copy_folio_from_user(folio, 608 (const void __user *)src_addr, true); 609 if (unlikely(err)) { 610 err = -EFAULT; 611 goto out; 612 } 613 614 dst_vma = NULL; 615 goto retry; 616 } else 617 BUG_ON(folio); 618 619 if (!err) { 620 dst_addr += vma_hpagesize; 621 src_addr += vma_hpagesize; 622 copied += vma_hpagesize; 623 624 if (fatal_signal_pending(current)) 625 err = -EINTR; 626 } 627 if (err) 628 break; 629 } 630 631 out_unlock: 632 up_read(&ctx->map_changing_lock); 633 out_unlock_vma: 634 uffd_mfill_unlock(dst_vma); 635 out: 636 if (folio) 637 folio_put(folio); 638 BUG_ON(copied < 0); 639 BUG_ON(err > 0); 640 BUG_ON(!copied && !err); 641 return copied ? copied : err; 642 } 643 #else /* !CONFIG_HUGETLB_PAGE */ 644 /* fail at build time if gcc attempts to use this */ 645 extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx, 646 struct vm_area_struct *dst_vma, 647 unsigned long dst_start, 648 unsigned long src_start, 649 unsigned long len, 650 uffd_flags_t flags); 651 #endif /* CONFIG_HUGETLB_PAGE */ 652 653 static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd, 654 struct vm_area_struct *dst_vma, 655 unsigned long dst_addr, 656 unsigned long src_addr, 657 uffd_flags_t flags, 658 struct folio **foliop) 659 { 660 ssize_t err; 661 662 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) { 663 return mfill_atomic_pte_continue(dst_pmd, dst_vma, 664 dst_addr, flags); 665 } else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 666 return mfill_atomic_pte_poison(dst_pmd, dst_vma, 667 dst_addr, flags); 668 } 669 670 /* 671 * The normal page fault path for a shmem will invoke the 672 * fault, fill the hole in the file and COW it right away. The 673 * result generates plain anonymous memory. So when we are 674 * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll 675 * generate anonymous memory directly without actually filling 676 * the hole. For the MAP_PRIVATE case the robustness check 677 * only happens in the pagetable (to verify it's still none) 678 * and not in the radix tree. 679 */ 680 if (!(dst_vma->vm_flags & VM_SHARED)) { 681 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) 682 err = mfill_atomic_pte_copy(dst_pmd, dst_vma, 683 dst_addr, src_addr, 684 flags, foliop); 685 else 686 err = mfill_atomic_pte_zeropage(dst_pmd, 687 dst_vma, dst_addr); 688 } else { 689 err = shmem_mfill_atomic_pte(dst_pmd, dst_vma, 690 dst_addr, src_addr, 691 flags, foliop); 692 } 693 694 return err; 695 } 696 697 static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx, 698 unsigned long dst_start, 699 unsigned long src_start, 700 unsigned long len, 701 uffd_flags_t flags) 702 { 703 struct mm_struct *dst_mm = ctx->mm; 704 struct vm_area_struct *dst_vma; 705 ssize_t err; 706 pmd_t *dst_pmd; 707 unsigned long src_addr, dst_addr; 708 long copied; 709 struct folio *folio; 710 711 /* 712 * Sanitize the command parameters: 713 */ 714 BUG_ON(dst_start & ~PAGE_MASK); 715 BUG_ON(len & ~PAGE_MASK); 716 717 /* Does the address range wrap, or is the span zero-sized? */ 718 BUG_ON(src_start + len <= src_start); 719 BUG_ON(dst_start + len <= dst_start); 720 721 src_addr = src_start; 722 dst_addr = dst_start; 723 copied = 0; 724 folio = NULL; 725 retry: 726 /* 727 * Make sure the vma is not shared, that the dst range is 728 * both valid and fully within a single existing vma. 729 */ 730 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len); 731 if (IS_ERR(dst_vma)) { 732 err = PTR_ERR(dst_vma); 733 goto out; 734 } 735 736 /* 737 * If memory mappings are changing because of non-cooperative 738 * operation (e.g. mremap) running in parallel, bail out and 739 * request the user to retry later 740 */ 741 down_read(&ctx->map_changing_lock); 742 err = -EAGAIN; 743 if (atomic_read(&ctx->mmap_changing)) 744 goto out_unlock; 745 746 err = -EINVAL; 747 /* 748 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but 749 * it will overwrite vm_ops, so vma_is_anonymous must return false. 750 */ 751 if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) && 752 dst_vma->vm_flags & VM_SHARED)) 753 goto out_unlock; 754 755 /* 756 * validate 'mode' now that we know the dst_vma: don't allow 757 * a wrprotect copy if the userfaultfd didn't register as WP. 758 */ 759 if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP)) 760 goto out_unlock; 761 762 /* 763 * If this is a HUGETLB vma, pass off to appropriate routine 764 */ 765 if (is_vm_hugetlb_page(dst_vma)) 766 return mfill_atomic_hugetlb(ctx, dst_vma, dst_start, 767 src_start, len, flags); 768 769 if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma)) 770 goto out_unlock; 771 if (!vma_is_shmem(dst_vma) && 772 uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) 773 goto out_unlock; 774 775 while (src_addr < src_start + len) { 776 pmd_t dst_pmdval; 777 778 BUG_ON(dst_addr >= dst_start + len); 779 780 dst_pmd = mm_alloc_pmd(dst_mm, dst_addr); 781 if (unlikely(!dst_pmd)) { 782 err = -ENOMEM; 783 break; 784 } 785 786 dst_pmdval = pmdp_get_lockless(dst_pmd); 787 if (unlikely(pmd_none(dst_pmdval)) && 788 unlikely(__pte_alloc(dst_mm, dst_pmd))) { 789 err = -ENOMEM; 790 break; 791 } 792 dst_pmdval = pmdp_get_lockless(dst_pmd); 793 /* 794 * If the dst_pmd is THP don't override it and just be strict. 795 * (This includes the case where the PMD used to be THP and 796 * changed back to none after __pte_alloc().) 797 */ 798 if (unlikely(!pmd_present(dst_pmdval) || pmd_trans_huge(dst_pmdval) || 799 pmd_devmap(dst_pmdval))) { 800 err = -EEXIST; 801 break; 802 } 803 if (unlikely(pmd_bad(dst_pmdval))) { 804 err = -EFAULT; 805 break; 806 } 807 /* 808 * For shmem mappings, khugepaged is allowed to remove page 809 * tables under us; pte_offset_map_lock() will deal with that. 810 */ 811 812 err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr, 813 src_addr, flags, &folio); 814 cond_resched(); 815 816 if (unlikely(err == -ENOENT)) { 817 void *kaddr; 818 819 up_read(&ctx->map_changing_lock); 820 uffd_mfill_unlock(dst_vma); 821 BUG_ON(!folio); 822 823 kaddr = kmap_local_folio(folio, 0); 824 err = copy_from_user(kaddr, 825 (const void __user *) src_addr, 826 PAGE_SIZE); 827 kunmap_local(kaddr); 828 if (unlikely(err)) { 829 err = -EFAULT; 830 goto out; 831 } 832 flush_dcache_folio(folio); 833 goto retry; 834 } else 835 BUG_ON(folio); 836 837 if (!err) { 838 dst_addr += PAGE_SIZE; 839 src_addr += PAGE_SIZE; 840 copied += PAGE_SIZE; 841 842 if (fatal_signal_pending(current)) 843 err = -EINTR; 844 } 845 if (err) 846 break; 847 } 848 849 out_unlock: 850 up_read(&ctx->map_changing_lock); 851 uffd_mfill_unlock(dst_vma); 852 out: 853 if (folio) 854 folio_put(folio); 855 BUG_ON(copied < 0); 856 BUG_ON(err > 0); 857 BUG_ON(!copied && !err); 858 return copied ? copied : err; 859 } 860 861 ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start, 862 unsigned long src_start, unsigned long len, 863 uffd_flags_t flags) 864 { 865 return mfill_atomic(ctx, dst_start, src_start, len, 866 uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY)); 867 } 868 869 ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx, 870 unsigned long start, 871 unsigned long len) 872 { 873 return mfill_atomic(ctx, start, 0, len, 874 uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE)); 875 } 876 877 ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start, 878 unsigned long len, uffd_flags_t flags) 879 { 880 881 /* 882 * A caller might reasonably assume that UFFDIO_CONTINUE contains an 883 * smp_wmb() to ensure that any writes to the about-to-be-mapped page by 884 * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to 885 * subsequent loads from the page through the newly mapped address range. 886 */ 887 smp_wmb(); 888 889 return mfill_atomic(ctx, start, 0, len, 890 uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE)); 891 } 892 893 ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start, 894 unsigned long len, uffd_flags_t flags) 895 { 896 return mfill_atomic(ctx, start, 0, len, 897 uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON)); 898 } 899 900 long uffd_wp_range(struct vm_area_struct *dst_vma, 901 unsigned long start, unsigned long len, bool enable_wp) 902 { 903 unsigned int mm_cp_flags; 904 struct mmu_gather tlb; 905 long ret; 906 907 VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end, 908 "The address range exceeds VMA boundary.\n"); 909 if (enable_wp) 910 mm_cp_flags = MM_CP_UFFD_WP; 911 else 912 mm_cp_flags = MM_CP_UFFD_WP_RESOLVE; 913 914 /* 915 * vma->vm_page_prot already reflects that uffd-wp is enabled for this 916 * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed 917 * to be write-protected as default whenever protection changes. 918 * Try upgrading write permissions manually. 919 */ 920 if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma)) 921 mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE; 922 tlb_gather_mmu(&tlb, dst_vma->vm_mm); 923 ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags); 924 tlb_finish_mmu(&tlb); 925 926 return ret; 927 } 928 929 int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start, 930 unsigned long len, bool enable_wp) 931 { 932 struct mm_struct *dst_mm = ctx->mm; 933 unsigned long end = start + len; 934 unsigned long _start, _end; 935 struct vm_area_struct *dst_vma; 936 unsigned long page_mask; 937 long err; 938 VMA_ITERATOR(vmi, dst_mm, start); 939 940 /* 941 * Sanitize the command parameters: 942 */ 943 BUG_ON(start & ~PAGE_MASK); 944 BUG_ON(len & ~PAGE_MASK); 945 946 /* Does the address range wrap, or is the span zero-sized? */ 947 BUG_ON(start + len <= start); 948 949 mmap_read_lock(dst_mm); 950 951 /* 952 * If memory mappings are changing because of non-cooperative 953 * operation (e.g. mremap) running in parallel, bail out and 954 * request the user to retry later 955 */ 956 down_read(&ctx->map_changing_lock); 957 err = -EAGAIN; 958 if (atomic_read(&ctx->mmap_changing)) 959 goto out_unlock; 960 961 err = -ENOENT; 962 for_each_vma_range(vmi, dst_vma, end) { 963 964 if (!userfaultfd_wp(dst_vma)) { 965 err = -ENOENT; 966 break; 967 } 968 969 if (is_vm_hugetlb_page(dst_vma)) { 970 err = -EINVAL; 971 page_mask = vma_kernel_pagesize(dst_vma) - 1; 972 if ((start & page_mask) || (len & page_mask)) 973 break; 974 } 975 976 _start = max(dst_vma->vm_start, start); 977 _end = min(dst_vma->vm_end, end); 978 979 err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp); 980 981 /* Return 0 on success, <0 on failures */ 982 if (err < 0) 983 break; 984 err = 0; 985 } 986 out_unlock: 987 up_read(&ctx->map_changing_lock); 988 mmap_read_unlock(dst_mm); 989 return err; 990 } 991 992 993 void double_pt_lock(spinlock_t *ptl1, 994 spinlock_t *ptl2) 995 __acquires(ptl1) 996 __acquires(ptl2) 997 { 998 if (ptl1 > ptl2) 999 swap(ptl1, ptl2); 1000 /* lock in virtual address order to avoid lock inversion */ 1001 spin_lock(ptl1); 1002 if (ptl1 != ptl2) 1003 spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING); 1004 else 1005 __acquire(ptl2); 1006 } 1007 1008 void double_pt_unlock(spinlock_t *ptl1, 1009 spinlock_t *ptl2) 1010 __releases(ptl1) 1011 __releases(ptl2) 1012 { 1013 spin_unlock(ptl1); 1014 if (ptl1 != ptl2) 1015 spin_unlock(ptl2); 1016 else 1017 __release(ptl2); 1018 } 1019 1020 static inline bool is_pte_pages_stable(pte_t *dst_pte, pte_t *src_pte, 1021 pte_t orig_dst_pte, pte_t orig_src_pte, 1022 pmd_t *dst_pmd, pmd_t dst_pmdval) 1023 { 1024 return pte_same(ptep_get(src_pte), orig_src_pte) && 1025 pte_same(ptep_get(dst_pte), orig_dst_pte) && 1026 pmd_same(dst_pmdval, pmdp_get_lockless(dst_pmd)); 1027 } 1028 1029 static int move_present_pte(struct mm_struct *mm, 1030 struct vm_area_struct *dst_vma, 1031 struct vm_area_struct *src_vma, 1032 unsigned long dst_addr, unsigned long src_addr, 1033 pte_t *dst_pte, pte_t *src_pte, 1034 pte_t orig_dst_pte, pte_t orig_src_pte, 1035 pmd_t *dst_pmd, pmd_t dst_pmdval, 1036 spinlock_t *dst_ptl, spinlock_t *src_ptl, 1037 struct folio *src_folio) 1038 { 1039 int err = 0; 1040 1041 double_pt_lock(dst_ptl, src_ptl); 1042 1043 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte, 1044 dst_pmd, dst_pmdval)) { 1045 err = -EAGAIN; 1046 goto out; 1047 } 1048 if (folio_test_large(src_folio) || 1049 folio_maybe_dma_pinned(src_folio) || 1050 !PageAnonExclusive(&src_folio->page)) { 1051 err = -EBUSY; 1052 goto out; 1053 } 1054 1055 orig_src_pte = ptep_clear_flush(src_vma, src_addr, src_pte); 1056 /* Folio got pinned from under us. Put it back and fail the move. */ 1057 if (folio_maybe_dma_pinned(src_folio)) { 1058 set_pte_at(mm, src_addr, src_pte, orig_src_pte); 1059 err = -EBUSY; 1060 goto out; 1061 } 1062 1063 folio_move_anon_rmap(src_folio, dst_vma); 1064 src_folio->index = linear_page_index(dst_vma, dst_addr); 1065 1066 orig_dst_pte = mk_pte(&src_folio->page, dst_vma->vm_page_prot); 1067 /* Follow mremap() behavior and treat the entry dirty after the move */ 1068 orig_dst_pte = pte_mkwrite(pte_mkdirty(orig_dst_pte), dst_vma); 1069 1070 set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte); 1071 out: 1072 double_pt_unlock(dst_ptl, src_ptl); 1073 return err; 1074 } 1075 1076 static int move_swap_pte(struct mm_struct *mm, struct vm_area_struct *dst_vma, 1077 unsigned long dst_addr, unsigned long src_addr, 1078 pte_t *dst_pte, pte_t *src_pte, 1079 pte_t orig_dst_pte, pte_t orig_src_pte, 1080 pmd_t *dst_pmd, pmd_t dst_pmdval, 1081 spinlock_t *dst_ptl, spinlock_t *src_ptl, 1082 struct folio *src_folio) 1083 { 1084 double_pt_lock(dst_ptl, src_ptl); 1085 1086 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte, 1087 dst_pmd, dst_pmdval)) { 1088 double_pt_unlock(dst_ptl, src_ptl); 1089 return -EAGAIN; 1090 } 1091 1092 /* 1093 * The src_folio resides in the swapcache, requiring an update to its 1094 * index and mapping to align with the dst_vma, where a swap-in may 1095 * occur and hit the swapcache after moving the PTE. 1096 */ 1097 if (src_folio) { 1098 folio_move_anon_rmap(src_folio, dst_vma); 1099 src_folio->index = linear_page_index(dst_vma, dst_addr); 1100 } 1101 1102 orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte); 1103 set_pte_at(mm, dst_addr, dst_pte, orig_src_pte); 1104 double_pt_unlock(dst_ptl, src_ptl); 1105 1106 return 0; 1107 } 1108 1109 static int move_zeropage_pte(struct mm_struct *mm, 1110 struct vm_area_struct *dst_vma, 1111 struct vm_area_struct *src_vma, 1112 unsigned long dst_addr, unsigned long src_addr, 1113 pte_t *dst_pte, pte_t *src_pte, 1114 pte_t orig_dst_pte, pte_t orig_src_pte, 1115 pmd_t *dst_pmd, pmd_t dst_pmdval, 1116 spinlock_t *dst_ptl, spinlock_t *src_ptl) 1117 { 1118 pte_t zero_pte; 1119 1120 double_pt_lock(dst_ptl, src_ptl); 1121 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte, 1122 dst_pmd, dst_pmdval)) { 1123 double_pt_unlock(dst_ptl, src_ptl); 1124 return -EAGAIN; 1125 } 1126 1127 zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr), 1128 dst_vma->vm_page_prot)); 1129 ptep_clear_flush(src_vma, src_addr, src_pte); 1130 set_pte_at(mm, dst_addr, dst_pte, zero_pte); 1131 double_pt_unlock(dst_ptl, src_ptl); 1132 1133 return 0; 1134 } 1135 1136 1137 /* 1138 * The mmap_lock for reading is held by the caller. Just move the page 1139 * from src_pmd to dst_pmd if possible, and return true if succeeded 1140 * in moving the page. 1141 */ 1142 static int move_pages_pte(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, 1143 struct vm_area_struct *dst_vma, 1144 struct vm_area_struct *src_vma, 1145 unsigned long dst_addr, unsigned long src_addr, 1146 __u64 mode) 1147 { 1148 swp_entry_t entry; 1149 struct swap_info_struct *si = NULL; 1150 pte_t orig_src_pte, orig_dst_pte; 1151 pte_t src_folio_pte; 1152 spinlock_t *src_ptl, *dst_ptl; 1153 pte_t *src_pte = NULL; 1154 pte_t *dst_pte = NULL; 1155 pmd_t dummy_pmdval; 1156 pmd_t dst_pmdval; 1157 struct folio *src_folio = NULL; 1158 struct anon_vma *src_anon_vma = NULL; 1159 struct mmu_notifier_range range; 1160 int err = 0; 1161 1162 flush_cache_range(src_vma, src_addr, src_addr + PAGE_SIZE); 1163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1164 src_addr, src_addr + PAGE_SIZE); 1165 mmu_notifier_invalidate_range_start(&range); 1166 retry: 1167 /* 1168 * Use the maywrite version to indicate that dst_pte will be modified, 1169 * since dst_pte needs to be none, the subsequent pte_same() check 1170 * cannot prevent the dst_pte page from being freed concurrently, so we 1171 * also need to abtain dst_pmdval and recheck pmd_same() later. 1172 */ 1173 dst_pte = pte_offset_map_rw_nolock(mm, dst_pmd, dst_addr, &dst_pmdval, 1174 &dst_ptl); 1175 1176 /* Retry if a huge pmd materialized from under us */ 1177 if (unlikely(!dst_pte)) { 1178 err = -EAGAIN; 1179 goto out; 1180 } 1181 1182 /* 1183 * Unlike dst_pte, the subsequent pte_same() check can ensure the 1184 * stability of the src_pte page, so there is no need to get pmdval, 1185 * just pass a dummy variable to it. 1186 */ 1187 src_pte = pte_offset_map_rw_nolock(mm, src_pmd, src_addr, &dummy_pmdval, 1188 &src_ptl); 1189 1190 /* 1191 * We held the mmap_lock for reading so MADV_DONTNEED 1192 * can zap transparent huge pages under us, or the 1193 * transparent huge page fault can establish new 1194 * transparent huge pages under us. 1195 */ 1196 if (unlikely(!src_pte)) { 1197 err = -EAGAIN; 1198 goto out; 1199 } 1200 1201 /* Sanity checks before the operation */ 1202 if (pmd_none(*dst_pmd) || pmd_none(*src_pmd) || 1203 pmd_trans_huge(*dst_pmd) || pmd_trans_huge(*src_pmd)) { 1204 err = -EINVAL; 1205 goto out; 1206 } 1207 1208 spin_lock(dst_ptl); 1209 orig_dst_pte = ptep_get(dst_pte); 1210 spin_unlock(dst_ptl); 1211 if (!pte_none(orig_dst_pte)) { 1212 err = -EEXIST; 1213 goto out; 1214 } 1215 1216 spin_lock(src_ptl); 1217 orig_src_pte = ptep_get(src_pte); 1218 spin_unlock(src_ptl); 1219 if (pte_none(orig_src_pte)) { 1220 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) 1221 err = -ENOENT; 1222 else /* nothing to do to move a hole */ 1223 err = 0; 1224 goto out; 1225 } 1226 1227 /* If PTE changed after we locked the folio them start over */ 1228 if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) { 1229 err = -EAGAIN; 1230 goto out; 1231 } 1232 1233 if (pte_present(orig_src_pte)) { 1234 if (is_zero_pfn(pte_pfn(orig_src_pte))) { 1235 err = move_zeropage_pte(mm, dst_vma, src_vma, 1236 dst_addr, src_addr, dst_pte, src_pte, 1237 orig_dst_pte, orig_src_pte, 1238 dst_pmd, dst_pmdval, dst_ptl, src_ptl); 1239 goto out; 1240 } 1241 1242 /* 1243 * Pin and lock both source folio and anon_vma. Since we are in 1244 * RCU read section, we can't block, so on contention have to 1245 * unmap the ptes, obtain the lock and retry. 1246 */ 1247 if (!src_folio) { 1248 struct folio *folio; 1249 bool locked; 1250 1251 /* 1252 * Pin the page while holding the lock to be sure the 1253 * page isn't freed under us 1254 */ 1255 spin_lock(src_ptl); 1256 if (!pte_same(orig_src_pte, ptep_get(src_pte))) { 1257 spin_unlock(src_ptl); 1258 err = -EAGAIN; 1259 goto out; 1260 } 1261 1262 folio = vm_normal_folio(src_vma, src_addr, orig_src_pte); 1263 if (!folio || !PageAnonExclusive(&folio->page)) { 1264 spin_unlock(src_ptl); 1265 err = -EBUSY; 1266 goto out; 1267 } 1268 1269 locked = folio_trylock(folio); 1270 /* 1271 * We avoid waiting for folio lock with a raised 1272 * refcount for large folios because extra refcounts 1273 * will result in split_folio() failing later and 1274 * retrying. If multiple tasks are trying to move a 1275 * large folio we can end up livelocking. 1276 */ 1277 if (!locked && folio_test_large(folio)) { 1278 spin_unlock(src_ptl); 1279 err = -EAGAIN; 1280 goto out; 1281 } 1282 1283 folio_get(folio); 1284 src_folio = folio; 1285 src_folio_pte = orig_src_pte; 1286 spin_unlock(src_ptl); 1287 1288 if (!locked) { 1289 pte_unmap(src_pte); 1290 pte_unmap(dst_pte); 1291 src_pte = dst_pte = NULL; 1292 /* now we can block and wait */ 1293 folio_lock(src_folio); 1294 goto retry; 1295 } 1296 1297 if (WARN_ON_ONCE(!folio_test_anon(src_folio))) { 1298 err = -EBUSY; 1299 goto out; 1300 } 1301 } 1302 1303 /* at this point we have src_folio locked */ 1304 if (folio_test_large(src_folio)) { 1305 /* split_folio() can block */ 1306 pte_unmap(src_pte); 1307 pte_unmap(dst_pte); 1308 src_pte = dst_pte = NULL; 1309 err = split_folio(src_folio); 1310 if (err) 1311 goto out; 1312 /* have to reacquire the folio after it got split */ 1313 folio_unlock(src_folio); 1314 folio_put(src_folio); 1315 src_folio = NULL; 1316 goto retry; 1317 } 1318 1319 if (!src_anon_vma) { 1320 /* 1321 * folio_referenced walks the anon_vma chain 1322 * without the folio lock. Serialize against it with 1323 * the anon_vma lock, the folio lock is not enough. 1324 */ 1325 src_anon_vma = folio_get_anon_vma(src_folio); 1326 if (!src_anon_vma) { 1327 /* page was unmapped from under us */ 1328 err = -EAGAIN; 1329 goto out; 1330 } 1331 if (!anon_vma_trylock_write(src_anon_vma)) { 1332 pte_unmap(src_pte); 1333 pte_unmap(dst_pte); 1334 src_pte = dst_pte = NULL; 1335 /* now we can block and wait */ 1336 anon_vma_lock_write(src_anon_vma); 1337 goto retry; 1338 } 1339 } 1340 1341 err = move_present_pte(mm, dst_vma, src_vma, 1342 dst_addr, src_addr, dst_pte, src_pte, 1343 orig_dst_pte, orig_src_pte, dst_pmd, 1344 dst_pmdval, dst_ptl, src_ptl, src_folio); 1345 } else { 1346 struct folio *folio = NULL; 1347 1348 entry = pte_to_swp_entry(orig_src_pte); 1349 if (non_swap_entry(entry)) { 1350 if (is_migration_entry(entry)) { 1351 pte_unmap(src_pte); 1352 pte_unmap(dst_pte); 1353 src_pte = dst_pte = NULL; 1354 migration_entry_wait(mm, src_pmd, src_addr); 1355 err = -EAGAIN; 1356 } else 1357 err = -EFAULT; 1358 goto out; 1359 } 1360 1361 if (!pte_swp_exclusive(orig_src_pte)) { 1362 err = -EBUSY; 1363 goto out; 1364 } 1365 1366 si = get_swap_device(entry); 1367 if (unlikely(!si)) { 1368 err = -EAGAIN; 1369 goto out; 1370 } 1371 /* 1372 * Verify the existence of the swapcache. If present, the folio's 1373 * index and mapping must be updated even when the PTE is a swap 1374 * entry. The anon_vma lock is not taken during this process since 1375 * the folio has already been unmapped, and the swap entry is 1376 * exclusive, preventing rmap walks. 1377 * 1378 * For large folios, return -EBUSY immediately, as split_folio() 1379 * also returns -EBUSY when attempting to split unmapped large 1380 * folios in the swapcache. This issue needs to be resolved 1381 * separately to allow proper handling. 1382 */ 1383 if (!src_folio) 1384 folio = filemap_get_folio(swap_address_space(entry), 1385 swap_cache_index(entry)); 1386 if (!IS_ERR_OR_NULL(folio)) { 1387 if (folio_test_large(folio)) { 1388 err = -EBUSY; 1389 folio_put(folio); 1390 goto out; 1391 } 1392 src_folio = folio; 1393 src_folio_pte = orig_src_pte; 1394 if (!folio_trylock(src_folio)) { 1395 pte_unmap(src_pte); 1396 pte_unmap(dst_pte); 1397 src_pte = dst_pte = NULL; 1398 put_swap_device(si); 1399 si = NULL; 1400 /* now we can block and wait */ 1401 folio_lock(src_folio); 1402 goto retry; 1403 } 1404 } 1405 err = move_swap_pte(mm, dst_vma, dst_addr, src_addr, dst_pte, src_pte, 1406 orig_dst_pte, orig_src_pte, dst_pmd, dst_pmdval, 1407 dst_ptl, src_ptl, src_folio); 1408 } 1409 1410 out: 1411 if (src_anon_vma) { 1412 anon_vma_unlock_write(src_anon_vma); 1413 put_anon_vma(src_anon_vma); 1414 } 1415 if (src_folio) { 1416 folio_unlock(src_folio); 1417 folio_put(src_folio); 1418 } 1419 if (dst_pte) 1420 pte_unmap(dst_pte); 1421 if (src_pte) 1422 pte_unmap(src_pte); 1423 mmu_notifier_invalidate_range_end(&range); 1424 if (si) 1425 put_swap_device(si); 1426 1427 return err; 1428 } 1429 1430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1431 static inline bool move_splits_huge_pmd(unsigned long dst_addr, 1432 unsigned long src_addr, 1433 unsigned long src_end) 1434 { 1435 return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) || 1436 src_end - src_addr < HPAGE_PMD_SIZE; 1437 } 1438 #else 1439 static inline bool move_splits_huge_pmd(unsigned long dst_addr, 1440 unsigned long src_addr, 1441 unsigned long src_end) 1442 { 1443 /* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */ 1444 return false; 1445 } 1446 #endif 1447 1448 static inline bool vma_move_compatible(struct vm_area_struct *vma) 1449 { 1450 return !(vma->vm_flags & (VM_PFNMAP | VM_IO | VM_HUGETLB | 1451 VM_MIXEDMAP | VM_SHADOW_STACK)); 1452 } 1453 1454 static int validate_move_areas(struct userfaultfd_ctx *ctx, 1455 struct vm_area_struct *src_vma, 1456 struct vm_area_struct *dst_vma) 1457 { 1458 /* Only allow moving if both have the same access and protection */ 1459 if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) || 1460 pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot)) 1461 return -EINVAL; 1462 1463 /* Only allow moving if both are mlocked or both aren't */ 1464 if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED)) 1465 return -EINVAL; 1466 1467 /* 1468 * For now, we keep it simple and only move between writable VMAs. 1469 * Access flags are equal, therefore cheching only the source is enough. 1470 */ 1471 if (!(src_vma->vm_flags & VM_WRITE)) 1472 return -EINVAL; 1473 1474 /* Check if vma flags indicate content which can be moved */ 1475 if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma)) 1476 return -EINVAL; 1477 1478 /* Ensure dst_vma is registered in uffd we are operating on */ 1479 if (!dst_vma->vm_userfaultfd_ctx.ctx || 1480 dst_vma->vm_userfaultfd_ctx.ctx != ctx) 1481 return -EINVAL; 1482 1483 /* Only allow moving across anonymous vmas */ 1484 if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma)) 1485 return -EINVAL; 1486 1487 return 0; 1488 } 1489 1490 static __always_inline 1491 int find_vmas_mm_locked(struct mm_struct *mm, 1492 unsigned long dst_start, 1493 unsigned long src_start, 1494 struct vm_area_struct **dst_vmap, 1495 struct vm_area_struct **src_vmap) 1496 { 1497 struct vm_area_struct *vma; 1498 1499 mmap_assert_locked(mm); 1500 vma = find_vma_and_prepare_anon(mm, dst_start); 1501 if (IS_ERR(vma)) 1502 return PTR_ERR(vma); 1503 1504 *dst_vmap = vma; 1505 /* Skip finding src_vma if src_start is in dst_vma */ 1506 if (src_start >= vma->vm_start && src_start < vma->vm_end) 1507 goto out_success; 1508 1509 vma = vma_lookup(mm, src_start); 1510 if (!vma) 1511 return -ENOENT; 1512 out_success: 1513 *src_vmap = vma; 1514 return 0; 1515 } 1516 1517 #ifdef CONFIG_PER_VMA_LOCK 1518 static int uffd_move_lock(struct mm_struct *mm, 1519 unsigned long dst_start, 1520 unsigned long src_start, 1521 struct vm_area_struct **dst_vmap, 1522 struct vm_area_struct **src_vmap) 1523 { 1524 struct vm_area_struct *vma; 1525 int err; 1526 1527 vma = uffd_lock_vma(mm, dst_start); 1528 if (IS_ERR(vma)) 1529 return PTR_ERR(vma); 1530 1531 *dst_vmap = vma; 1532 /* 1533 * Skip finding src_vma if src_start is in dst_vma. This also ensures 1534 * that we don't lock the same vma twice. 1535 */ 1536 if (src_start >= vma->vm_start && src_start < vma->vm_end) { 1537 *src_vmap = vma; 1538 return 0; 1539 } 1540 1541 /* 1542 * Using uffd_lock_vma() to get src_vma can lead to following deadlock: 1543 * 1544 * Thread1 Thread2 1545 * ------- ------- 1546 * vma_start_read(dst_vma) 1547 * mmap_write_lock(mm) 1548 * vma_start_write(src_vma) 1549 * vma_start_read(src_vma) 1550 * mmap_read_lock(mm) 1551 * vma_start_write(dst_vma) 1552 */ 1553 *src_vmap = lock_vma_under_rcu(mm, src_start); 1554 if (likely(*src_vmap)) 1555 return 0; 1556 1557 /* Undo any locking and retry in mmap_lock critical section */ 1558 vma_end_read(*dst_vmap); 1559 1560 mmap_read_lock(mm); 1561 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap); 1562 if (err) 1563 goto out; 1564 1565 if (!vma_start_read_locked(*dst_vmap)) { 1566 err = -EAGAIN; 1567 goto out; 1568 } 1569 1570 /* Nothing further to do if both vmas are locked. */ 1571 if (*dst_vmap == *src_vmap) 1572 goto out; 1573 1574 if (!vma_start_read_locked_nested(*src_vmap, SINGLE_DEPTH_NESTING)) { 1575 /* Undo dst_vmap locking if src_vmap failed to lock */ 1576 vma_end_read(*dst_vmap); 1577 err = -EAGAIN; 1578 } 1579 out: 1580 mmap_read_unlock(mm); 1581 return err; 1582 } 1583 1584 static void uffd_move_unlock(struct vm_area_struct *dst_vma, 1585 struct vm_area_struct *src_vma) 1586 { 1587 vma_end_read(src_vma); 1588 if (src_vma != dst_vma) 1589 vma_end_read(dst_vma); 1590 } 1591 1592 #else 1593 1594 static int uffd_move_lock(struct mm_struct *mm, 1595 unsigned long dst_start, 1596 unsigned long src_start, 1597 struct vm_area_struct **dst_vmap, 1598 struct vm_area_struct **src_vmap) 1599 { 1600 int err; 1601 1602 mmap_read_lock(mm); 1603 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap); 1604 if (err) 1605 mmap_read_unlock(mm); 1606 return err; 1607 } 1608 1609 static void uffd_move_unlock(struct vm_area_struct *dst_vma, 1610 struct vm_area_struct *src_vma) 1611 { 1612 mmap_assert_locked(src_vma->vm_mm); 1613 mmap_read_unlock(dst_vma->vm_mm); 1614 } 1615 #endif 1616 1617 /** 1618 * move_pages - move arbitrary anonymous pages of an existing vma 1619 * @ctx: pointer to the userfaultfd context 1620 * @dst_start: start of the destination virtual memory range 1621 * @src_start: start of the source virtual memory range 1622 * @len: length of the virtual memory range 1623 * @mode: flags from uffdio_move.mode 1624 * 1625 * It will either use the mmap_lock in read mode or per-vma locks 1626 * 1627 * move_pages() remaps arbitrary anonymous pages atomically in zero 1628 * copy. It only works on non shared anonymous pages because those can 1629 * be relocated without generating non linear anon_vmas in the rmap 1630 * code. 1631 * 1632 * It provides a zero copy mechanism to handle userspace page faults. 1633 * The source vma pages should have mapcount == 1, which can be 1634 * enforced by using madvise(MADV_DONTFORK) on src vma. 1635 * 1636 * The thread receiving the page during the userland page fault 1637 * will receive the faulting page in the source vma through the network, 1638 * storage or any other I/O device (MADV_DONTFORK in the source vma 1639 * avoids move_pages() to fail with -EBUSY if the process forks before 1640 * move_pages() is called), then it will call move_pages() to map the 1641 * page in the faulting address in the destination vma. 1642 * 1643 * This userfaultfd command works purely via pagetables, so it's the 1644 * most efficient way to move physical non shared anonymous pages 1645 * across different virtual addresses. Unlike mremap()/mmap()/munmap() 1646 * it does not create any new vmas. The mapping in the destination 1647 * address is atomic. 1648 * 1649 * It only works if the vma protection bits are identical from the 1650 * source and destination vma. 1651 * 1652 * It can remap non shared anonymous pages within the same vma too. 1653 * 1654 * If the source virtual memory range has any unmapped holes, or if 1655 * the destination virtual memory range is not a whole unmapped hole, 1656 * move_pages() will fail respectively with -ENOENT or -EEXIST. This 1657 * provides a very strict behavior to avoid any chance of memory 1658 * corruption going unnoticed if there are userland race conditions. 1659 * Only one thread should resolve the userland page fault at any given 1660 * time for any given faulting address. This means that if two threads 1661 * try to both call move_pages() on the same destination address at the 1662 * same time, the second thread will get an explicit error from this 1663 * command. 1664 * 1665 * The command retval will return "len" is successful. The command 1666 * however can be interrupted by fatal signals or errors. If 1667 * interrupted it will return the number of bytes successfully 1668 * remapped before the interruption if any, or the negative error if 1669 * none. It will never return zero. Either it will return an error or 1670 * an amount of bytes successfully moved. If the retval reports a 1671 * "short" remap, the move_pages() command should be repeated by 1672 * userland with src+retval, dst+reval, len-retval if it wants to know 1673 * about the error that interrupted it. 1674 * 1675 * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to 1676 * prevent -ENOENT errors to materialize if there are holes in the 1677 * source virtual range that is being remapped. The holes will be 1678 * accounted as successfully remapped in the retval of the 1679 * command. This is mostly useful to remap hugepage naturally aligned 1680 * virtual regions without knowing if there are transparent hugepage 1681 * in the regions or not, but preventing the risk of having to split 1682 * the hugepmd during the remap. 1683 * 1684 * If there's any rmap walk that is taking the anon_vma locks without 1685 * first obtaining the folio lock (the only current instance is 1686 * folio_referenced), they will have to verify if the folio->mapping 1687 * has changed after taking the anon_vma lock. If it changed they 1688 * should release the lock and retry obtaining a new anon_vma, because 1689 * it means the anon_vma was changed by move_pages() before the lock 1690 * could be obtained. This is the only additional complexity added to 1691 * the rmap code to provide this anonymous page remapping functionality. 1692 */ 1693 ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start, 1694 unsigned long src_start, unsigned long len, __u64 mode) 1695 { 1696 struct mm_struct *mm = ctx->mm; 1697 struct vm_area_struct *src_vma, *dst_vma; 1698 unsigned long src_addr, dst_addr; 1699 pmd_t *src_pmd, *dst_pmd; 1700 long err = -EINVAL; 1701 ssize_t moved = 0; 1702 1703 /* Sanitize the command parameters. */ 1704 if (WARN_ON_ONCE(src_start & ~PAGE_MASK) || 1705 WARN_ON_ONCE(dst_start & ~PAGE_MASK) || 1706 WARN_ON_ONCE(len & ~PAGE_MASK)) 1707 goto out; 1708 1709 /* Does the address range wrap, or is the span zero-sized? */ 1710 if (WARN_ON_ONCE(src_start + len <= src_start) || 1711 WARN_ON_ONCE(dst_start + len <= dst_start)) 1712 goto out; 1713 1714 err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma); 1715 if (err) 1716 goto out; 1717 1718 /* Re-check after taking map_changing_lock */ 1719 err = -EAGAIN; 1720 down_read(&ctx->map_changing_lock); 1721 if (likely(atomic_read(&ctx->mmap_changing))) 1722 goto out_unlock; 1723 /* 1724 * Make sure the vma is not shared, that the src and dst remap 1725 * ranges are both valid and fully within a single existing 1726 * vma. 1727 */ 1728 err = -EINVAL; 1729 if (src_vma->vm_flags & VM_SHARED) 1730 goto out_unlock; 1731 if (src_start + len > src_vma->vm_end) 1732 goto out_unlock; 1733 1734 if (dst_vma->vm_flags & VM_SHARED) 1735 goto out_unlock; 1736 if (dst_start + len > dst_vma->vm_end) 1737 goto out_unlock; 1738 1739 err = validate_move_areas(ctx, src_vma, dst_vma); 1740 if (err) 1741 goto out_unlock; 1742 1743 for (src_addr = src_start, dst_addr = dst_start; 1744 src_addr < src_start + len;) { 1745 spinlock_t *ptl; 1746 pmd_t dst_pmdval; 1747 unsigned long step_size; 1748 1749 /* 1750 * Below works because anonymous area would not have a 1751 * transparent huge PUD. If file-backed support is added, 1752 * that case would need to be handled here. 1753 */ 1754 src_pmd = mm_find_pmd(mm, src_addr); 1755 if (unlikely(!src_pmd)) { 1756 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) { 1757 err = -ENOENT; 1758 break; 1759 } 1760 src_pmd = mm_alloc_pmd(mm, src_addr); 1761 if (unlikely(!src_pmd)) { 1762 err = -ENOMEM; 1763 break; 1764 } 1765 } 1766 dst_pmd = mm_alloc_pmd(mm, dst_addr); 1767 if (unlikely(!dst_pmd)) { 1768 err = -ENOMEM; 1769 break; 1770 } 1771 1772 dst_pmdval = pmdp_get_lockless(dst_pmd); 1773 /* 1774 * If the dst_pmd is mapped as THP don't override it and just 1775 * be strict. If dst_pmd changes into TPH after this check, the 1776 * move_pages_huge_pmd() will detect the change and retry 1777 * while move_pages_pte() will detect the change and fail. 1778 */ 1779 if (unlikely(pmd_trans_huge(dst_pmdval))) { 1780 err = -EEXIST; 1781 break; 1782 } 1783 1784 ptl = pmd_trans_huge_lock(src_pmd, src_vma); 1785 if (ptl) { 1786 if (pmd_devmap(*src_pmd)) { 1787 spin_unlock(ptl); 1788 err = -ENOENT; 1789 break; 1790 } 1791 1792 /* Check if we can move the pmd without splitting it. */ 1793 if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) || 1794 !pmd_none(dst_pmdval)) { 1795 struct folio *folio = pmd_folio(*src_pmd); 1796 1797 if (!folio || (!is_huge_zero_folio(folio) && 1798 !PageAnonExclusive(&folio->page))) { 1799 spin_unlock(ptl); 1800 err = -EBUSY; 1801 break; 1802 } 1803 1804 spin_unlock(ptl); 1805 split_huge_pmd(src_vma, src_pmd, src_addr); 1806 /* The folio will be split by move_pages_pte() */ 1807 continue; 1808 } 1809 1810 err = move_pages_huge_pmd(mm, dst_pmd, src_pmd, 1811 dst_pmdval, dst_vma, src_vma, 1812 dst_addr, src_addr); 1813 step_size = HPAGE_PMD_SIZE; 1814 } else { 1815 if (pmd_none(*src_pmd)) { 1816 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) { 1817 err = -ENOENT; 1818 break; 1819 } 1820 if (unlikely(__pte_alloc(mm, src_pmd))) { 1821 err = -ENOMEM; 1822 break; 1823 } 1824 } 1825 1826 if (unlikely(pte_alloc(mm, dst_pmd))) { 1827 err = -ENOMEM; 1828 break; 1829 } 1830 1831 err = move_pages_pte(mm, dst_pmd, src_pmd, 1832 dst_vma, src_vma, 1833 dst_addr, src_addr, mode); 1834 step_size = PAGE_SIZE; 1835 } 1836 1837 cond_resched(); 1838 1839 if (fatal_signal_pending(current)) { 1840 /* Do not override an error */ 1841 if (!err || err == -EAGAIN) 1842 err = -EINTR; 1843 break; 1844 } 1845 1846 if (err) { 1847 if (err == -EAGAIN) 1848 continue; 1849 break; 1850 } 1851 1852 /* Proceed to the next page */ 1853 dst_addr += step_size; 1854 src_addr += step_size; 1855 moved += step_size; 1856 } 1857 1858 out_unlock: 1859 up_read(&ctx->map_changing_lock); 1860 uffd_move_unlock(dst_vma, src_vma); 1861 out: 1862 VM_WARN_ON(moved < 0); 1863 VM_WARN_ON(err > 0); 1864 VM_WARN_ON(!moved && !err); 1865 return moved ? moved : err; 1866 } 1867 1868 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 1869 vm_flags_t flags) 1870 { 1871 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 1872 1873 vm_flags_reset(vma, flags); 1874 /* 1875 * For shared mappings, we want to enable writenotify while 1876 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 1877 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 1878 */ 1879 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 1880 vma_set_page_prot(vma); 1881 } 1882 1883 static void userfaultfd_set_ctx(struct vm_area_struct *vma, 1884 struct userfaultfd_ctx *ctx, 1885 unsigned long flags) 1886 { 1887 vma_start_write(vma); 1888 vma->vm_userfaultfd_ctx = (struct vm_userfaultfd_ctx){ctx}; 1889 userfaultfd_set_vm_flags(vma, 1890 (vma->vm_flags & ~__VM_UFFD_FLAGS) | flags); 1891 } 1892 1893 void userfaultfd_reset_ctx(struct vm_area_struct *vma) 1894 { 1895 userfaultfd_set_ctx(vma, NULL, 0); 1896 } 1897 1898 struct vm_area_struct *userfaultfd_clear_vma(struct vma_iterator *vmi, 1899 struct vm_area_struct *prev, 1900 struct vm_area_struct *vma, 1901 unsigned long start, 1902 unsigned long end) 1903 { 1904 struct vm_area_struct *ret; 1905 bool give_up_on_oom = false; 1906 1907 /* 1908 * If we are modifying only and not splitting, just give up on the merge 1909 * if OOM prevents us from merging successfully. 1910 */ 1911 if (start == vma->vm_start && end == vma->vm_end) 1912 give_up_on_oom = true; 1913 1914 /* Reset ptes for the whole vma range if wr-protected */ 1915 if (userfaultfd_wp(vma)) 1916 uffd_wp_range(vma, start, end - start, false); 1917 1918 ret = vma_modify_flags_uffd(vmi, prev, vma, start, end, 1919 vma->vm_flags & ~__VM_UFFD_FLAGS, 1920 NULL_VM_UFFD_CTX, give_up_on_oom); 1921 1922 /* 1923 * In the vma_merge() successful mprotect-like case 8: 1924 * the next vma was merged into the current one and 1925 * the current one has not been updated yet. 1926 */ 1927 if (!IS_ERR(ret)) 1928 userfaultfd_reset_ctx(ret); 1929 1930 return ret; 1931 } 1932 1933 /* Assumes mmap write lock taken, and mm_struct pinned. */ 1934 int userfaultfd_register_range(struct userfaultfd_ctx *ctx, 1935 struct vm_area_struct *vma, 1936 unsigned long vm_flags, 1937 unsigned long start, unsigned long end, 1938 bool wp_async) 1939 { 1940 VMA_ITERATOR(vmi, ctx->mm, start); 1941 struct vm_area_struct *prev = vma_prev(&vmi); 1942 unsigned long vma_end; 1943 unsigned long new_flags; 1944 1945 if (vma->vm_start < start) 1946 prev = vma; 1947 1948 for_each_vma_range(vmi, vma, end) { 1949 cond_resched(); 1950 1951 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async)); 1952 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1953 vma->vm_userfaultfd_ctx.ctx != ctx); 1954 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1955 1956 /* 1957 * Nothing to do: this vma is already registered into this 1958 * userfaultfd and with the right tracking mode too. 1959 */ 1960 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1961 (vma->vm_flags & vm_flags) == vm_flags) 1962 goto skip; 1963 1964 if (vma->vm_start > start) 1965 start = vma->vm_start; 1966 vma_end = min(end, vma->vm_end); 1967 1968 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1969 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, 1970 new_flags, 1971 (struct vm_userfaultfd_ctx){ctx}, 1972 /* give_up_on_oom = */false); 1973 if (IS_ERR(vma)) 1974 return PTR_ERR(vma); 1975 1976 /* 1977 * In the vma_merge() successful mprotect-like case 8: 1978 * the next vma was merged into the current one and 1979 * the current one has not been updated yet. 1980 */ 1981 userfaultfd_set_ctx(vma, ctx, vm_flags); 1982 1983 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1984 hugetlb_unshare_all_pmds(vma); 1985 1986 skip: 1987 prev = vma; 1988 start = vma->vm_end; 1989 } 1990 1991 return 0; 1992 } 1993 1994 void userfaultfd_release_new(struct userfaultfd_ctx *ctx) 1995 { 1996 struct mm_struct *mm = ctx->mm; 1997 struct vm_area_struct *vma; 1998 VMA_ITERATOR(vmi, mm, 0); 1999 2000 /* the various vma->vm_userfaultfd_ctx still points to it */ 2001 mmap_write_lock(mm); 2002 for_each_vma(vmi, vma) { 2003 if (vma->vm_userfaultfd_ctx.ctx == ctx) 2004 userfaultfd_reset_ctx(vma); 2005 } 2006 mmap_write_unlock(mm); 2007 } 2008 2009 void userfaultfd_release_all(struct mm_struct *mm, 2010 struct userfaultfd_ctx *ctx) 2011 { 2012 struct vm_area_struct *vma, *prev; 2013 VMA_ITERATOR(vmi, mm, 0); 2014 2015 if (!mmget_not_zero(mm)) 2016 return; 2017 2018 /* 2019 * Flush page faults out of all CPUs. NOTE: all page faults 2020 * must be retried without returning VM_FAULT_SIGBUS if 2021 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 2022 * changes while handle_userfault released the mmap_lock. So 2023 * it's critical that released is set to true (above), before 2024 * taking the mmap_lock for writing. 2025 */ 2026 mmap_write_lock(mm); 2027 prev = NULL; 2028 for_each_vma(vmi, vma) { 2029 cond_resched(); 2030 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 2031 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 2032 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 2033 prev = vma; 2034 continue; 2035 } 2036 2037 vma = userfaultfd_clear_vma(&vmi, prev, vma, 2038 vma->vm_start, vma->vm_end); 2039 prev = vma; 2040 } 2041 mmap_write_unlock(mm); 2042 mmput(mm); 2043 } 2044