1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/userfaultfd.c 4 * 5 * Copyright (C) 2015 Red Hat, Inc. 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/userfaultfd_k.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/hugetlb.h> 17 #include <linux/shmem_fs.h> 18 #include <asm/tlbflush.h> 19 #include <asm/tlb.h> 20 #include "internal.h" 21 22 static __always_inline 23 bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end) 24 { 25 /* Make sure that the dst range is fully within dst_vma. */ 26 if (dst_end > dst_vma->vm_end) 27 return false; 28 29 /* 30 * Check the vma is registered in uffd, this is required to 31 * enforce the VM_MAYWRITE check done at uffd registration 32 * time. 33 */ 34 if (!dst_vma->vm_userfaultfd_ctx.ctx) 35 return false; 36 37 return true; 38 } 39 40 static __always_inline 41 struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm, 42 unsigned long addr) 43 { 44 struct vm_area_struct *vma; 45 46 mmap_assert_locked(mm); 47 vma = vma_lookup(mm, addr); 48 if (!vma) 49 vma = ERR_PTR(-ENOENT); 50 else if (!(vma->vm_flags & VM_SHARED) && 51 unlikely(anon_vma_prepare(vma))) 52 vma = ERR_PTR(-ENOMEM); 53 54 return vma; 55 } 56 57 #ifdef CONFIG_PER_VMA_LOCK 58 /* 59 * uffd_lock_vma() - Lookup and lock vma corresponding to @address. 60 * @mm: mm to search vma in. 61 * @address: address that the vma should contain. 62 * 63 * Should be called without holding mmap_lock. 64 * 65 * Return: A locked vma containing @address, -ENOENT if no vma is found, or 66 * -ENOMEM if anon_vma couldn't be allocated. 67 */ 68 static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm, 69 unsigned long address) 70 { 71 struct vm_area_struct *vma; 72 73 vma = lock_vma_under_rcu(mm, address); 74 if (vma) { 75 /* 76 * We know we're going to need to use anon_vma, so check 77 * that early. 78 */ 79 if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma)) 80 vma_end_read(vma); 81 else 82 return vma; 83 } 84 85 mmap_read_lock(mm); 86 vma = find_vma_and_prepare_anon(mm, address); 87 if (!IS_ERR(vma)) { 88 /* 89 * We cannot use vma_start_read() as it may fail due to 90 * false locked (see comment in vma_start_read()). We 91 * can avoid that by directly locking vm_lock under 92 * mmap_lock, which guarantees that nobody can lock the 93 * vma for write (vma_start_write()) under us. 94 */ 95 down_read(&vma->vm_lock->lock); 96 } 97 98 mmap_read_unlock(mm); 99 return vma; 100 } 101 102 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm, 103 unsigned long dst_start, 104 unsigned long len) 105 { 106 struct vm_area_struct *dst_vma; 107 108 dst_vma = uffd_lock_vma(dst_mm, dst_start); 109 if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len)) 110 return dst_vma; 111 112 vma_end_read(dst_vma); 113 return ERR_PTR(-ENOENT); 114 } 115 116 static void uffd_mfill_unlock(struct vm_area_struct *vma) 117 { 118 vma_end_read(vma); 119 } 120 121 #else 122 123 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm, 124 unsigned long dst_start, 125 unsigned long len) 126 { 127 struct vm_area_struct *dst_vma; 128 129 mmap_read_lock(dst_mm); 130 dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start); 131 if (IS_ERR(dst_vma)) 132 goto out_unlock; 133 134 if (validate_dst_vma(dst_vma, dst_start + len)) 135 return dst_vma; 136 137 dst_vma = ERR_PTR(-ENOENT); 138 out_unlock: 139 mmap_read_unlock(dst_mm); 140 return dst_vma; 141 } 142 143 static void uffd_mfill_unlock(struct vm_area_struct *vma) 144 { 145 mmap_read_unlock(vma->vm_mm); 146 } 147 #endif 148 149 /* Check if dst_addr is outside of file's size. Must be called with ptl held. */ 150 static bool mfill_file_over_size(struct vm_area_struct *dst_vma, 151 unsigned long dst_addr) 152 { 153 struct inode *inode; 154 pgoff_t offset, max_off; 155 156 if (!dst_vma->vm_file) 157 return false; 158 159 inode = dst_vma->vm_file->f_inode; 160 offset = linear_page_index(dst_vma, dst_addr); 161 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 162 return offset >= max_off; 163 } 164 165 /* 166 * Install PTEs, to map dst_addr (within dst_vma) to page. 167 * 168 * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem 169 * and anon, and for both shared and private VMAs. 170 */ 171 int mfill_atomic_install_pte(pmd_t *dst_pmd, 172 struct vm_area_struct *dst_vma, 173 unsigned long dst_addr, struct page *page, 174 bool newly_allocated, uffd_flags_t flags) 175 { 176 int ret; 177 struct mm_struct *dst_mm = dst_vma->vm_mm; 178 pte_t _dst_pte, *dst_pte; 179 bool writable = dst_vma->vm_flags & VM_WRITE; 180 bool vm_shared = dst_vma->vm_flags & VM_SHARED; 181 spinlock_t *ptl; 182 struct folio *folio = page_folio(page); 183 bool page_in_cache = folio_mapping(folio); 184 185 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 186 _dst_pte = pte_mkdirty(_dst_pte); 187 if (page_in_cache && !vm_shared) 188 writable = false; 189 if (writable) 190 _dst_pte = pte_mkwrite(_dst_pte, dst_vma); 191 if (flags & MFILL_ATOMIC_WP) 192 _dst_pte = pte_mkuffd_wp(_dst_pte); 193 194 ret = -EAGAIN; 195 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 196 if (!dst_pte) 197 goto out; 198 199 if (mfill_file_over_size(dst_vma, dst_addr)) { 200 ret = -EFAULT; 201 goto out_unlock; 202 } 203 204 ret = -EEXIST; 205 /* 206 * We allow to overwrite a pte marker: consider when both MISSING|WP 207 * registered, we firstly wr-protect a none pte which has no page cache 208 * page backing it, then access the page. 209 */ 210 if (!pte_none_mostly(ptep_get(dst_pte))) 211 goto out_unlock; 212 213 if (page_in_cache) { 214 /* Usually, cache pages are already added to LRU */ 215 if (newly_allocated) 216 folio_add_lru(folio); 217 folio_add_file_rmap_pte(folio, page, dst_vma); 218 } else { 219 folio_add_new_anon_rmap(folio, dst_vma, dst_addr); 220 folio_add_lru_vma(folio, dst_vma); 221 } 222 223 /* 224 * Must happen after rmap, as mm_counter() checks mapping (via 225 * PageAnon()), which is set by __page_set_anon_rmap(). 226 */ 227 inc_mm_counter(dst_mm, mm_counter(folio)); 228 229 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 230 231 /* No need to invalidate - it was non-present before */ 232 update_mmu_cache(dst_vma, dst_addr, dst_pte); 233 ret = 0; 234 out_unlock: 235 pte_unmap_unlock(dst_pte, ptl); 236 out: 237 return ret; 238 } 239 240 static int mfill_atomic_pte_copy(pmd_t *dst_pmd, 241 struct vm_area_struct *dst_vma, 242 unsigned long dst_addr, 243 unsigned long src_addr, 244 uffd_flags_t flags, 245 struct folio **foliop) 246 { 247 void *kaddr; 248 int ret; 249 struct folio *folio; 250 251 if (!*foliop) { 252 ret = -ENOMEM; 253 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma, 254 dst_addr, false); 255 if (!folio) 256 goto out; 257 258 kaddr = kmap_local_folio(folio, 0); 259 /* 260 * The read mmap_lock is held here. Despite the 261 * mmap_lock being read recursive a deadlock is still 262 * possible if a writer has taken a lock. For example: 263 * 264 * process A thread 1 takes read lock on own mmap_lock 265 * process A thread 2 calls mmap, blocks taking write lock 266 * process B thread 1 takes page fault, read lock on own mmap lock 267 * process B thread 2 calls mmap, blocks taking write lock 268 * process A thread 1 blocks taking read lock on process B 269 * process B thread 1 blocks taking read lock on process A 270 * 271 * Disable page faults to prevent potential deadlock 272 * and retry the copy outside the mmap_lock. 273 */ 274 pagefault_disable(); 275 ret = copy_from_user(kaddr, (const void __user *) src_addr, 276 PAGE_SIZE); 277 pagefault_enable(); 278 kunmap_local(kaddr); 279 280 /* fallback to copy_from_user outside mmap_lock */ 281 if (unlikely(ret)) { 282 ret = -ENOENT; 283 *foliop = folio; 284 /* don't free the page */ 285 goto out; 286 } 287 288 flush_dcache_folio(folio); 289 } else { 290 folio = *foliop; 291 *foliop = NULL; 292 } 293 294 /* 295 * The memory barrier inside __folio_mark_uptodate makes sure that 296 * preceding stores to the page contents become visible before 297 * the set_pte_at() write. 298 */ 299 __folio_mark_uptodate(folio); 300 301 ret = -ENOMEM; 302 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL)) 303 goto out_release; 304 305 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 306 &folio->page, true, flags); 307 if (ret) 308 goto out_release; 309 out: 310 return ret; 311 out_release: 312 folio_put(folio); 313 goto out; 314 } 315 316 static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd, 317 struct vm_area_struct *dst_vma, 318 unsigned long dst_addr) 319 { 320 struct folio *folio; 321 int ret = -ENOMEM; 322 323 folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr); 324 if (!folio) 325 return ret; 326 327 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL)) 328 goto out_put; 329 330 /* 331 * The memory barrier inside __folio_mark_uptodate makes sure that 332 * zeroing out the folio become visible before mapping the page 333 * using set_pte_at(). See do_anonymous_page(). 334 */ 335 __folio_mark_uptodate(folio); 336 337 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 338 &folio->page, true, 0); 339 if (ret) 340 goto out_put; 341 342 return 0; 343 out_put: 344 folio_put(folio); 345 return ret; 346 } 347 348 static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd, 349 struct vm_area_struct *dst_vma, 350 unsigned long dst_addr) 351 { 352 pte_t _dst_pte, *dst_pte; 353 spinlock_t *ptl; 354 int ret; 355 356 if (mm_forbids_zeropage(dst_vma->vm_mm)) 357 return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr); 358 359 _dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr), 360 dst_vma->vm_page_prot)); 361 ret = -EAGAIN; 362 dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl); 363 if (!dst_pte) 364 goto out; 365 if (mfill_file_over_size(dst_vma, dst_addr)) { 366 ret = -EFAULT; 367 goto out_unlock; 368 } 369 ret = -EEXIST; 370 if (!pte_none(ptep_get(dst_pte))) 371 goto out_unlock; 372 set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte); 373 /* No need to invalidate - it was non-present before */ 374 update_mmu_cache(dst_vma, dst_addr, dst_pte); 375 ret = 0; 376 out_unlock: 377 pte_unmap_unlock(dst_pte, ptl); 378 out: 379 return ret; 380 } 381 382 /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */ 383 static int mfill_atomic_pte_continue(pmd_t *dst_pmd, 384 struct vm_area_struct *dst_vma, 385 unsigned long dst_addr, 386 uffd_flags_t flags) 387 { 388 struct inode *inode = file_inode(dst_vma->vm_file); 389 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 390 struct folio *folio; 391 struct page *page; 392 int ret; 393 394 ret = shmem_get_folio(inode, pgoff, &folio, SGP_NOALLOC); 395 /* Our caller expects us to return -EFAULT if we failed to find folio */ 396 if (ret == -ENOENT) 397 ret = -EFAULT; 398 if (ret) 399 goto out; 400 if (!folio) { 401 ret = -EFAULT; 402 goto out; 403 } 404 405 page = folio_file_page(folio, pgoff); 406 if (PageHWPoison(page)) { 407 ret = -EIO; 408 goto out_release; 409 } 410 411 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 412 page, false, flags); 413 if (ret) 414 goto out_release; 415 416 folio_unlock(folio); 417 ret = 0; 418 out: 419 return ret; 420 out_release: 421 folio_unlock(folio); 422 folio_put(folio); 423 goto out; 424 } 425 426 /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */ 427 static int mfill_atomic_pte_poison(pmd_t *dst_pmd, 428 struct vm_area_struct *dst_vma, 429 unsigned long dst_addr, 430 uffd_flags_t flags) 431 { 432 int ret; 433 struct mm_struct *dst_mm = dst_vma->vm_mm; 434 pte_t _dst_pte, *dst_pte; 435 spinlock_t *ptl; 436 437 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 438 ret = -EAGAIN; 439 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 440 if (!dst_pte) 441 goto out; 442 443 if (mfill_file_over_size(dst_vma, dst_addr)) { 444 ret = -EFAULT; 445 goto out_unlock; 446 } 447 448 ret = -EEXIST; 449 /* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */ 450 if (!pte_none(ptep_get(dst_pte))) 451 goto out_unlock; 452 453 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 454 455 /* No need to invalidate - it was non-present before */ 456 update_mmu_cache(dst_vma, dst_addr, dst_pte); 457 ret = 0; 458 out_unlock: 459 pte_unmap_unlock(dst_pte, ptl); 460 out: 461 return ret; 462 } 463 464 static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address) 465 { 466 pgd_t *pgd; 467 p4d_t *p4d; 468 pud_t *pud; 469 470 pgd = pgd_offset(mm, address); 471 p4d = p4d_alloc(mm, pgd, address); 472 if (!p4d) 473 return NULL; 474 pud = pud_alloc(mm, p4d, address); 475 if (!pud) 476 return NULL; 477 /* 478 * Note that we didn't run this because the pmd was 479 * missing, the *pmd may be already established and in 480 * turn it may also be a trans_huge_pmd. 481 */ 482 return pmd_alloc(mm, pud, address); 483 } 484 485 #ifdef CONFIG_HUGETLB_PAGE 486 /* 487 * mfill_atomic processing for HUGETLB vmas. Note that this routine is 488 * called with either vma-lock or mmap_lock held, it will release the lock 489 * before returning. 490 */ 491 static __always_inline ssize_t mfill_atomic_hugetlb( 492 struct userfaultfd_ctx *ctx, 493 struct vm_area_struct *dst_vma, 494 unsigned long dst_start, 495 unsigned long src_start, 496 unsigned long len, 497 uffd_flags_t flags) 498 { 499 struct mm_struct *dst_mm = dst_vma->vm_mm; 500 ssize_t err; 501 pte_t *dst_pte; 502 unsigned long src_addr, dst_addr; 503 long copied; 504 struct folio *folio; 505 unsigned long vma_hpagesize; 506 pgoff_t idx; 507 u32 hash; 508 struct address_space *mapping; 509 510 /* 511 * There is no default zero huge page for all huge page sizes as 512 * supported by hugetlb. A PMD_SIZE huge pages may exist as used 513 * by THP. Since we can not reliably insert a zero page, this 514 * feature is not supported. 515 */ 516 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) { 517 up_read(&ctx->map_changing_lock); 518 uffd_mfill_unlock(dst_vma); 519 return -EINVAL; 520 } 521 522 src_addr = src_start; 523 dst_addr = dst_start; 524 copied = 0; 525 folio = NULL; 526 vma_hpagesize = vma_kernel_pagesize(dst_vma); 527 528 /* 529 * Validate alignment based on huge page size 530 */ 531 err = -EINVAL; 532 if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1)) 533 goto out_unlock; 534 535 retry: 536 /* 537 * On routine entry dst_vma is set. If we had to drop mmap_lock and 538 * retry, dst_vma will be set to NULL and we must lookup again. 539 */ 540 if (!dst_vma) { 541 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len); 542 if (IS_ERR(dst_vma)) { 543 err = PTR_ERR(dst_vma); 544 goto out; 545 } 546 547 err = -ENOENT; 548 if (!is_vm_hugetlb_page(dst_vma)) 549 goto out_unlock_vma; 550 551 err = -EINVAL; 552 if (vma_hpagesize != vma_kernel_pagesize(dst_vma)) 553 goto out_unlock_vma; 554 555 /* 556 * If memory mappings are changing because of non-cooperative 557 * operation (e.g. mremap) running in parallel, bail out and 558 * request the user to retry later 559 */ 560 down_read(&ctx->map_changing_lock); 561 err = -EAGAIN; 562 if (atomic_read(&ctx->mmap_changing)) 563 goto out_unlock; 564 } 565 566 while (src_addr < src_start + len) { 567 BUG_ON(dst_addr >= dst_start + len); 568 569 /* 570 * Serialize via vma_lock and hugetlb_fault_mutex. 571 * vma_lock ensures the dst_pte remains valid even 572 * in the case of shared pmds. fault mutex prevents 573 * races with other faulting threads. 574 */ 575 idx = linear_page_index(dst_vma, dst_addr); 576 mapping = dst_vma->vm_file->f_mapping; 577 hash = hugetlb_fault_mutex_hash(mapping, idx); 578 mutex_lock(&hugetlb_fault_mutex_table[hash]); 579 hugetlb_vma_lock_read(dst_vma); 580 581 err = -ENOMEM; 582 dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize); 583 if (!dst_pte) { 584 hugetlb_vma_unlock_read(dst_vma); 585 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 586 goto out_unlock; 587 } 588 589 if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE) && 590 !huge_pte_none_mostly(huge_ptep_get(dst_pte))) { 591 err = -EEXIST; 592 hugetlb_vma_unlock_read(dst_vma); 593 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 594 goto out_unlock; 595 } 596 597 err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr, 598 src_addr, flags, &folio); 599 600 hugetlb_vma_unlock_read(dst_vma); 601 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 602 603 cond_resched(); 604 605 if (unlikely(err == -ENOENT)) { 606 up_read(&ctx->map_changing_lock); 607 uffd_mfill_unlock(dst_vma); 608 BUG_ON(!folio); 609 610 err = copy_folio_from_user(folio, 611 (const void __user *)src_addr, true); 612 if (unlikely(err)) { 613 err = -EFAULT; 614 goto out; 615 } 616 617 dst_vma = NULL; 618 goto retry; 619 } else 620 BUG_ON(folio); 621 622 if (!err) { 623 dst_addr += vma_hpagesize; 624 src_addr += vma_hpagesize; 625 copied += vma_hpagesize; 626 627 if (fatal_signal_pending(current)) 628 err = -EINTR; 629 } 630 if (err) 631 break; 632 } 633 634 out_unlock: 635 up_read(&ctx->map_changing_lock); 636 out_unlock_vma: 637 uffd_mfill_unlock(dst_vma); 638 out: 639 if (folio) 640 folio_put(folio); 641 BUG_ON(copied < 0); 642 BUG_ON(err > 0); 643 BUG_ON(!copied && !err); 644 return copied ? copied : err; 645 } 646 #else /* !CONFIG_HUGETLB_PAGE */ 647 /* fail at build time if gcc attempts to use this */ 648 extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx, 649 struct vm_area_struct *dst_vma, 650 unsigned long dst_start, 651 unsigned long src_start, 652 unsigned long len, 653 uffd_flags_t flags); 654 #endif /* CONFIG_HUGETLB_PAGE */ 655 656 static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd, 657 struct vm_area_struct *dst_vma, 658 unsigned long dst_addr, 659 unsigned long src_addr, 660 uffd_flags_t flags, 661 struct folio **foliop) 662 { 663 ssize_t err; 664 665 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) { 666 return mfill_atomic_pte_continue(dst_pmd, dst_vma, 667 dst_addr, flags); 668 } else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 669 return mfill_atomic_pte_poison(dst_pmd, dst_vma, 670 dst_addr, flags); 671 } 672 673 /* 674 * The normal page fault path for a shmem will invoke the 675 * fault, fill the hole in the file and COW it right away. The 676 * result generates plain anonymous memory. So when we are 677 * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll 678 * generate anonymous memory directly without actually filling 679 * the hole. For the MAP_PRIVATE case the robustness check 680 * only happens in the pagetable (to verify it's still none) 681 * and not in the radix tree. 682 */ 683 if (!(dst_vma->vm_flags & VM_SHARED)) { 684 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) 685 err = mfill_atomic_pte_copy(dst_pmd, dst_vma, 686 dst_addr, src_addr, 687 flags, foliop); 688 else 689 err = mfill_atomic_pte_zeropage(dst_pmd, 690 dst_vma, dst_addr); 691 } else { 692 err = shmem_mfill_atomic_pte(dst_pmd, dst_vma, 693 dst_addr, src_addr, 694 flags, foliop); 695 } 696 697 return err; 698 } 699 700 static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx, 701 unsigned long dst_start, 702 unsigned long src_start, 703 unsigned long len, 704 uffd_flags_t flags) 705 { 706 struct mm_struct *dst_mm = ctx->mm; 707 struct vm_area_struct *dst_vma; 708 ssize_t err; 709 pmd_t *dst_pmd; 710 unsigned long src_addr, dst_addr; 711 long copied; 712 struct folio *folio; 713 714 /* 715 * Sanitize the command parameters: 716 */ 717 BUG_ON(dst_start & ~PAGE_MASK); 718 BUG_ON(len & ~PAGE_MASK); 719 720 /* Does the address range wrap, or is the span zero-sized? */ 721 BUG_ON(src_start + len <= src_start); 722 BUG_ON(dst_start + len <= dst_start); 723 724 src_addr = src_start; 725 dst_addr = dst_start; 726 copied = 0; 727 folio = NULL; 728 retry: 729 /* 730 * Make sure the vma is not shared, that the dst range is 731 * both valid and fully within a single existing vma. 732 */ 733 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len); 734 if (IS_ERR(dst_vma)) { 735 err = PTR_ERR(dst_vma); 736 goto out; 737 } 738 739 /* 740 * If memory mappings are changing because of non-cooperative 741 * operation (e.g. mremap) running in parallel, bail out and 742 * request the user to retry later 743 */ 744 down_read(&ctx->map_changing_lock); 745 err = -EAGAIN; 746 if (atomic_read(&ctx->mmap_changing)) 747 goto out_unlock; 748 749 err = -EINVAL; 750 /* 751 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but 752 * it will overwrite vm_ops, so vma_is_anonymous must return false. 753 */ 754 if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) && 755 dst_vma->vm_flags & VM_SHARED)) 756 goto out_unlock; 757 758 /* 759 * validate 'mode' now that we know the dst_vma: don't allow 760 * a wrprotect copy if the userfaultfd didn't register as WP. 761 */ 762 if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP)) 763 goto out_unlock; 764 765 /* 766 * If this is a HUGETLB vma, pass off to appropriate routine 767 */ 768 if (is_vm_hugetlb_page(dst_vma)) 769 return mfill_atomic_hugetlb(ctx, dst_vma, dst_start, 770 src_start, len, flags); 771 772 if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma)) 773 goto out_unlock; 774 if (!vma_is_shmem(dst_vma) && 775 uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) 776 goto out_unlock; 777 778 while (src_addr < src_start + len) { 779 pmd_t dst_pmdval; 780 781 BUG_ON(dst_addr >= dst_start + len); 782 783 dst_pmd = mm_alloc_pmd(dst_mm, dst_addr); 784 if (unlikely(!dst_pmd)) { 785 err = -ENOMEM; 786 break; 787 } 788 789 dst_pmdval = pmdp_get_lockless(dst_pmd); 790 /* 791 * If the dst_pmd is mapped as THP don't 792 * override it and just be strict. 793 */ 794 if (unlikely(pmd_trans_huge(dst_pmdval))) { 795 err = -EEXIST; 796 break; 797 } 798 if (unlikely(pmd_none(dst_pmdval)) && 799 unlikely(__pte_alloc(dst_mm, dst_pmd))) { 800 err = -ENOMEM; 801 break; 802 } 803 /* If an huge pmd materialized from under us fail */ 804 if (unlikely(pmd_trans_huge(*dst_pmd))) { 805 err = -EFAULT; 806 break; 807 } 808 809 BUG_ON(pmd_none(*dst_pmd)); 810 BUG_ON(pmd_trans_huge(*dst_pmd)); 811 812 err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr, 813 src_addr, flags, &folio); 814 cond_resched(); 815 816 if (unlikely(err == -ENOENT)) { 817 void *kaddr; 818 819 up_read(&ctx->map_changing_lock); 820 uffd_mfill_unlock(dst_vma); 821 BUG_ON(!folio); 822 823 kaddr = kmap_local_folio(folio, 0); 824 err = copy_from_user(kaddr, 825 (const void __user *) src_addr, 826 PAGE_SIZE); 827 kunmap_local(kaddr); 828 if (unlikely(err)) { 829 err = -EFAULT; 830 goto out; 831 } 832 flush_dcache_folio(folio); 833 goto retry; 834 } else 835 BUG_ON(folio); 836 837 if (!err) { 838 dst_addr += PAGE_SIZE; 839 src_addr += PAGE_SIZE; 840 copied += PAGE_SIZE; 841 842 if (fatal_signal_pending(current)) 843 err = -EINTR; 844 } 845 if (err) 846 break; 847 } 848 849 out_unlock: 850 up_read(&ctx->map_changing_lock); 851 uffd_mfill_unlock(dst_vma); 852 out: 853 if (folio) 854 folio_put(folio); 855 BUG_ON(copied < 0); 856 BUG_ON(err > 0); 857 BUG_ON(!copied && !err); 858 return copied ? copied : err; 859 } 860 861 ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start, 862 unsigned long src_start, unsigned long len, 863 uffd_flags_t flags) 864 { 865 return mfill_atomic(ctx, dst_start, src_start, len, 866 uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY)); 867 } 868 869 ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx, 870 unsigned long start, 871 unsigned long len) 872 { 873 return mfill_atomic(ctx, start, 0, len, 874 uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE)); 875 } 876 877 ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start, 878 unsigned long len, uffd_flags_t flags) 879 { 880 881 /* 882 * A caller might reasonably assume that UFFDIO_CONTINUE contains an 883 * smp_wmb() to ensure that any writes to the about-to-be-mapped page by 884 * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to 885 * subsequent loads from the page through the newly mapped address range. 886 */ 887 smp_wmb(); 888 889 return mfill_atomic(ctx, start, 0, len, 890 uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE)); 891 } 892 893 ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start, 894 unsigned long len, uffd_flags_t flags) 895 { 896 return mfill_atomic(ctx, start, 0, len, 897 uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON)); 898 } 899 900 long uffd_wp_range(struct vm_area_struct *dst_vma, 901 unsigned long start, unsigned long len, bool enable_wp) 902 { 903 unsigned int mm_cp_flags; 904 struct mmu_gather tlb; 905 long ret; 906 907 VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end, 908 "The address range exceeds VMA boundary.\n"); 909 if (enable_wp) 910 mm_cp_flags = MM_CP_UFFD_WP; 911 else 912 mm_cp_flags = MM_CP_UFFD_WP_RESOLVE; 913 914 /* 915 * vma->vm_page_prot already reflects that uffd-wp is enabled for this 916 * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed 917 * to be write-protected as default whenever protection changes. 918 * Try upgrading write permissions manually. 919 */ 920 if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma)) 921 mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE; 922 tlb_gather_mmu(&tlb, dst_vma->vm_mm); 923 ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags); 924 tlb_finish_mmu(&tlb); 925 926 return ret; 927 } 928 929 int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start, 930 unsigned long len, bool enable_wp) 931 { 932 struct mm_struct *dst_mm = ctx->mm; 933 unsigned long end = start + len; 934 unsigned long _start, _end; 935 struct vm_area_struct *dst_vma; 936 unsigned long page_mask; 937 long err; 938 VMA_ITERATOR(vmi, dst_mm, start); 939 940 /* 941 * Sanitize the command parameters: 942 */ 943 BUG_ON(start & ~PAGE_MASK); 944 BUG_ON(len & ~PAGE_MASK); 945 946 /* Does the address range wrap, or is the span zero-sized? */ 947 BUG_ON(start + len <= start); 948 949 mmap_read_lock(dst_mm); 950 951 /* 952 * If memory mappings are changing because of non-cooperative 953 * operation (e.g. mremap) running in parallel, bail out and 954 * request the user to retry later 955 */ 956 down_read(&ctx->map_changing_lock); 957 err = -EAGAIN; 958 if (atomic_read(&ctx->mmap_changing)) 959 goto out_unlock; 960 961 err = -ENOENT; 962 for_each_vma_range(vmi, dst_vma, end) { 963 964 if (!userfaultfd_wp(dst_vma)) { 965 err = -ENOENT; 966 break; 967 } 968 969 if (is_vm_hugetlb_page(dst_vma)) { 970 err = -EINVAL; 971 page_mask = vma_kernel_pagesize(dst_vma) - 1; 972 if ((start & page_mask) || (len & page_mask)) 973 break; 974 } 975 976 _start = max(dst_vma->vm_start, start); 977 _end = min(dst_vma->vm_end, end); 978 979 err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp); 980 981 /* Return 0 on success, <0 on failures */ 982 if (err < 0) 983 break; 984 err = 0; 985 } 986 out_unlock: 987 up_read(&ctx->map_changing_lock); 988 mmap_read_unlock(dst_mm); 989 return err; 990 } 991 992 993 void double_pt_lock(spinlock_t *ptl1, 994 spinlock_t *ptl2) 995 __acquires(ptl1) 996 __acquires(ptl2) 997 { 998 spinlock_t *ptl_tmp; 999 1000 if (ptl1 > ptl2) { 1001 /* exchange ptl1 and ptl2 */ 1002 ptl_tmp = ptl1; 1003 ptl1 = ptl2; 1004 ptl2 = ptl_tmp; 1005 } 1006 /* lock in virtual address order to avoid lock inversion */ 1007 spin_lock(ptl1); 1008 if (ptl1 != ptl2) 1009 spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING); 1010 else 1011 __acquire(ptl2); 1012 } 1013 1014 void double_pt_unlock(spinlock_t *ptl1, 1015 spinlock_t *ptl2) 1016 __releases(ptl1) 1017 __releases(ptl2) 1018 { 1019 spin_unlock(ptl1); 1020 if (ptl1 != ptl2) 1021 spin_unlock(ptl2); 1022 else 1023 __release(ptl2); 1024 } 1025 1026 1027 static int move_present_pte(struct mm_struct *mm, 1028 struct vm_area_struct *dst_vma, 1029 struct vm_area_struct *src_vma, 1030 unsigned long dst_addr, unsigned long src_addr, 1031 pte_t *dst_pte, pte_t *src_pte, 1032 pte_t orig_dst_pte, pte_t orig_src_pte, 1033 spinlock_t *dst_ptl, spinlock_t *src_ptl, 1034 struct folio *src_folio) 1035 { 1036 int err = 0; 1037 1038 double_pt_lock(dst_ptl, src_ptl); 1039 1040 if (!pte_same(ptep_get(src_pte), orig_src_pte) || 1041 !pte_same(ptep_get(dst_pte), orig_dst_pte)) { 1042 err = -EAGAIN; 1043 goto out; 1044 } 1045 if (folio_test_large(src_folio) || 1046 folio_maybe_dma_pinned(src_folio) || 1047 !PageAnonExclusive(&src_folio->page)) { 1048 err = -EBUSY; 1049 goto out; 1050 } 1051 1052 orig_src_pte = ptep_clear_flush(src_vma, src_addr, src_pte); 1053 /* Folio got pinned from under us. Put it back and fail the move. */ 1054 if (folio_maybe_dma_pinned(src_folio)) { 1055 set_pte_at(mm, src_addr, src_pte, orig_src_pte); 1056 err = -EBUSY; 1057 goto out; 1058 } 1059 1060 folio_move_anon_rmap(src_folio, dst_vma); 1061 src_folio->index = linear_page_index(dst_vma, dst_addr); 1062 1063 orig_dst_pte = mk_pte(&src_folio->page, dst_vma->vm_page_prot); 1064 /* Follow mremap() behavior and treat the entry dirty after the move */ 1065 orig_dst_pte = pte_mkwrite(pte_mkdirty(orig_dst_pte), dst_vma); 1066 1067 set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte); 1068 out: 1069 double_pt_unlock(dst_ptl, src_ptl); 1070 return err; 1071 } 1072 1073 static int move_swap_pte(struct mm_struct *mm, 1074 unsigned long dst_addr, unsigned long src_addr, 1075 pte_t *dst_pte, pte_t *src_pte, 1076 pte_t orig_dst_pte, pte_t orig_src_pte, 1077 spinlock_t *dst_ptl, spinlock_t *src_ptl) 1078 { 1079 if (!pte_swp_exclusive(orig_src_pte)) 1080 return -EBUSY; 1081 1082 double_pt_lock(dst_ptl, src_ptl); 1083 1084 if (!pte_same(ptep_get(src_pte), orig_src_pte) || 1085 !pte_same(ptep_get(dst_pte), orig_dst_pte)) { 1086 double_pt_unlock(dst_ptl, src_ptl); 1087 return -EAGAIN; 1088 } 1089 1090 orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte); 1091 set_pte_at(mm, dst_addr, dst_pte, orig_src_pte); 1092 double_pt_unlock(dst_ptl, src_ptl); 1093 1094 return 0; 1095 } 1096 1097 static int move_zeropage_pte(struct mm_struct *mm, 1098 struct vm_area_struct *dst_vma, 1099 struct vm_area_struct *src_vma, 1100 unsigned long dst_addr, unsigned long src_addr, 1101 pte_t *dst_pte, pte_t *src_pte, 1102 pte_t orig_dst_pte, pte_t orig_src_pte, 1103 spinlock_t *dst_ptl, spinlock_t *src_ptl) 1104 { 1105 pte_t zero_pte; 1106 1107 double_pt_lock(dst_ptl, src_ptl); 1108 if (!pte_same(ptep_get(src_pte), orig_src_pte) || 1109 !pte_same(ptep_get(dst_pte), orig_dst_pte)) { 1110 double_pt_unlock(dst_ptl, src_ptl); 1111 return -EAGAIN; 1112 } 1113 1114 zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr), 1115 dst_vma->vm_page_prot)); 1116 ptep_clear_flush(src_vma, src_addr, src_pte); 1117 set_pte_at(mm, dst_addr, dst_pte, zero_pte); 1118 double_pt_unlock(dst_ptl, src_ptl); 1119 1120 return 0; 1121 } 1122 1123 1124 /* 1125 * The mmap_lock for reading is held by the caller. Just move the page 1126 * from src_pmd to dst_pmd if possible, and return true if succeeded 1127 * in moving the page. 1128 */ 1129 static int move_pages_pte(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, 1130 struct vm_area_struct *dst_vma, 1131 struct vm_area_struct *src_vma, 1132 unsigned long dst_addr, unsigned long src_addr, 1133 __u64 mode) 1134 { 1135 swp_entry_t entry; 1136 pte_t orig_src_pte, orig_dst_pte; 1137 pte_t src_folio_pte; 1138 spinlock_t *src_ptl, *dst_ptl; 1139 pte_t *src_pte = NULL; 1140 pte_t *dst_pte = NULL; 1141 1142 struct folio *src_folio = NULL; 1143 struct anon_vma *src_anon_vma = NULL; 1144 struct mmu_notifier_range range; 1145 int err = 0; 1146 1147 flush_cache_range(src_vma, src_addr, src_addr + PAGE_SIZE); 1148 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1149 src_addr, src_addr + PAGE_SIZE); 1150 mmu_notifier_invalidate_range_start(&range); 1151 retry: 1152 dst_pte = pte_offset_map_nolock(mm, dst_pmd, dst_addr, &dst_ptl); 1153 1154 /* Retry if a huge pmd materialized from under us */ 1155 if (unlikely(!dst_pte)) { 1156 err = -EAGAIN; 1157 goto out; 1158 } 1159 1160 src_pte = pte_offset_map_nolock(mm, src_pmd, src_addr, &src_ptl); 1161 1162 /* 1163 * We held the mmap_lock for reading so MADV_DONTNEED 1164 * can zap transparent huge pages under us, or the 1165 * transparent huge page fault can establish new 1166 * transparent huge pages under us. 1167 */ 1168 if (unlikely(!src_pte)) { 1169 err = -EAGAIN; 1170 goto out; 1171 } 1172 1173 /* Sanity checks before the operation */ 1174 if (WARN_ON_ONCE(pmd_none(*dst_pmd)) || WARN_ON_ONCE(pmd_none(*src_pmd)) || 1175 WARN_ON_ONCE(pmd_trans_huge(*dst_pmd)) || WARN_ON_ONCE(pmd_trans_huge(*src_pmd))) { 1176 err = -EINVAL; 1177 goto out; 1178 } 1179 1180 spin_lock(dst_ptl); 1181 orig_dst_pte = ptep_get(dst_pte); 1182 spin_unlock(dst_ptl); 1183 if (!pte_none(orig_dst_pte)) { 1184 err = -EEXIST; 1185 goto out; 1186 } 1187 1188 spin_lock(src_ptl); 1189 orig_src_pte = ptep_get(src_pte); 1190 spin_unlock(src_ptl); 1191 if (pte_none(orig_src_pte)) { 1192 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) 1193 err = -ENOENT; 1194 else /* nothing to do to move a hole */ 1195 err = 0; 1196 goto out; 1197 } 1198 1199 /* If PTE changed after we locked the folio them start over */ 1200 if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) { 1201 err = -EAGAIN; 1202 goto out; 1203 } 1204 1205 if (pte_present(orig_src_pte)) { 1206 if (is_zero_pfn(pte_pfn(orig_src_pte))) { 1207 err = move_zeropage_pte(mm, dst_vma, src_vma, 1208 dst_addr, src_addr, dst_pte, src_pte, 1209 orig_dst_pte, orig_src_pte, 1210 dst_ptl, src_ptl); 1211 goto out; 1212 } 1213 1214 /* 1215 * Pin and lock both source folio and anon_vma. Since we are in 1216 * RCU read section, we can't block, so on contention have to 1217 * unmap the ptes, obtain the lock and retry. 1218 */ 1219 if (!src_folio) { 1220 struct folio *folio; 1221 1222 /* 1223 * Pin the page while holding the lock to be sure the 1224 * page isn't freed under us 1225 */ 1226 spin_lock(src_ptl); 1227 if (!pte_same(orig_src_pte, ptep_get(src_pte))) { 1228 spin_unlock(src_ptl); 1229 err = -EAGAIN; 1230 goto out; 1231 } 1232 1233 folio = vm_normal_folio(src_vma, src_addr, orig_src_pte); 1234 if (!folio || !PageAnonExclusive(&folio->page)) { 1235 spin_unlock(src_ptl); 1236 err = -EBUSY; 1237 goto out; 1238 } 1239 1240 folio_get(folio); 1241 src_folio = folio; 1242 src_folio_pte = orig_src_pte; 1243 spin_unlock(src_ptl); 1244 1245 if (!folio_trylock(src_folio)) { 1246 pte_unmap(&orig_src_pte); 1247 pte_unmap(&orig_dst_pte); 1248 src_pte = dst_pte = NULL; 1249 /* now we can block and wait */ 1250 folio_lock(src_folio); 1251 goto retry; 1252 } 1253 1254 if (WARN_ON_ONCE(!folio_test_anon(src_folio))) { 1255 err = -EBUSY; 1256 goto out; 1257 } 1258 } 1259 1260 /* at this point we have src_folio locked */ 1261 if (folio_test_large(src_folio)) { 1262 /* split_folio() can block */ 1263 pte_unmap(&orig_src_pte); 1264 pte_unmap(&orig_dst_pte); 1265 src_pte = dst_pte = NULL; 1266 err = split_folio(src_folio); 1267 if (err) 1268 goto out; 1269 /* have to reacquire the folio after it got split */ 1270 folio_unlock(src_folio); 1271 folio_put(src_folio); 1272 src_folio = NULL; 1273 goto retry; 1274 } 1275 1276 if (!src_anon_vma) { 1277 /* 1278 * folio_referenced walks the anon_vma chain 1279 * without the folio lock. Serialize against it with 1280 * the anon_vma lock, the folio lock is not enough. 1281 */ 1282 src_anon_vma = folio_get_anon_vma(src_folio); 1283 if (!src_anon_vma) { 1284 /* page was unmapped from under us */ 1285 err = -EAGAIN; 1286 goto out; 1287 } 1288 if (!anon_vma_trylock_write(src_anon_vma)) { 1289 pte_unmap(&orig_src_pte); 1290 pte_unmap(&orig_dst_pte); 1291 src_pte = dst_pte = NULL; 1292 /* now we can block and wait */ 1293 anon_vma_lock_write(src_anon_vma); 1294 goto retry; 1295 } 1296 } 1297 1298 err = move_present_pte(mm, dst_vma, src_vma, 1299 dst_addr, src_addr, dst_pte, src_pte, 1300 orig_dst_pte, orig_src_pte, 1301 dst_ptl, src_ptl, src_folio); 1302 } else { 1303 entry = pte_to_swp_entry(orig_src_pte); 1304 if (non_swap_entry(entry)) { 1305 if (is_migration_entry(entry)) { 1306 pte_unmap(&orig_src_pte); 1307 pte_unmap(&orig_dst_pte); 1308 src_pte = dst_pte = NULL; 1309 migration_entry_wait(mm, src_pmd, src_addr); 1310 err = -EAGAIN; 1311 } else 1312 err = -EFAULT; 1313 goto out; 1314 } 1315 1316 err = move_swap_pte(mm, dst_addr, src_addr, 1317 dst_pte, src_pte, 1318 orig_dst_pte, orig_src_pte, 1319 dst_ptl, src_ptl); 1320 } 1321 1322 out: 1323 if (src_anon_vma) { 1324 anon_vma_unlock_write(src_anon_vma); 1325 put_anon_vma(src_anon_vma); 1326 } 1327 if (src_folio) { 1328 folio_unlock(src_folio); 1329 folio_put(src_folio); 1330 } 1331 if (dst_pte) 1332 pte_unmap(dst_pte); 1333 if (src_pte) 1334 pte_unmap(src_pte); 1335 mmu_notifier_invalidate_range_end(&range); 1336 1337 return err; 1338 } 1339 1340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1341 static inline bool move_splits_huge_pmd(unsigned long dst_addr, 1342 unsigned long src_addr, 1343 unsigned long src_end) 1344 { 1345 return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) || 1346 src_end - src_addr < HPAGE_PMD_SIZE; 1347 } 1348 #else 1349 static inline bool move_splits_huge_pmd(unsigned long dst_addr, 1350 unsigned long src_addr, 1351 unsigned long src_end) 1352 { 1353 /* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */ 1354 return false; 1355 } 1356 #endif 1357 1358 static inline bool vma_move_compatible(struct vm_area_struct *vma) 1359 { 1360 return !(vma->vm_flags & (VM_PFNMAP | VM_IO | VM_HUGETLB | 1361 VM_MIXEDMAP | VM_SHADOW_STACK)); 1362 } 1363 1364 static int validate_move_areas(struct userfaultfd_ctx *ctx, 1365 struct vm_area_struct *src_vma, 1366 struct vm_area_struct *dst_vma) 1367 { 1368 /* Only allow moving if both have the same access and protection */ 1369 if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) || 1370 pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot)) 1371 return -EINVAL; 1372 1373 /* Only allow moving if both are mlocked or both aren't */ 1374 if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED)) 1375 return -EINVAL; 1376 1377 /* 1378 * For now, we keep it simple and only move between writable VMAs. 1379 * Access flags are equal, therefore cheching only the source is enough. 1380 */ 1381 if (!(src_vma->vm_flags & VM_WRITE)) 1382 return -EINVAL; 1383 1384 /* Check if vma flags indicate content which can be moved */ 1385 if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma)) 1386 return -EINVAL; 1387 1388 /* Ensure dst_vma is registered in uffd we are operating on */ 1389 if (!dst_vma->vm_userfaultfd_ctx.ctx || 1390 dst_vma->vm_userfaultfd_ctx.ctx != ctx) 1391 return -EINVAL; 1392 1393 /* Only allow moving across anonymous vmas */ 1394 if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma)) 1395 return -EINVAL; 1396 1397 return 0; 1398 } 1399 1400 static __always_inline 1401 int find_vmas_mm_locked(struct mm_struct *mm, 1402 unsigned long dst_start, 1403 unsigned long src_start, 1404 struct vm_area_struct **dst_vmap, 1405 struct vm_area_struct **src_vmap) 1406 { 1407 struct vm_area_struct *vma; 1408 1409 mmap_assert_locked(mm); 1410 vma = find_vma_and_prepare_anon(mm, dst_start); 1411 if (IS_ERR(vma)) 1412 return PTR_ERR(vma); 1413 1414 *dst_vmap = vma; 1415 /* Skip finding src_vma if src_start is in dst_vma */ 1416 if (src_start >= vma->vm_start && src_start < vma->vm_end) 1417 goto out_success; 1418 1419 vma = vma_lookup(mm, src_start); 1420 if (!vma) 1421 return -ENOENT; 1422 out_success: 1423 *src_vmap = vma; 1424 return 0; 1425 } 1426 1427 #ifdef CONFIG_PER_VMA_LOCK 1428 static int uffd_move_lock(struct mm_struct *mm, 1429 unsigned long dst_start, 1430 unsigned long src_start, 1431 struct vm_area_struct **dst_vmap, 1432 struct vm_area_struct **src_vmap) 1433 { 1434 struct vm_area_struct *vma; 1435 int err; 1436 1437 vma = uffd_lock_vma(mm, dst_start); 1438 if (IS_ERR(vma)) 1439 return PTR_ERR(vma); 1440 1441 *dst_vmap = vma; 1442 /* 1443 * Skip finding src_vma if src_start is in dst_vma. This also ensures 1444 * that we don't lock the same vma twice. 1445 */ 1446 if (src_start >= vma->vm_start && src_start < vma->vm_end) { 1447 *src_vmap = vma; 1448 return 0; 1449 } 1450 1451 /* 1452 * Using uffd_lock_vma() to get src_vma can lead to following deadlock: 1453 * 1454 * Thread1 Thread2 1455 * ------- ------- 1456 * vma_start_read(dst_vma) 1457 * mmap_write_lock(mm) 1458 * vma_start_write(src_vma) 1459 * vma_start_read(src_vma) 1460 * mmap_read_lock(mm) 1461 * vma_start_write(dst_vma) 1462 */ 1463 *src_vmap = lock_vma_under_rcu(mm, src_start); 1464 if (likely(*src_vmap)) 1465 return 0; 1466 1467 /* Undo any locking and retry in mmap_lock critical section */ 1468 vma_end_read(*dst_vmap); 1469 1470 mmap_read_lock(mm); 1471 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap); 1472 if (!err) { 1473 /* 1474 * See comment in uffd_lock_vma() as to why not using 1475 * vma_start_read() here. 1476 */ 1477 down_read(&(*dst_vmap)->vm_lock->lock); 1478 if (*dst_vmap != *src_vmap) 1479 down_read_nested(&(*src_vmap)->vm_lock->lock, 1480 SINGLE_DEPTH_NESTING); 1481 } 1482 mmap_read_unlock(mm); 1483 return err; 1484 } 1485 1486 static void uffd_move_unlock(struct vm_area_struct *dst_vma, 1487 struct vm_area_struct *src_vma) 1488 { 1489 vma_end_read(src_vma); 1490 if (src_vma != dst_vma) 1491 vma_end_read(dst_vma); 1492 } 1493 1494 #else 1495 1496 static int uffd_move_lock(struct mm_struct *mm, 1497 unsigned long dst_start, 1498 unsigned long src_start, 1499 struct vm_area_struct **dst_vmap, 1500 struct vm_area_struct **src_vmap) 1501 { 1502 int err; 1503 1504 mmap_read_lock(mm); 1505 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap); 1506 if (err) 1507 mmap_read_unlock(mm); 1508 return err; 1509 } 1510 1511 static void uffd_move_unlock(struct vm_area_struct *dst_vma, 1512 struct vm_area_struct *src_vma) 1513 { 1514 mmap_assert_locked(src_vma->vm_mm); 1515 mmap_read_unlock(dst_vma->vm_mm); 1516 } 1517 #endif 1518 1519 /** 1520 * move_pages - move arbitrary anonymous pages of an existing vma 1521 * @ctx: pointer to the userfaultfd context 1522 * @dst_start: start of the destination virtual memory range 1523 * @src_start: start of the source virtual memory range 1524 * @len: length of the virtual memory range 1525 * @mode: flags from uffdio_move.mode 1526 * 1527 * It will either use the mmap_lock in read mode or per-vma locks 1528 * 1529 * move_pages() remaps arbitrary anonymous pages atomically in zero 1530 * copy. It only works on non shared anonymous pages because those can 1531 * be relocated without generating non linear anon_vmas in the rmap 1532 * code. 1533 * 1534 * It provides a zero copy mechanism to handle userspace page faults. 1535 * The source vma pages should have mapcount == 1, which can be 1536 * enforced by using madvise(MADV_DONTFORK) on src vma. 1537 * 1538 * The thread receiving the page during the userland page fault 1539 * will receive the faulting page in the source vma through the network, 1540 * storage or any other I/O device (MADV_DONTFORK in the source vma 1541 * avoids move_pages() to fail with -EBUSY if the process forks before 1542 * move_pages() is called), then it will call move_pages() to map the 1543 * page in the faulting address in the destination vma. 1544 * 1545 * This userfaultfd command works purely via pagetables, so it's the 1546 * most efficient way to move physical non shared anonymous pages 1547 * across different virtual addresses. Unlike mremap()/mmap()/munmap() 1548 * it does not create any new vmas. The mapping in the destination 1549 * address is atomic. 1550 * 1551 * It only works if the vma protection bits are identical from the 1552 * source and destination vma. 1553 * 1554 * It can remap non shared anonymous pages within the same vma too. 1555 * 1556 * If the source virtual memory range has any unmapped holes, or if 1557 * the destination virtual memory range is not a whole unmapped hole, 1558 * move_pages() will fail respectively with -ENOENT or -EEXIST. This 1559 * provides a very strict behavior to avoid any chance of memory 1560 * corruption going unnoticed if there are userland race conditions. 1561 * Only one thread should resolve the userland page fault at any given 1562 * time for any given faulting address. This means that if two threads 1563 * try to both call move_pages() on the same destination address at the 1564 * same time, the second thread will get an explicit error from this 1565 * command. 1566 * 1567 * The command retval will return "len" is successful. The command 1568 * however can be interrupted by fatal signals or errors. If 1569 * interrupted it will return the number of bytes successfully 1570 * remapped before the interruption if any, or the negative error if 1571 * none. It will never return zero. Either it will return an error or 1572 * an amount of bytes successfully moved. If the retval reports a 1573 * "short" remap, the move_pages() command should be repeated by 1574 * userland with src+retval, dst+reval, len-retval if it wants to know 1575 * about the error that interrupted it. 1576 * 1577 * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to 1578 * prevent -ENOENT errors to materialize if there are holes in the 1579 * source virtual range that is being remapped. The holes will be 1580 * accounted as successfully remapped in the retval of the 1581 * command. This is mostly useful to remap hugepage naturally aligned 1582 * virtual regions without knowing if there are transparent hugepage 1583 * in the regions or not, but preventing the risk of having to split 1584 * the hugepmd during the remap. 1585 * 1586 * If there's any rmap walk that is taking the anon_vma locks without 1587 * first obtaining the folio lock (the only current instance is 1588 * folio_referenced), they will have to verify if the folio->mapping 1589 * has changed after taking the anon_vma lock. If it changed they 1590 * should release the lock and retry obtaining a new anon_vma, because 1591 * it means the anon_vma was changed by move_pages() before the lock 1592 * could be obtained. This is the only additional complexity added to 1593 * the rmap code to provide this anonymous page remapping functionality. 1594 */ 1595 ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start, 1596 unsigned long src_start, unsigned long len, __u64 mode) 1597 { 1598 struct mm_struct *mm = ctx->mm; 1599 struct vm_area_struct *src_vma, *dst_vma; 1600 unsigned long src_addr, dst_addr; 1601 pmd_t *src_pmd, *dst_pmd; 1602 long err = -EINVAL; 1603 ssize_t moved = 0; 1604 1605 /* Sanitize the command parameters. */ 1606 if (WARN_ON_ONCE(src_start & ~PAGE_MASK) || 1607 WARN_ON_ONCE(dst_start & ~PAGE_MASK) || 1608 WARN_ON_ONCE(len & ~PAGE_MASK)) 1609 goto out; 1610 1611 /* Does the address range wrap, or is the span zero-sized? */ 1612 if (WARN_ON_ONCE(src_start + len <= src_start) || 1613 WARN_ON_ONCE(dst_start + len <= dst_start)) 1614 goto out; 1615 1616 err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma); 1617 if (err) 1618 goto out; 1619 1620 /* Re-check after taking map_changing_lock */ 1621 err = -EAGAIN; 1622 down_read(&ctx->map_changing_lock); 1623 if (likely(atomic_read(&ctx->mmap_changing))) 1624 goto out_unlock; 1625 /* 1626 * Make sure the vma is not shared, that the src and dst remap 1627 * ranges are both valid and fully within a single existing 1628 * vma. 1629 */ 1630 err = -EINVAL; 1631 if (src_vma->vm_flags & VM_SHARED) 1632 goto out_unlock; 1633 if (src_start + len > src_vma->vm_end) 1634 goto out_unlock; 1635 1636 if (dst_vma->vm_flags & VM_SHARED) 1637 goto out_unlock; 1638 if (dst_start + len > dst_vma->vm_end) 1639 goto out_unlock; 1640 1641 err = validate_move_areas(ctx, src_vma, dst_vma); 1642 if (err) 1643 goto out_unlock; 1644 1645 for (src_addr = src_start, dst_addr = dst_start; 1646 src_addr < src_start + len;) { 1647 spinlock_t *ptl; 1648 pmd_t dst_pmdval; 1649 unsigned long step_size; 1650 1651 /* 1652 * Below works because anonymous area would not have a 1653 * transparent huge PUD. If file-backed support is added, 1654 * that case would need to be handled here. 1655 */ 1656 src_pmd = mm_find_pmd(mm, src_addr); 1657 if (unlikely(!src_pmd)) { 1658 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) { 1659 err = -ENOENT; 1660 break; 1661 } 1662 src_pmd = mm_alloc_pmd(mm, src_addr); 1663 if (unlikely(!src_pmd)) { 1664 err = -ENOMEM; 1665 break; 1666 } 1667 } 1668 dst_pmd = mm_alloc_pmd(mm, dst_addr); 1669 if (unlikely(!dst_pmd)) { 1670 err = -ENOMEM; 1671 break; 1672 } 1673 1674 dst_pmdval = pmdp_get_lockless(dst_pmd); 1675 /* 1676 * If the dst_pmd is mapped as THP don't override it and just 1677 * be strict. If dst_pmd changes into TPH after this check, the 1678 * move_pages_huge_pmd() will detect the change and retry 1679 * while move_pages_pte() will detect the change and fail. 1680 */ 1681 if (unlikely(pmd_trans_huge(dst_pmdval))) { 1682 err = -EEXIST; 1683 break; 1684 } 1685 1686 ptl = pmd_trans_huge_lock(src_pmd, src_vma); 1687 if (ptl) { 1688 if (pmd_devmap(*src_pmd)) { 1689 spin_unlock(ptl); 1690 err = -ENOENT; 1691 break; 1692 } 1693 1694 /* Check if we can move the pmd without splitting it. */ 1695 if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) || 1696 !pmd_none(dst_pmdval)) { 1697 struct folio *folio = pmd_folio(*src_pmd); 1698 1699 if (!folio || (!is_huge_zero_folio(folio) && 1700 !PageAnonExclusive(&folio->page))) { 1701 spin_unlock(ptl); 1702 err = -EBUSY; 1703 break; 1704 } 1705 1706 spin_unlock(ptl); 1707 split_huge_pmd(src_vma, src_pmd, src_addr); 1708 /* The folio will be split by move_pages_pte() */ 1709 continue; 1710 } 1711 1712 err = move_pages_huge_pmd(mm, dst_pmd, src_pmd, 1713 dst_pmdval, dst_vma, src_vma, 1714 dst_addr, src_addr); 1715 step_size = HPAGE_PMD_SIZE; 1716 } else { 1717 if (pmd_none(*src_pmd)) { 1718 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) { 1719 err = -ENOENT; 1720 break; 1721 } 1722 if (unlikely(__pte_alloc(mm, src_pmd))) { 1723 err = -ENOMEM; 1724 break; 1725 } 1726 } 1727 1728 if (unlikely(pte_alloc(mm, dst_pmd))) { 1729 err = -ENOMEM; 1730 break; 1731 } 1732 1733 err = move_pages_pte(mm, dst_pmd, src_pmd, 1734 dst_vma, src_vma, 1735 dst_addr, src_addr, mode); 1736 step_size = PAGE_SIZE; 1737 } 1738 1739 cond_resched(); 1740 1741 if (fatal_signal_pending(current)) { 1742 /* Do not override an error */ 1743 if (!err || err == -EAGAIN) 1744 err = -EINTR; 1745 break; 1746 } 1747 1748 if (err) { 1749 if (err == -EAGAIN) 1750 continue; 1751 break; 1752 } 1753 1754 /* Proceed to the next page */ 1755 dst_addr += step_size; 1756 src_addr += step_size; 1757 moved += step_size; 1758 } 1759 1760 out_unlock: 1761 up_read(&ctx->map_changing_lock); 1762 uffd_move_unlock(dst_vma, src_vma); 1763 out: 1764 VM_WARN_ON(moved < 0); 1765 VM_WARN_ON(err > 0); 1766 VM_WARN_ON(!moved && !err); 1767 return moved ? moved : err; 1768 } 1769