1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 static void clear_shadow_entries(struct address_space *mapping, 27 unsigned long start, unsigned long max) 28 { 29 XA_STATE(xas, &mapping->i_pages, start); 30 struct folio *folio; 31 32 /* Handled by shmem itself, or for DAX we do nothing. */ 33 if (shmem_mapping(mapping) || dax_mapping(mapping)) 34 return; 35 36 xas_set_update(&xas, workingset_update_node); 37 38 spin_lock(&mapping->host->i_lock); 39 xas_lock_irq(&xas); 40 41 /* Clear all shadow entries from start to max */ 42 xas_for_each(&xas, folio, max) { 43 if (xa_is_value(folio)) 44 xas_store(&xas, NULL); 45 } 46 47 xas_unlock_irq(&xas); 48 if (mapping_shrinkable(mapping)) 49 inode_add_lru(mapping->host); 50 spin_unlock(&mapping->host->i_lock); 51 } 52 53 /* 54 * Unconditionally remove exceptional entries. Usually called from truncate 55 * path. Note that the folio_batch may be altered by this function by removing 56 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 57 * Please note that indices[] has entries in ascending order as guaranteed by 58 * either find_get_entries() or find_lock_entries(). 59 */ 60 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 61 struct folio_batch *fbatch, pgoff_t *indices) 62 { 63 XA_STATE(xas, &mapping->i_pages, indices[0]); 64 int nr = folio_batch_count(fbatch); 65 struct folio *folio; 66 int i, j; 67 68 /* Handled by shmem itself */ 69 if (shmem_mapping(mapping)) 70 return; 71 72 for (j = 0; j < nr; j++) 73 if (xa_is_value(fbatch->folios[j])) 74 break; 75 76 if (j == nr) 77 return; 78 79 if (dax_mapping(mapping)) { 80 for (i = j; i < nr; i++) { 81 if (xa_is_value(fbatch->folios[i])) { 82 /* 83 * File systems should already have called 84 * dax_break_layout_entry() to remove all DAX 85 * entries while holding a lock to prevent 86 * establishing new entries. Therefore we 87 * shouldn't find any here. 88 */ 89 WARN_ON_ONCE(1); 90 91 /* 92 * Delete the mapping so truncate_pagecache() 93 * doesn't loop forever. 94 */ 95 dax_delete_mapping_entry(mapping, indices[i]); 96 } 97 } 98 goto out; 99 } 100 101 xas_set(&xas, indices[j]); 102 xas_set_update(&xas, workingset_update_node); 103 104 spin_lock(&mapping->host->i_lock); 105 xas_lock_irq(&xas); 106 107 xas_for_each(&xas, folio, indices[nr-1]) { 108 if (xa_is_value(folio)) 109 xas_store(&xas, NULL); 110 } 111 112 xas_unlock_irq(&xas); 113 if (mapping_shrinkable(mapping)) 114 inode_add_lru(mapping->host); 115 spin_unlock(&mapping->host->i_lock); 116 out: 117 folio_batch_remove_exceptionals(fbatch); 118 } 119 120 /** 121 * folio_invalidate - Invalidate part or all of a folio. 122 * @folio: The folio which is affected. 123 * @offset: start of the range to invalidate 124 * @length: length of the range to invalidate 125 * 126 * folio_invalidate() is called when all or part of the folio has become 127 * invalidated by a truncate operation. 128 * 129 * folio_invalidate() does not have to release all buffers, but it must 130 * ensure that no dirty buffer is left outside @offset and that no I/O 131 * is underway against any of the blocks which are outside the truncation 132 * point. Because the caller is about to free (and possibly reuse) those 133 * blocks on-disk. 134 */ 135 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 136 { 137 const struct address_space_operations *aops = folio->mapping->a_ops; 138 139 if (aops->invalidate_folio) 140 aops->invalidate_folio(folio, offset, length); 141 } 142 EXPORT_SYMBOL_GPL(folio_invalidate); 143 144 /* 145 * If truncate cannot remove the fs-private metadata from the page, the page 146 * becomes orphaned. It will be left on the LRU and may even be mapped into 147 * user pagetables if we're racing with filemap_fault(). 148 * 149 * We need to bail out if page->mapping is no longer equal to the original 150 * mapping. This happens a) when the VM reclaimed the page while we waited on 151 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 152 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 153 */ 154 static void truncate_cleanup_folio(struct folio *folio) 155 { 156 if (folio_mapped(folio)) 157 unmap_mapping_folio(folio); 158 159 if (folio_needs_release(folio)) 160 folio_invalidate(folio, 0, folio_size(folio)); 161 162 /* 163 * Some filesystems seem to re-dirty the page even after 164 * the VM has canceled the dirty bit (eg ext3 journaling). 165 * Hence dirty accounting check is placed after invalidation. 166 */ 167 folio_cancel_dirty(folio); 168 } 169 170 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 171 { 172 if (folio->mapping != mapping) 173 return -EIO; 174 175 truncate_cleanup_folio(folio); 176 filemap_remove_folio(folio); 177 return 0; 178 } 179 180 static int try_folio_split_or_unmap(struct folio *folio, struct page *split_at, 181 unsigned long min_order) 182 { 183 enum ttu_flags ttu_flags = 184 TTU_SYNC | 185 TTU_SPLIT_HUGE_PMD | 186 TTU_IGNORE_MLOCK; 187 int ret; 188 189 ret = try_folio_split_to_order(folio, split_at, min_order); 190 191 /* 192 * If the split fails, unmap the folio, so it will be refaulted 193 * with PTEs to respect SIGBUS semantics. 194 * 195 * Make an exception for shmem/tmpfs that for long time 196 * intentionally mapped with PMDs across i_size. 197 */ 198 if (ret && !shmem_mapping(folio->mapping)) { 199 try_to_unmap(folio, ttu_flags); 200 WARN_ON(folio_mapped(folio)); 201 } 202 203 return ret; 204 } 205 206 /* 207 * Handle partial folios. The folio may be entirely within the 208 * range if a split has raced with us. If not, we zero the part of the 209 * folio that's within the [start, end] range, and then split the folio if 210 * it's large. split_page_range() will discard pages which now lie beyond 211 * i_size, and we rely on the caller to discard pages which lie within a 212 * newly created hole. 213 * 214 * Returns false if splitting failed so the caller can avoid 215 * discarding the entire folio which is stubbornly unsplit. 216 */ 217 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 218 { 219 loff_t pos = folio_pos(folio); 220 size_t size = folio_size(folio); 221 unsigned int offset, length; 222 struct page *split_at, *split_at2; 223 unsigned int min_order; 224 225 if (pos < start) 226 offset = start - pos; 227 else 228 offset = 0; 229 if (pos + size <= (u64)end) 230 length = size - offset; 231 else 232 length = end + 1 - pos - offset; 233 234 folio_wait_writeback(folio); 235 if (length == size) { 236 truncate_inode_folio(folio->mapping, folio); 237 return true; 238 } 239 240 /* 241 * We may be zeroing pages we're about to discard, but it avoids 242 * doing a complex calculation here, and then doing the zeroing 243 * anyway if the page split fails. 244 */ 245 if (!mapping_inaccessible(folio->mapping)) 246 folio_zero_range(folio, offset, length); 247 248 if (folio_needs_release(folio)) 249 folio_invalidate(folio, offset, length); 250 if (!folio_test_large(folio)) 251 return true; 252 253 min_order = mapping_min_folio_order(folio->mapping); 254 split_at = folio_page(folio, PAGE_ALIGN_DOWN(offset) / PAGE_SIZE); 255 if (!try_folio_split_or_unmap(folio, split_at, min_order)) { 256 /* 257 * try to split at offset + length to make sure folios within 258 * the range can be dropped, especially to avoid memory waste 259 * for shmem truncate 260 */ 261 struct folio *folio2; 262 263 if (offset + length == size) 264 goto no_split; 265 266 split_at2 = folio_page(folio, 267 PAGE_ALIGN_DOWN(offset + length) / PAGE_SIZE); 268 folio2 = page_folio(split_at2); 269 270 if (!folio_try_get(folio2)) 271 goto no_split; 272 273 if (!folio_test_large(folio2)) 274 goto out; 275 276 if (!folio_trylock(folio2)) 277 goto out; 278 279 /* make sure folio2 is large and does not change its mapping */ 280 if (folio_test_large(folio2) && 281 folio2->mapping == folio->mapping) 282 try_folio_split_or_unmap(folio2, split_at2, min_order); 283 284 folio_unlock(folio2); 285 out: 286 folio_put(folio2); 287 no_split: 288 return true; 289 } 290 if (folio_test_dirty(folio)) 291 return false; 292 truncate_inode_folio(folio->mapping, folio); 293 return true; 294 } 295 296 /* 297 * Used to get rid of pages on hardware memory corruption. 298 */ 299 int generic_error_remove_folio(struct address_space *mapping, 300 struct folio *folio) 301 { 302 if (!mapping) 303 return -EINVAL; 304 /* 305 * Only punch for normal data pages for now. 306 * Handling other types like directories would need more auditing. 307 */ 308 if (!S_ISREG(mapping->host->i_mode)) 309 return -EIO; 310 return truncate_inode_folio(mapping, folio); 311 } 312 EXPORT_SYMBOL(generic_error_remove_folio); 313 314 /** 315 * mapping_evict_folio() - Remove an unused folio from the page-cache. 316 * @mapping: The mapping this folio belongs to. 317 * @folio: The folio to remove. 318 * 319 * Safely remove one folio from the page cache. 320 * It only drops clean, unused folios. 321 * 322 * Context: Folio must be locked. 323 * Return: The number of pages successfully removed. 324 */ 325 long mapping_evict_folio(struct address_space *mapping, struct folio *folio) 326 { 327 /* The page may have been truncated before it was locked */ 328 if (!mapping) 329 return 0; 330 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 331 return 0; 332 /* The refcount will be elevated if any page in the folio is mapped */ 333 if (folio_ref_count(folio) > 334 folio_nr_pages(folio) + folio_has_private(folio) + 1) 335 return 0; 336 if (!filemap_release_folio(folio, 0)) 337 return 0; 338 339 return remove_mapping(mapping, folio); 340 } 341 342 /** 343 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 344 * @mapping: mapping to truncate 345 * @lstart: offset from which to truncate 346 * @lend: offset to which to truncate (inclusive) 347 * 348 * Truncate the page cache, removing the pages that are between 349 * specified offsets (and zeroing out partial pages 350 * if lstart or lend + 1 is not page aligned). 351 * 352 * Truncate takes two passes - the first pass is nonblocking. It will not 353 * block on page locks and it will not block on writeback. The second pass 354 * will wait. This is to prevent as much IO as possible in the affected region. 355 * The first pass will remove most pages, so the search cost of the second pass 356 * is low. 357 * 358 * We pass down the cache-hot hint to the page freeing code. Even if the 359 * mapping is large, it is probably the case that the final pages are the most 360 * recently touched, and freeing happens in ascending file offset order. 361 * 362 * Note that since ->invalidate_folio() accepts range to invalidate 363 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 364 * page aligned properly. 365 */ 366 void truncate_inode_pages_range(struct address_space *mapping, 367 loff_t lstart, loff_t lend) 368 { 369 pgoff_t start; /* inclusive */ 370 pgoff_t end; /* exclusive */ 371 struct folio_batch fbatch; 372 pgoff_t indices[PAGEVEC_SIZE]; 373 pgoff_t index; 374 int i; 375 struct folio *folio; 376 bool same_folio; 377 378 if (mapping_empty(mapping)) 379 return; 380 381 /* 382 * 'start' and 'end' always covers the range of pages to be fully 383 * truncated. Partial pages are covered with 'partial_start' at the 384 * start of the range and 'partial_end' at the end of the range. 385 * Note that 'end' is exclusive while 'lend' is inclusive. 386 */ 387 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 388 if (lend == -1) 389 /* 390 * lend == -1 indicates end-of-file so we have to set 'end' 391 * to the highest possible pgoff_t and since the type is 392 * unsigned we're using -1. 393 */ 394 end = -1; 395 else 396 end = (lend + 1) >> PAGE_SHIFT; 397 398 folio_batch_init(&fbatch); 399 index = start; 400 while (index < end && find_lock_entries(mapping, &index, end - 1, 401 &fbatch, indices)) { 402 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 403 for (i = 0; i < folio_batch_count(&fbatch); i++) 404 truncate_cleanup_folio(fbatch.folios[i]); 405 delete_from_page_cache_batch(mapping, &fbatch); 406 for (i = 0; i < folio_batch_count(&fbatch); i++) 407 folio_unlock(fbatch.folios[i]); 408 folio_batch_release(&fbatch); 409 cond_resched(); 410 } 411 412 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 413 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 414 if (!IS_ERR(folio)) { 415 same_folio = lend < folio_pos(folio) + folio_size(folio); 416 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 417 start = folio_next_index(folio); 418 if (same_folio) 419 end = folio->index; 420 } 421 folio_unlock(folio); 422 folio_put(folio); 423 folio = NULL; 424 } 425 426 if (!same_folio) { 427 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 428 FGP_LOCK, 0); 429 if (!IS_ERR(folio)) { 430 if (!truncate_inode_partial_folio(folio, lstart, lend)) 431 end = folio->index; 432 folio_unlock(folio); 433 folio_put(folio); 434 } 435 } 436 437 index = start; 438 while (index < end) { 439 cond_resched(); 440 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 441 indices)) { 442 /* If all gone from start onwards, we're done */ 443 if (index == start) 444 break; 445 /* Otherwise restart to make sure all gone */ 446 index = start; 447 continue; 448 } 449 450 for (i = 0; i < folio_batch_count(&fbatch); i++) { 451 struct folio *folio = fbatch.folios[i]; 452 453 /* We rely upon deletion not changing folio->index */ 454 455 if (xa_is_value(folio)) 456 continue; 457 458 folio_lock(folio); 459 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 460 folio_wait_writeback(folio); 461 truncate_inode_folio(mapping, folio); 462 folio_unlock(folio); 463 } 464 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 465 folio_batch_release(&fbatch); 466 } 467 } 468 EXPORT_SYMBOL(truncate_inode_pages_range); 469 470 /** 471 * truncate_inode_pages - truncate *all* the pages from an offset 472 * @mapping: mapping to truncate 473 * @lstart: offset from which to truncate 474 * 475 * Called under (and serialised by) inode->i_rwsem and 476 * mapping->invalidate_lock. 477 * 478 * Note: When this function returns, there can be a page in the process of 479 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 480 * mapping->nrpages can be non-zero when this function returns even after 481 * truncation of the whole mapping. 482 */ 483 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 484 { 485 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 486 } 487 EXPORT_SYMBOL(truncate_inode_pages); 488 489 /** 490 * truncate_inode_pages_final - truncate *all* pages before inode dies 491 * @mapping: mapping to truncate 492 * 493 * Called under (and serialized by) inode->i_rwsem. 494 * 495 * Filesystems have to use this in the .evict_inode path to inform the 496 * VM that this is the final truncate and the inode is going away. 497 */ 498 void truncate_inode_pages_final(struct address_space *mapping) 499 { 500 /* 501 * Page reclaim can not participate in regular inode lifetime 502 * management (can't call iput()) and thus can race with the 503 * inode teardown. Tell it when the address space is exiting, 504 * so that it does not install eviction information after the 505 * final truncate has begun. 506 */ 507 mapping_set_exiting(mapping); 508 509 if (!mapping_empty(mapping)) { 510 /* 511 * As truncation uses a lockless tree lookup, cycle 512 * the tree lock to make sure any ongoing tree 513 * modification that does not see AS_EXITING is 514 * completed before starting the final truncate. 515 */ 516 xa_lock_irq(&mapping->i_pages); 517 xa_unlock_irq(&mapping->i_pages); 518 } 519 520 truncate_inode_pages(mapping, 0); 521 } 522 EXPORT_SYMBOL(truncate_inode_pages_final); 523 524 /** 525 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 526 * @mapping: the address_space which holds the folios to invalidate 527 * @start: the offset 'from' which to invalidate 528 * @end: the offset 'to' which to invalidate (inclusive) 529 * @nr_failed: How many folio invalidations failed 530 * 531 * This function is similar to invalidate_mapping_pages(), except that it 532 * returns the number of folios which could not be evicted in @nr_failed. 533 */ 534 unsigned long mapping_try_invalidate(struct address_space *mapping, 535 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 536 { 537 pgoff_t indices[PAGEVEC_SIZE]; 538 struct folio_batch fbatch; 539 pgoff_t index = start; 540 unsigned long ret; 541 unsigned long count = 0; 542 int i; 543 544 folio_batch_init(&fbatch); 545 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 546 bool xa_has_values = false; 547 int nr = folio_batch_count(&fbatch); 548 549 for (i = 0; i < nr; i++) { 550 struct folio *folio = fbatch.folios[i]; 551 552 /* We rely upon deletion not changing folio->index */ 553 554 if (xa_is_value(folio)) { 555 xa_has_values = true; 556 count++; 557 continue; 558 } 559 560 ret = mapping_evict_folio(mapping, folio); 561 folio_unlock(folio); 562 /* 563 * Invalidation is a hint that the folio is no longer 564 * of interest and try to speed up its reclaim. 565 */ 566 if (!ret) { 567 deactivate_file_folio(folio); 568 /* Likely in the lru cache of a remote CPU */ 569 if (nr_failed) 570 (*nr_failed)++; 571 } 572 count += ret; 573 } 574 575 if (xa_has_values) 576 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 577 578 folio_batch_remove_exceptionals(&fbatch); 579 folio_batch_release(&fbatch); 580 cond_resched(); 581 } 582 return count; 583 } 584 585 /** 586 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 587 * @mapping: the address_space which holds the cache to invalidate 588 * @start: the offset 'from' which to invalidate 589 * @end: the offset 'to' which to invalidate (inclusive) 590 * 591 * This function removes pages that are clean, unmapped and unlocked, 592 * as well as shadow entries. It will not block on IO activity. 593 * 594 * If you want to remove all the pages of one inode, regardless of 595 * their use and writeback state, use truncate_inode_pages(). 596 * 597 * Return: The number of indices that had their contents invalidated 598 */ 599 unsigned long invalidate_mapping_pages(struct address_space *mapping, 600 pgoff_t start, pgoff_t end) 601 { 602 return mapping_try_invalidate(mapping, start, end, NULL); 603 } 604 EXPORT_SYMBOL(invalidate_mapping_pages); 605 606 static int folio_launder(struct address_space *mapping, struct folio *folio) 607 { 608 if (!folio_test_dirty(folio)) 609 return 0; 610 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 611 return 0; 612 return mapping->a_ops->launder_folio(folio); 613 } 614 615 /* 616 * This is like mapping_evict_folio(), except it ignores the folio's 617 * refcount. We do this because invalidate_inode_pages2() needs stronger 618 * invalidation guarantees, and cannot afford to leave folios behind because 619 * shrink_folio_list() has a temp ref on them, or because they're transiently 620 * sitting in the folio_add_lru() caches. 621 */ 622 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio, 623 gfp_t gfp) 624 { 625 int ret; 626 627 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 628 629 if (folio_mapped(folio)) 630 unmap_mapping_folio(folio); 631 BUG_ON(folio_mapped(folio)); 632 633 ret = folio_launder(mapping, folio); 634 if (ret) 635 return ret; 636 if (folio->mapping != mapping) 637 return -EBUSY; 638 if (!filemap_release_folio(folio, gfp)) 639 return -EBUSY; 640 641 spin_lock(&mapping->host->i_lock); 642 xa_lock_irq(&mapping->i_pages); 643 if (folio_test_dirty(folio)) 644 goto failed; 645 646 BUG_ON(folio_has_private(folio)); 647 __filemap_remove_folio(folio, NULL); 648 xa_unlock_irq(&mapping->i_pages); 649 if (mapping_shrinkable(mapping)) 650 inode_add_lru(mapping->host); 651 spin_unlock(&mapping->host->i_lock); 652 653 filemap_free_folio(mapping, folio); 654 return 1; 655 failed: 656 xa_unlock_irq(&mapping->i_pages); 657 spin_unlock(&mapping->host->i_lock); 658 return -EBUSY; 659 } 660 661 /** 662 * invalidate_inode_pages2_range - remove range of pages from an address_space 663 * @mapping: the address_space 664 * @start: the page offset 'from' which to invalidate 665 * @end: the page offset 'to' which to invalidate (inclusive) 666 * 667 * Any pages which are found to be mapped into pagetables are unmapped prior to 668 * invalidation. 669 * 670 * Return: -EBUSY if any pages could not be invalidated. 671 */ 672 int invalidate_inode_pages2_range(struct address_space *mapping, 673 pgoff_t start, pgoff_t end) 674 { 675 pgoff_t indices[PAGEVEC_SIZE]; 676 struct folio_batch fbatch; 677 pgoff_t index; 678 int i; 679 int ret = 0; 680 int ret2 = 0; 681 int did_range_unmap = 0; 682 683 if (mapping_empty(mapping)) 684 return 0; 685 686 folio_batch_init(&fbatch); 687 index = start; 688 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 689 bool xa_has_values = false; 690 int nr = folio_batch_count(&fbatch); 691 692 for (i = 0; i < nr; i++) { 693 struct folio *folio = fbatch.folios[i]; 694 695 /* We rely upon deletion not changing folio->index */ 696 697 if (xa_is_value(folio)) { 698 xa_has_values = true; 699 if (dax_mapping(mapping) && 700 !dax_invalidate_mapping_entry_sync(mapping, indices[i])) 701 ret = -EBUSY; 702 continue; 703 } 704 705 if (!did_range_unmap && folio_mapped(folio)) { 706 /* 707 * If folio is mapped, before taking its lock, 708 * zap the rest of the file in one hit. 709 */ 710 unmap_mapping_pages(mapping, indices[i], 711 (1 + end - indices[i]), false); 712 did_range_unmap = 1; 713 } 714 715 folio_lock(folio); 716 if (unlikely(folio->mapping != mapping)) { 717 folio_unlock(folio); 718 continue; 719 } 720 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 721 folio_wait_writeback(folio); 722 ret2 = folio_unmap_invalidate(mapping, folio, GFP_KERNEL); 723 if (ret2 < 0) 724 ret = ret2; 725 folio_unlock(folio); 726 } 727 728 if (xa_has_values) 729 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 730 731 folio_batch_remove_exceptionals(&fbatch); 732 folio_batch_release(&fbatch); 733 cond_resched(); 734 } 735 /* 736 * For DAX we invalidate page tables after invalidating page cache. We 737 * could invalidate page tables while invalidating each entry however 738 * that would be expensive. And doing range unmapping before doesn't 739 * work as we have no cheap way to find whether page cache entry didn't 740 * get remapped later. 741 */ 742 if (dax_mapping(mapping)) { 743 unmap_mapping_pages(mapping, start, end - start + 1, false); 744 } 745 return ret; 746 } 747 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 748 749 /** 750 * invalidate_inode_pages2 - remove all pages from an address_space 751 * @mapping: the address_space 752 * 753 * Any pages which are found to be mapped into pagetables are unmapped prior to 754 * invalidation. 755 * 756 * Return: -EBUSY if any pages could not be invalidated. 757 */ 758 int invalidate_inode_pages2(struct address_space *mapping) 759 { 760 return invalidate_inode_pages2_range(mapping, 0, -1); 761 } 762 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 763 764 /** 765 * truncate_pagecache - unmap and remove pagecache that has been truncated 766 * @inode: inode 767 * @newsize: new file size 768 * 769 * inode's new i_size must already be written before truncate_pagecache 770 * is called. 771 * 772 * This function should typically be called before the filesystem 773 * releases resources associated with the freed range (eg. deallocates 774 * blocks). This way, pagecache will always stay logically coherent 775 * with on-disk format, and the filesystem would not have to deal with 776 * situations such as writepage being called for a page that has already 777 * had its underlying blocks deallocated. 778 */ 779 void truncate_pagecache(struct inode *inode, loff_t newsize) 780 { 781 struct address_space *mapping = inode->i_mapping; 782 loff_t holebegin = round_up(newsize, PAGE_SIZE); 783 784 /* 785 * unmap_mapping_range is called twice, first simply for 786 * efficiency so that truncate_inode_pages does fewer 787 * single-page unmaps. However after this first call, and 788 * before truncate_inode_pages finishes, it is possible for 789 * private pages to be COWed, which remain after 790 * truncate_inode_pages finishes, hence the second 791 * unmap_mapping_range call must be made for correctness. 792 */ 793 unmap_mapping_range(mapping, holebegin, 0, 1); 794 truncate_inode_pages(mapping, newsize); 795 unmap_mapping_range(mapping, holebegin, 0, 1); 796 } 797 EXPORT_SYMBOL(truncate_pagecache); 798 799 /** 800 * truncate_setsize - update inode and pagecache for a new file size 801 * @inode: inode 802 * @newsize: new file size 803 * 804 * truncate_setsize updates i_size and performs pagecache truncation (if 805 * necessary) to @newsize. It will be typically be called from the filesystem's 806 * setattr function when ATTR_SIZE is passed in. 807 * 808 * Must be called with a lock serializing truncates and writes (generally 809 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 810 * specific block truncation has been performed. 811 */ 812 void truncate_setsize(struct inode *inode, loff_t newsize) 813 { 814 loff_t oldsize = inode->i_size; 815 816 i_size_write(inode, newsize); 817 if (newsize > oldsize) 818 pagecache_isize_extended(inode, oldsize, newsize); 819 truncate_pagecache(inode, newsize); 820 } 821 EXPORT_SYMBOL(truncate_setsize); 822 823 /** 824 * pagecache_isize_extended - update pagecache after extension of i_size 825 * @inode: inode for which i_size was extended 826 * @from: original inode size 827 * @to: new inode size 828 * 829 * Handle extension of inode size either caused by extending truncate or 830 * by write starting after current i_size. We mark the page straddling 831 * current i_size RO so that page_mkwrite() is called on the first 832 * write access to the page. The filesystem will update its per-block 833 * information before user writes to the page via mmap after the i_size 834 * has been changed. 835 * 836 * The function must be called after i_size is updated so that page fault 837 * coming after we unlock the folio will already see the new i_size. 838 * The function must be called while we still hold i_rwsem - this not only 839 * makes sure i_size is stable but also that userspace cannot observe new 840 * i_size value before we are prepared to store mmap writes at new inode size. 841 */ 842 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 843 { 844 int bsize = i_blocksize(inode); 845 loff_t rounded_from; 846 struct folio *folio; 847 848 WARN_ON(to > inode->i_size); 849 850 if (from >= to || bsize >= PAGE_SIZE) 851 return; 852 /* Page straddling @from will not have any hole block created? */ 853 rounded_from = round_up(from, bsize); 854 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 855 return; 856 857 folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE); 858 /* Folio not cached? Nothing to do */ 859 if (IS_ERR(folio)) 860 return; 861 /* 862 * See folio_clear_dirty_for_io() for details why folio_mark_dirty() 863 * is needed. 864 */ 865 if (folio_mkclean(folio)) 866 folio_mark_dirty(folio); 867 868 /* 869 * The post-eof range of the folio must be zeroed before it is exposed 870 * to the file. Writeback normally does this, but since i_size has been 871 * increased we handle it here. 872 */ 873 if (folio_test_dirty(folio)) { 874 unsigned int offset, end; 875 876 offset = from - folio_pos(folio); 877 end = min_t(unsigned int, to - folio_pos(folio), 878 folio_size(folio)); 879 folio_zero_segment(folio, offset, end); 880 } 881 882 folio_unlock(folio); 883 folio_put(folio); 884 } 885 EXPORT_SYMBOL(pagecache_isize_extended); 886 887 /** 888 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 889 * @inode: inode 890 * @lstart: offset of beginning of hole 891 * @lend: offset of last byte of hole 892 * 893 * This function should typically be called before the filesystem 894 * releases resources associated with the freed range (eg. deallocates 895 * blocks). This way, pagecache will always stay logically coherent 896 * with on-disk format, and the filesystem would not have to deal with 897 * situations such as writepage being called for a page that has already 898 * had its underlying blocks deallocated. 899 */ 900 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 901 { 902 struct address_space *mapping = inode->i_mapping; 903 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 904 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 905 /* 906 * This rounding is currently just for example: unmap_mapping_range 907 * expands its hole outwards, whereas we want it to contract the hole 908 * inwards. However, existing callers of truncate_pagecache_range are 909 * doing their own page rounding first. Note that unmap_mapping_range 910 * allows holelen 0 for all, and we allow lend -1 for end of file. 911 */ 912 913 /* 914 * Unlike in truncate_pagecache, unmap_mapping_range is called only 915 * once (before truncating pagecache), and without "even_cows" flag: 916 * hole-punching should not remove private COWed pages from the hole. 917 */ 918 if ((u64)unmap_end > (u64)unmap_start) 919 unmap_mapping_range(mapping, unmap_start, 920 1 + unmap_end - unmap_start, 0); 921 truncate_inode_pages_range(mapping, lstart, lend); 922 } 923 EXPORT_SYMBOL(truncate_pagecache_range); 924