xref: /linux/mm/truncate.c (revision c1f3caff2450048ab6c053e5b23698b58f286159)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
23 				   do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27 
28 /*
29  * Regular page slots are stabilized by the page lock even without the tree
30  * itself locked.  These unlocked entries need verification under the tree
31  * lock.
32  */
33 static inline void __clear_shadow_entry(struct address_space *mapping,
34 				pgoff_t index, void *entry)
35 {
36 	XA_STATE(xas, &mapping->i_pages, index);
37 
38 	xas_set_update(&xas, workingset_update_node);
39 	if (xas_load(&xas) != entry)
40 		return;
41 	xas_store(&xas, NULL);
42 }
43 
44 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
45 			       void *entry)
46 {
47 	spin_lock(&mapping->host->i_lock);
48 	xa_lock_irq(&mapping->i_pages);
49 	__clear_shadow_entry(mapping, index, entry);
50 	xa_unlock_irq(&mapping->i_pages);
51 	if (mapping_shrinkable(mapping))
52 		inode_add_lru(mapping->host);
53 	spin_unlock(&mapping->host->i_lock);
54 }
55 
56 /*
57  * Unconditionally remove exceptional entries. Usually called from truncate
58  * path. Note that the folio_batch may be altered by this function by removing
59  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
60  */
61 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
62 				struct folio_batch *fbatch, pgoff_t *indices)
63 {
64 	int i, j;
65 	bool dax;
66 
67 	/* Handled by shmem itself */
68 	if (shmem_mapping(mapping))
69 		return;
70 
71 	for (j = 0; j < folio_batch_count(fbatch); j++)
72 		if (xa_is_value(fbatch->folios[j]))
73 			break;
74 
75 	if (j == folio_batch_count(fbatch))
76 		return;
77 
78 	dax = dax_mapping(mapping);
79 	if (!dax) {
80 		spin_lock(&mapping->host->i_lock);
81 		xa_lock_irq(&mapping->i_pages);
82 	}
83 
84 	for (i = j; i < folio_batch_count(fbatch); i++) {
85 		struct folio *folio = fbatch->folios[i];
86 		pgoff_t index = indices[i];
87 
88 		if (!xa_is_value(folio)) {
89 			fbatch->folios[j++] = folio;
90 			continue;
91 		}
92 
93 		if (unlikely(dax)) {
94 			dax_delete_mapping_entry(mapping, index);
95 			continue;
96 		}
97 
98 		__clear_shadow_entry(mapping, index, folio);
99 	}
100 
101 	if (!dax) {
102 		xa_unlock_irq(&mapping->i_pages);
103 		if (mapping_shrinkable(mapping))
104 			inode_add_lru(mapping->host);
105 		spin_unlock(&mapping->host->i_lock);
106 	}
107 	fbatch->nr = j;
108 }
109 
110 /*
111  * Invalidate exceptional entry if easily possible. This handles exceptional
112  * entries for invalidate_inode_pages().
113  */
114 static int invalidate_exceptional_entry(struct address_space *mapping,
115 					pgoff_t index, void *entry)
116 {
117 	/* Handled by shmem itself, or for DAX we do nothing. */
118 	if (shmem_mapping(mapping) || dax_mapping(mapping))
119 		return 1;
120 	clear_shadow_entry(mapping, index, entry);
121 	return 1;
122 }
123 
124 /*
125  * Invalidate exceptional entry if clean. This handles exceptional entries for
126  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
127  */
128 static int invalidate_exceptional_entry2(struct address_space *mapping,
129 					 pgoff_t index, void *entry)
130 {
131 	/* Handled by shmem itself */
132 	if (shmem_mapping(mapping))
133 		return 1;
134 	if (dax_mapping(mapping))
135 		return dax_invalidate_mapping_entry_sync(mapping, index);
136 	clear_shadow_entry(mapping, index, entry);
137 	return 1;
138 }
139 
140 /**
141  * do_invalidatepage - invalidate part or all of a page
142  * @page: the page which is affected
143  * @offset: start of the range to invalidate
144  * @length: length of the range to invalidate
145  *
146  * do_invalidatepage() is called when all or part of the page has become
147  * invalidated by a truncate operation.
148  *
149  * do_invalidatepage() does not have to release all buffers, but it must
150  * ensure that no dirty buffer is left outside @offset and that no I/O
151  * is underway against any of the blocks which are outside the truncation
152  * point.  Because the caller is about to free (and possibly reuse) those
153  * blocks on-disk.
154  */
155 void do_invalidatepage(struct page *page, unsigned int offset,
156 		       unsigned int length)
157 {
158 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
159 
160 	invalidatepage = page->mapping->a_ops->invalidatepage;
161 #ifdef CONFIG_BLOCK
162 	if (!invalidatepage)
163 		invalidatepage = block_invalidatepage;
164 #endif
165 	if (invalidatepage)
166 		(*invalidatepage)(page, offset, length);
167 }
168 
169 /*
170  * If truncate cannot remove the fs-private metadata from the page, the page
171  * becomes orphaned.  It will be left on the LRU and may even be mapped into
172  * user pagetables if we're racing with filemap_fault().
173  *
174  * We need to bail out if page->mapping is no longer equal to the original
175  * mapping.  This happens a) when the VM reclaimed the page while we waited on
176  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
177  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
178  */
179 static void truncate_cleanup_folio(struct folio *folio)
180 {
181 	if (folio_mapped(folio))
182 		unmap_mapping_folio(folio);
183 
184 	if (folio_has_private(folio))
185 		do_invalidatepage(&folio->page, 0, folio_size(folio));
186 
187 	/*
188 	 * Some filesystems seem to re-dirty the page even after
189 	 * the VM has canceled the dirty bit (eg ext3 journaling).
190 	 * Hence dirty accounting check is placed after invalidation.
191 	 */
192 	folio_cancel_dirty(folio);
193 	folio_clear_mappedtodisk(folio);
194 }
195 
196 /*
197  * This is for invalidate_mapping_pages().  That function can be called at
198  * any time, and is not supposed to throw away dirty pages.  But pages can
199  * be marked dirty at any time too, so use remove_mapping which safely
200  * discards clean, unused pages.
201  *
202  * Returns non-zero if the page was successfully invalidated.
203  */
204 static int
205 invalidate_complete_page(struct address_space *mapping, struct page *page)
206 {
207 
208 	if (page->mapping != mapping)
209 		return 0;
210 
211 	if (page_has_private(page) && !try_to_release_page(page, 0))
212 		return 0;
213 
214 	return remove_mapping(mapping, page);
215 }
216 
217 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
218 {
219 	if (folio->mapping != mapping)
220 		return -EIO;
221 
222 	truncate_cleanup_folio(folio);
223 	filemap_remove_folio(folio);
224 	return 0;
225 }
226 
227 /*
228  * Handle partial folios.  The folio may be entirely within the
229  * range if a split has raced with us.  If not, we zero the part of the
230  * folio that's within the [start, end] range, and then split the folio if
231  * it's large.  split_page_range() will discard pages which now lie beyond
232  * i_size, and we rely on the caller to discard pages which lie within a
233  * newly created hole.
234  *
235  * Returns false if splitting failed so the caller can avoid
236  * discarding the entire folio which is stubbornly unsplit.
237  */
238 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
239 {
240 	loff_t pos = folio_pos(folio);
241 	unsigned int offset, length;
242 
243 	if (pos < start)
244 		offset = start - pos;
245 	else
246 		offset = 0;
247 	length = folio_size(folio);
248 	if (pos + length <= (u64)end)
249 		length = length - offset;
250 	else
251 		length = end + 1 - pos - offset;
252 
253 	folio_wait_writeback(folio);
254 	if (length == folio_size(folio)) {
255 		truncate_inode_folio(folio->mapping, folio);
256 		return true;
257 	}
258 
259 	/*
260 	 * We may be zeroing pages we're about to discard, but it avoids
261 	 * doing a complex calculation here, and then doing the zeroing
262 	 * anyway if the page split fails.
263 	 */
264 	folio_zero_range(folio, offset, length);
265 
266 	if (folio_has_private(folio))
267 		do_invalidatepage(&folio->page, offset, length);
268 	if (!folio_test_large(folio))
269 		return true;
270 	if (split_huge_page(&folio->page) == 0)
271 		return true;
272 	if (folio_test_dirty(folio))
273 		return false;
274 	truncate_inode_folio(folio->mapping, folio);
275 	return true;
276 }
277 
278 /*
279  * Used to get rid of pages on hardware memory corruption.
280  */
281 int generic_error_remove_page(struct address_space *mapping, struct page *page)
282 {
283 	VM_BUG_ON_PAGE(PageTail(page), page);
284 
285 	if (!mapping)
286 		return -EINVAL;
287 	/*
288 	 * Only punch for normal data pages for now.
289 	 * Handling other types like directories would need more auditing.
290 	 */
291 	if (!S_ISREG(mapping->host->i_mode))
292 		return -EIO;
293 	return truncate_inode_folio(mapping, page_folio(page));
294 }
295 EXPORT_SYMBOL(generic_error_remove_page);
296 
297 /*
298  * Safely invalidate one page from its pagecache mapping.
299  * It only drops clean, unused pages. The page must be locked.
300  *
301  * Returns 1 if the page is successfully invalidated, otherwise 0.
302  */
303 int invalidate_inode_page(struct page *page)
304 {
305 	struct address_space *mapping = page_mapping(page);
306 	if (!mapping)
307 		return 0;
308 	if (PageDirty(page) || PageWriteback(page))
309 		return 0;
310 	if (page_mapped(page))
311 		return 0;
312 	return invalidate_complete_page(mapping, page);
313 }
314 
315 /**
316  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
317  * @mapping: mapping to truncate
318  * @lstart: offset from which to truncate
319  * @lend: offset to which to truncate (inclusive)
320  *
321  * Truncate the page cache, removing the pages that are between
322  * specified offsets (and zeroing out partial pages
323  * if lstart or lend + 1 is not page aligned).
324  *
325  * Truncate takes two passes - the first pass is nonblocking.  It will not
326  * block on page locks and it will not block on writeback.  The second pass
327  * will wait.  This is to prevent as much IO as possible in the affected region.
328  * The first pass will remove most pages, so the search cost of the second pass
329  * is low.
330  *
331  * We pass down the cache-hot hint to the page freeing code.  Even if the
332  * mapping is large, it is probably the case that the final pages are the most
333  * recently touched, and freeing happens in ascending file offset order.
334  *
335  * Note that since ->invalidatepage() accepts range to invalidate
336  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
337  * page aligned properly.
338  */
339 void truncate_inode_pages_range(struct address_space *mapping,
340 				loff_t lstart, loff_t lend)
341 {
342 	pgoff_t		start;		/* inclusive */
343 	pgoff_t		end;		/* exclusive */
344 	struct folio_batch fbatch;
345 	pgoff_t		indices[PAGEVEC_SIZE];
346 	pgoff_t		index;
347 	int		i;
348 	struct folio	*folio;
349 	bool		same_folio;
350 
351 	if (mapping_empty(mapping))
352 		return;
353 
354 	/*
355 	 * 'start' and 'end' always covers the range of pages to be fully
356 	 * truncated. Partial pages are covered with 'partial_start' at the
357 	 * start of the range and 'partial_end' at the end of the range.
358 	 * Note that 'end' is exclusive while 'lend' is inclusive.
359 	 */
360 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
361 	if (lend == -1)
362 		/*
363 		 * lend == -1 indicates end-of-file so we have to set 'end'
364 		 * to the highest possible pgoff_t and since the type is
365 		 * unsigned we're using -1.
366 		 */
367 		end = -1;
368 	else
369 		end = (lend + 1) >> PAGE_SHIFT;
370 
371 	folio_batch_init(&fbatch);
372 	index = start;
373 	while (index < end && find_lock_entries(mapping, index, end - 1,
374 			&fbatch, indices)) {
375 		index = indices[folio_batch_count(&fbatch) - 1] + 1;
376 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
377 		for (i = 0; i < folio_batch_count(&fbatch); i++)
378 			truncate_cleanup_folio(fbatch.folios[i]);
379 		delete_from_page_cache_batch(mapping, &fbatch);
380 		for (i = 0; i < folio_batch_count(&fbatch); i++)
381 			folio_unlock(fbatch.folios[i]);
382 		folio_batch_release(&fbatch);
383 		cond_resched();
384 	}
385 
386 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
387 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
388 	if (folio) {
389 		same_folio = lend < folio_pos(folio) + folio_size(folio);
390 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
391 			start = folio->index + folio_nr_pages(folio);
392 			if (same_folio)
393 				end = folio->index;
394 		}
395 		folio_unlock(folio);
396 		folio_put(folio);
397 		folio = NULL;
398 	}
399 
400 	if (!same_folio)
401 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
402 						FGP_LOCK, 0);
403 	if (folio) {
404 		if (!truncate_inode_partial_folio(folio, lstart, lend))
405 			end = folio->index;
406 		folio_unlock(folio);
407 		folio_put(folio);
408 	}
409 
410 	index = start;
411 	while (index < end) {
412 		cond_resched();
413 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
414 				indices)) {
415 			/* If all gone from start onwards, we're done */
416 			if (index == start)
417 				break;
418 			/* Otherwise restart to make sure all gone */
419 			index = start;
420 			continue;
421 		}
422 
423 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
424 			struct folio *folio = fbatch.folios[i];
425 
426 			/* We rely upon deletion not changing page->index */
427 			index = indices[i];
428 
429 			if (xa_is_value(folio))
430 				continue;
431 
432 			folio_lock(folio);
433 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
434 			folio_wait_writeback(folio);
435 			truncate_inode_folio(mapping, folio);
436 			folio_unlock(folio);
437 			index = folio_index(folio) + folio_nr_pages(folio) - 1;
438 		}
439 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
440 		folio_batch_release(&fbatch);
441 		index++;
442 	}
443 }
444 EXPORT_SYMBOL(truncate_inode_pages_range);
445 
446 /**
447  * truncate_inode_pages - truncate *all* the pages from an offset
448  * @mapping: mapping to truncate
449  * @lstart: offset from which to truncate
450  *
451  * Called under (and serialised by) inode->i_rwsem and
452  * mapping->invalidate_lock.
453  *
454  * Note: When this function returns, there can be a page in the process of
455  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
456  * mapping->nrpages can be non-zero when this function returns even after
457  * truncation of the whole mapping.
458  */
459 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
460 {
461 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
462 }
463 EXPORT_SYMBOL(truncate_inode_pages);
464 
465 /**
466  * truncate_inode_pages_final - truncate *all* pages before inode dies
467  * @mapping: mapping to truncate
468  *
469  * Called under (and serialized by) inode->i_rwsem.
470  *
471  * Filesystems have to use this in the .evict_inode path to inform the
472  * VM that this is the final truncate and the inode is going away.
473  */
474 void truncate_inode_pages_final(struct address_space *mapping)
475 {
476 	/*
477 	 * Page reclaim can not participate in regular inode lifetime
478 	 * management (can't call iput()) and thus can race with the
479 	 * inode teardown.  Tell it when the address space is exiting,
480 	 * so that it does not install eviction information after the
481 	 * final truncate has begun.
482 	 */
483 	mapping_set_exiting(mapping);
484 
485 	if (!mapping_empty(mapping)) {
486 		/*
487 		 * As truncation uses a lockless tree lookup, cycle
488 		 * the tree lock to make sure any ongoing tree
489 		 * modification that does not see AS_EXITING is
490 		 * completed before starting the final truncate.
491 		 */
492 		xa_lock_irq(&mapping->i_pages);
493 		xa_unlock_irq(&mapping->i_pages);
494 	}
495 
496 	truncate_inode_pages(mapping, 0);
497 }
498 EXPORT_SYMBOL(truncate_inode_pages_final);
499 
500 static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
501 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
502 {
503 	pgoff_t indices[PAGEVEC_SIZE];
504 	struct folio_batch fbatch;
505 	pgoff_t index = start;
506 	unsigned long ret;
507 	unsigned long count = 0;
508 	int i;
509 
510 	folio_batch_init(&fbatch);
511 	while (find_lock_entries(mapping, index, end, &fbatch, indices)) {
512 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
513 			struct page *page = &fbatch.folios[i]->page;
514 
515 			/* We rely upon deletion not changing page->index */
516 			index = indices[i];
517 
518 			if (xa_is_value(page)) {
519 				count += invalidate_exceptional_entry(mapping,
520 								      index,
521 								      page);
522 				continue;
523 			}
524 			index += thp_nr_pages(page) - 1;
525 
526 			ret = invalidate_inode_page(page);
527 			unlock_page(page);
528 			/*
529 			 * Invalidation is a hint that the page is no longer
530 			 * of interest and try to speed up its reclaim.
531 			 */
532 			if (!ret) {
533 				deactivate_file_page(page);
534 				/* It is likely on the pagevec of a remote CPU */
535 				if (nr_pagevec)
536 					(*nr_pagevec)++;
537 			}
538 			count += ret;
539 		}
540 		folio_batch_remove_exceptionals(&fbatch);
541 		folio_batch_release(&fbatch);
542 		cond_resched();
543 		index++;
544 	}
545 	return count;
546 }
547 
548 /**
549  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
550  * @mapping: the address_space which holds the cache to invalidate
551  * @start: the offset 'from' which to invalidate
552  * @end: the offset 'to' which to invalidate (inclusive)
553  *
554  * This function removes pages that are clean, unmapped and unlocked,
555  * as well as shadow entries. It will not block on IO activity.
556  *
557  * If you want to remove all the pages of one inode, regardless of
558  * their use and writeback state, use truncate_inode_pages().
559  *
560  * Return: the number of the cache entries that were invalidated
561  */
562 unsigned long invalidate_mapping_pages(struct address_space *mapping,
563 		pgoff_t start, pgoff_t end)
564 {
565 	return __invalidate_mapping_pages(mapping, start, end, NULL);
566 }
567 EXPORT_SYMBOL(invalidate_mapping_pages);
568 
569 /**
570  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
571  * @mapping: the address_space which holds the pages to invalidate
572  * @start: the offset 'from' which to invalidate
573  * @end: the offset 'to' which to invalidate (inclusive)
574  * @nr_pagevec: invalidate failed page number for caller
575  *
576  * This helper is similar to invalidate_mapping_pages(), except that it accounts
577  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
578  * will be used by the caller.
579  */
580 void invalidate_mapping_pagevec(struct address_space *mapping,
581 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
582 {
583 	__invalidate_mapping_pages(mapping, start, end, nr_pagevec);
584 }
585 
586 /*
587  * This is like invalidate_complete_page(), except it ignores the page's
588  * refcount.  We do this because invalidate_inode_pages2() needs stronger
589  * invalidation guarantees, and cannot afford to leave pages behind because
590  * shrink_page_list() has a temp ref on them, or because they're transiently
591  * sitting in the lru_cache_add() pagevecs.
592  */
593 static int invalidate_complete_folio2(struct address_space *mapping,
594 					struct folio *folio)
595 {
596 	if (folio->mapping != mapping)
597 		return 0;
598 
599 	if (folio_has_private(folio) &&
600 	    !filemap_release_folio(folio, GFP_KERNEL))
601 		return 0;
602 
603 	spin_lock(&mapping->host->i_lock);
604 	xa_lock_irq(&mapping->i_pages);
605 	if (folio_test_dirty(folio))
606 		goto failed;
607 
608 	BUG_ON(folio_has_private(folio));
609 	__filemap_remove_folio(folio, NULL);
610 	xa_unlock_irq(&mapping->i_pages);
611 	if (mapping_shrinkable(mapping))
612 		inode_add_lru(mapping->host);
613 	spin_unlock(&mapping->host->i_lock);
614 
615 	filemap_free_folio(mapping, folio);
616 	return 1;
617 failed:
618 	xa_unlock_irq(&mapping->i_pages);
619 	spin_unlock(&mapping->host->i_lock);
620 	return 0;
621 }
622 
623 static int do_launder_folio(struct address_space *mapping, struct folio *folio)
624 {
625 	if (!folio_test_dirty(folio))
626 		return 0;
627 	if (folio->mapping != mapping || mapping->a_ops->launder_page == NULL)
628 		return 0;
629 	return mapping->a_ops->launder_page(&folio->page);
630 }
631 
632 /**
633  * invalidate_inode_pages2_range - remove range of pages from an address_space
634  * @mapping: the address_space
635  * @start: the page offset 'from' which to invalidate
636  * @end: the page offset 'to' which to invalidate (inclusive)
637  *
638  * Any pages which are found to be mapped into pagetables are unmapped prior to
639  * invalidation.
640  *
641  * Return: -EBUSY if any pages could not be invalidated.
642  */
643 int invalidate_inode_pages2_range(struct address_space *mapping,
644 				  pgoff_t start, pgoff_t end)
645 {
646 	pgoff_t indices[PAGEVEC_SIZE];
647 	struct folio_batch fbatch;
648 	pgoff_t index;
649 	int i;
650 	int ret = 0;
651 	int ret2 = 0;
652 	int did_range_unmap = 0;
653 
654 	if (mapping_empty(mapping))
655 		return 0;
656 
657 	folio_batch_init(&fbatch);
658 	index = start;
659 	while (find_get_entries(mapping, index, end, &fbatch, indices)) {
660 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
661 			struct folio *folio = fbatch.folios[i];
662 
663 			/* We rely upon deletion not changing folio->index */
664 			index = indices[i];
665 
666 			if (xa_is_value(folio)) {
667 				if (!invalidate_exceptional_entry2(mapping,
668 						index, folio))
669 					ret = -EBUSY;
670 				continue;
671 			}
672 
673 			if (!did_range_unmap && folio_mapped(folio)) {
674 				/*
675 				 * If folio is mapped, before taking its lock,
676 				 * zap the rest of the file in one hit.
677 				 */
678 				unmap_mapping_pages(mapping, index,
679 						(1 + end - index), false);
680 				did_range_unmap = 1;
681 			}
682 
683 			folio_lock(folio);
684 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
685 			if (folio->mapping != mapping) {
686 				folio_unlock(folio);
687 				continue;
688 			}
689 			folio_wait_writeback(folio);
690 
691 			if (folio_mapped(folio))
692 				unmap_mapping_folio(folio);
693 			BUG_ON(folio_mapped(folio));
694 
695 			ret2 = do_launder_folio(mapping, folio);
696 			if (ret2 == 0) {
697 				if (!invalidate_complete_folio2(mapping, folio))
698 					ret2 = -EBUSY;
699 			}
700 			if (ret2 < 0)
701 				ret = ret2;
702 			folio_unlock(folio);
703 		}
704 		folio_batch_remove_exceptionals(&fbatch);
705 		folio_batch_release(&fbatch);
706 		cond_resched();
707 		index++;
708 	}
709 	/*
710 	 * For DAX we invalidate page tables after invalidating page cache.  We
711 	 * could invalidate page tables while invalidating each entry however
712 	 * that would be expensive. And doing range unmapping before doesn't
713 	 * work as we have no cheap way to find whether page cache entry didn't
714 	 * get remapped later.
715 	 */
716 	if (dax_mapping(mapping)) {
717 		unmap_mapping_pages(mapping, start, end - start + 1, false);
718 	}
719 	return ret;
720 }
721 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
722 
723 /**
724  * invalidate_inode_pages2 - remove all pages from an address_space
725  * @mapping: the address_space
726  *
727  * Any pages which are found to be mapped into pagetables are unmapped prior to
728  * invalidation.
729  *
730  * Return: -EBUSY if any pages could not be invalidated.
731  */
732 int invalidate_inode_pages2(struct address_space *mapping)
733 {
734 	return invalidate_inode_pages2_range(mapping, 0, -1);
735 }
736 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
737 
738 /**
739  * truncate_pagecache - unmap and remove pagecache that has been truncated
740  * @inode: inode
741  * @newsize: new file size
742  *
743  * inode's new i_size must already be written before truncate_pagecache
744  * is called.
745  *
746  * This function should typically be called before the filesystem
747  * releases resources associated with the freed range (eg. deallocates
748  * blocks). This way, pagecache will always stay logically coherent
749  * with on-disk format, and the filesystem would not have to deal with
750  * situations such as writepage being called for a page that has already
751  * had its underlying blocks deallocated.
752  */
753 void truncate_pagecache(struct inode *inode, loff_t newsize)
754 {
755 	struct address_space *mapping = inode->i_mapping;
756 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
757 
758 	/*
759 	 * unmap_mapping_range is called twice, first simply for
760 	 * efficiency so that truncate_inode_pages does fewer
761 	 * single-page unmaps.  However after this first call, and
762 	 * before truncate_inode_pages finishes, it is possible for
763 	 * private pages to be COWed, which remain after
764 	 * truncate_inode_pages finishes, hence the second
765 	 * unmap_mapping_range call must be made for correctness.
766 	 */
767 	unmap_mapping_range(mapping, holebegin, 0, 1);
768 	truncate_inode_pages(mapping, newsize);
769 	unmap_mapping_range(mapping, holebegin, 0, 1);
770 }
771 EXPORT_SYMBOL(truncate_pagecache);
772 
773 /**
774  * truncate_setsize - update inode and pagecache for a new file size
775  * @inode: inode
776  * @newsize: new file size
777  *
778  * truncate_setsize updates i_size and performs pagecache truncation (if
779  * necessary) to @newsize. It will be typically be called from the filesystem's
780  * setattr function when ATTR_SIZE is passed in.
781  *
782  * Must be called with a lock serializing truncates and writes (generally
783  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
784  * specific block truncation has been performed.
785  */
786 void truncate_setsize(struct inode *inode, loff_t newsize)
787 {
788 	loff_t oldsize = inode->i_size;
789 
790 	i_size_write(inode, newsize);
791 	if (newsize > oldsize)
792 		pagecache_isize_extended(inode, oldsize, newsize);
793 	truncate_pagecache(inode, newsize);
794 }
795 EXPORT_SYMBOL(truncate_setsize);
796 
797 /**
798  * pagecache_isize_extended - update pagecache after extension of i_size
799  * @inode:	inode for which i_size was extended
800  * @from:	original inode size
801  * @to:		new inode size
802  *
803  * Handle extension of inode size either caused by extending truncate or by
804  * write starting after current i_size. We mark the page straddling current
805  * i_size RO so that page_mkwrite() is called on the nearest write access to
806  * the page.  This way filesystem can be sure that page_mkwrite() is called on
807  * the page before user writes to the page via mmap after the i_size has been
808  * changed.
809  *
810  * The function must be called after i_size is updated so that page fault
811  * coming after we unlock the page will already see the new i_size.
812  * The function must be called while we still hold i_rwsem - this not only
813  * makes sure i_size is stable but also that userspace cannot observe new
814  * i_size value before we are prepared to store mmap writes at new inode size.
815  */
816 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
817 {
818 	int bsize = i_blocksize(inode);
819 	loff_t rounded_from;
820 	struct page *page;
821 	pgoff_t index;
822 
823 	WARN_ON(to > inode->i_size);
824 
825 	if (from >= to || bsize == PAGE_SIZE)
826 		return;
827 	/* Page straddling @from will not have any hole block created? */
828 	rounded_from = round_up(from, bsize);
829 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
830 		return;
831 
832 	index = from >> PAGE_SHIFT;
833 	page = find_lock_page(inode->i_mapping, index);
834 	/* Page not cached? Nothing to do */
835 	if (!page)
836 		return;
837 	/*
838 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
839 	 * is needed.
840 	 */
841 	if (page_mkclean(page))
842 		set_page_dirty(page);
843 	unlock_page(page);
844 	put_page(page);
845 }
846 EXPORT_SYMBOL(pagecache_isize_extended);
847 
848 /**
849  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
850  * @inode: inode
851  * @lstart: offset of beginning of hole
852  * @lend: offset of last byte of hole
853  *
854  * This function should typically be called before the filesystem
855  * releases resources associated with the freed range (eg. deallocates
856  * blocks). This way, pagecache will always stay logically coherent
857  * with on-disk format, and the filesystem would not have to deal with
858  * situations such as writepage being called for a page that has already
859  * had its underlying blocks deallocated.
860  */
861 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
862 {
863 	struct address_space *mapping = inode->i_mapping;
864 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
865 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
866 	/*
867 	 * This rounding is currently just for example: unmap_mapping_range
868 	 * expands its hole outwards, whereas we want it to contract the hole
869 	 * inwards.  However, existing callers of truncate_pagecache_range are
870 	 * doing their own page rounding first.  Note that unmap_mapping_range
871 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
872 	 */
873 
874 	/*
875 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
876 	 * once (before truncating pagecache), and without "even_cows" flag:
877 	 * hole-punching should not remove private COWed pages from the hole.
878 	 */
879 	if ((u64)unmap_end > (u64)unmap_start)
880 		unmap_mapping_range(mapping, unmap_start,
881 				    1 + unmap_end - unmap_start, 0);
882 	truncate_inode_pages_range(mapping, lstart, lend);
883 }
884 EXPORT_SYMBOL(truncate_pagecache_range);
885