xref: /linux/mm/truncate.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/module.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include "internal.h"
23 
24 
25 /**
26  * do_invalidatepage - invalidate part or all of a page
27  * @page: the page which is affected
28  * @offset: the index of the truncation point
29  *
30  * do_invalidatepage() is called when all or part of the page has become
31  * invalidated by a truncate operation.
32  *
33  * do_invalidatepage() does not have to release all buffers, but it must
34  * ensure that no dirty buffer is left outside @offset and that no I/O
35  * is underway against any of the blocks which are outside the truncation
36  * point.  Because the caller is about to free (and possibly reuse) those
37  * blocks on-disk.
38  */
39 void do_invalidatepage(struct page *page, unsigned long offset)
40 {
41 	void (*invalidatepage)(struct page *, unsigned long);
42 	invalidatepage = page->mapping->a_ops->invalidatepage;
43 #ifdef CONFIG_BLOCK
44 	if (!invalidatepage)
45 		invalidatepage = block_invalidatepage;
46 #endif
47 	if (invalidatepage)
48 		(*invalidatepage)(page, offset);
49 }
50 
51 static inline void truncate_partial_page(struct page *page, unsigned partial)
52 {
53 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
54 	if (page_has_private(page))
55 		do_invalidatepage(page, partial);
56 }
57 
58 /*
59  * This cancels just the dirty bit on the kernel page itself, it
60  * does NOT actually remove dirty bits on any mmap's that may be
61  * around. It also leaves the page tagged dirty, so any sync
62  * activity will still find it on the dirty lists, and in particular,
63  * clear_page_dirty_for_io() will still look at the dirty bits in
64  * the VM.
65  *
66  * Doing this should *normally* only ever be done when a page
67  * is truncated, and is not actually mapped anywhere at all. However,
68  * fs/buffer.c does this when it notices that somebody has cleaned
69  * out all the buffers on a page without actually doing it through
70  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
71  */
72 void cancel_dirty_page(struct page *page, unsigned int account_size)
73 {
74 	if (TestClearPageDirty(page)) {
75 		struct address_space *mapping = page->mapping;
76 		if (mapping && mapping_cap_account_dirty(mapping)) {
77 			dec_zone_page_state(page, NR_FILE_DIRTY);
78 			dec_bdi_stat(mapping->backing_dev_info,
79 					BDI_RECLAIMABLE);
80 			if (account_size)
81 				task_io_account_cancelled_write(account_size);
82 		}
83 	}
84 }
85 EXPORT_SYMBOL(cancel_dirty_page);
86 
87 /*
88  * If truncate cannot remove the fs-private metadata from the page, the page
89  * becomes orphaned.  It will be left on the LRU and may even be mapped into
90  * user pagetables if we're racing with filemap_fault().
91  *
92  * We need to bale out if page->mapping is no longer equal to the original
93  * mapping.  This happens a) when the VM reclaimed the page while we waited on
94  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
96  */
97 static int
98 truncate_complete_page(struct address_space *mapping, struct page *page)
99 {
100 	if (page->mapping != mapping)
101 		return -EIO;
102 
103 	if (page_has_private(page))
104 		do_invalidatepage(page, 0);
105 
106 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
107 
108 	clear_page_mlock(page);
109 	ClearPageMappedToDisk(page);
110 	delete_from_page_cache(page);
111 	return 0;
112 }
113 
114 /*
115  * This is for invalidate_mapping_pages().  That function can be called at
116  * any time, and is not supposed to throw away dirty pages.  But pages can
117  * be marked dirty at any time too, so use remove_mapping which safely
118  * discards clean, unused pages.
119  *
120  * Returns non-zero if the page was successfully invalidated.
121  */
122 static int
123 invalidate_complete_page(struct address_space *mapping, struct page *page)
124 {
125 	int ret;
126 
127 	if (page->mapping != mapping)
128 		return 0;
129 
130 	if (page_has_private(page) && !try_to_release_page(page, 0))
131 		return 0;
132 
133 	clear_page_mlock(page);
134 	ret = remove_mapping(mapping, page);
135 
136 	return ret;
137 }
138 
139 int truncate_inode_page(struct address_space *mapping, struct page *page)
140 {
141 	if (page_mapped(page)) {
142 		unmap_mapping_range(mapping,
143 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
144 				   PAGE_CACHE_SIZE, 0);
145 	}
146 	return truncate_complete_page(mapping, page);
147 }
148 
149 /*
150  * Used to get rid of pages on hardware memory corruption.
151  */
152 int generic_error_remove_page(struct address_space *mapping, struct page *page)
153 {
154 	if (!mapping)
155 		return -EINVAL;
156 	/*
157 	 * Only punch for normal data pages for now.
158 	 * Handling other types like directories would need more auditing.
159 	 */
160 	if (!S_ISREG(mapping->host->i_mode))
161 		return -EIO;
162 	return truncate_inode_page(mapping, page);
163 }
164 EXPORT_SYMBOL(generic_error_remove_page);
165 
166 /*
167  * Safely invalidate one page from its pagecache mapping.
168  * It only drops clean, unused pages. The page must be locked.
169  *
170  * Returns 1 if the page is successfully invalidated, otherwise 0.
171  */
172 int invalidate_inode_page(struct page *page)
173 {
174 	struct address_space *mapping = page_mapping(page);
175 	if (!mapping)
176 		return 0;
177 	if (PageDirty(page) || PageWriteback(page))
178 		return 0;
179 	if (page_mapped(page))
180 		return 0;
181 	return invalidate_complete_page(mapping, page);
182 }
183 
184 /**
185  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
186  * @mapping: mapping to truncate
187  * @lstart: offset from which to truncate
188  * @lend: offset to which to truncate
189  *
190  * Truncate the page cache, removing the pages that are between
191  * specified offsets (and zeroing out partial page
192  * (if lstart is not page aligned)).
193  *
194  * Truncate takes two passes - the first pass is nonblocking.  It will not
195  * block on page locks and it will not block on writeback.  The second pass
196  * will wait.  This is to prevent as much IO as possible in the affected region.
197  * The first pass will remove most pages, so the search cost of the second pass
198  * is low.
199  *
200  * When looking at page->index outside the page lock we need to be careful to
201  * copy it into a local to avoid races (it could change at any time).
202  *
203  * We pass down the cache-hot hint to the page freeing code.  Even if the
204  * mapping is large, it is probably the case that the final pages are the most
205  * recently touched, and freeing happens in ascending file offset order.
206  */
207 void truncate_inode_pages_range(struct address_space *mapping,
208 				loff_t lstart, loff_t lend)
209 {
210 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
211 	pgoff_t end;
212 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
213 	struct pagevec pvec;
214 	pgoff_t next;
215 	int i;
216 
217 	if (mapping->nrpages == 0)
218 		return;
219 
220 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221 	end = (lend >> PAGE_CACHE_SHIFT);
222 
223 	pagevec_init(&pvec, 0);
224 	next = start;
225 	while (next <= end &&
226 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
227 		mem_cgroup_uncharge_start();
228 		for (i = 0; i < pagevec_count(&pvec); i++) {
229 			struct page *page = pvec.pages[i];
230 			pgoff_t page_index = page->index;
231 
232 			if (page_index > end) {
233 				next = page_index;
234 				break;
235 			}
236 
237 			if (page_index > next)
238 				next = page_index;
239 			next++;
240 			if (!trylock_page(page))
241 				continue;
242 			if (PageWriteback(page)) {
243 				unlock_page(page);
244 				continue;
245 			}
246 			truncate_inode_page(mapping, page);
247 			unlock_page(page);
248 		}
249 		pagevec_release(&pvec);
250 		mem_cgroup_uncharge_end();
251 		cond_resched();
252 	}
253 
254 	if (partial) {
255 		struct page *page = find_lock_page(mapping, start - 1);
256 		if (page) {
257 			wait_on_page_writeback(page);
258 			truncate_partial_page(page, partial);
259 			unlock_page(page);
260 			page_cache_release(page);
261 		}
262 	}
263 
264 	next = start;
265 	for ( ; ; ) {
266 		cond_resched();
267 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
268 			if (next == start)
269 				break;
270 			next = start;
271 			continue;
272 		}
273 		if (pvec.pages[0]->index > end) {
274 			pagevec_release(&pvec);
275 			break;
276 		}
277 		mem_cgroup_uncharge_start();
278 		for (i = 0; i < pagevec_count(&pvec); i++) {
279 			struct page *page = pvec.pages[i];
280 
281 			if (page->index > end)
282 				break;
283 			lock_page(page);
284 			wait_on_page_writeback(page);
285 			truncate_inode_page(mapping, page);
286 			if (page->index > next)
287 				next = page->index;
288 			next++;
289 			unlock_page(page);
290 		}
291 		pagevec_release(&pvec);
292 		mem_cgroup_uncharge_end();
293 	}
294 }
295 EXPORT_SYMBOL(truncate_inode_pages_range);
296 
297 /**
298  * truncate_inode_pages - truncate *all* the pages from an offset
299  * @mapping: mapping to truncate
300  * @lstart: offset from which to truncate
301  *
302  * Called under (and serialised by) inode->i_mutex.
303  */
304 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
305 {
306 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
307 }
308 EXPORT_SYMBOL(truncate_inode_pages);
309 
310 /**
311  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
312  * @mapping: the address_space which holds the pages to invalidate
313  * @start: the offset 'from' which to invalidate
314  * @end: the offset 'to' which to invalidate (inclusive)
315  *
316  * This function only removes the unlocked pages, if you want to
317  * remove all the pages of one inode, you must call truncate_inode_pages.
318  *
319  * invalidate_mapping_pages() will not block on IO activity. It will not
320  * invalidate pages which are dirty, locked, under writeback or mapped into
321  * pagetables.
322  */
323 unsigned long invalidate_mapping_pages(struct address_space *mapping,
324 		pgoff_t start, pgoff_t end)
325 {
326 	struct pagevec pvec;
327 	pgoff_t next = start;
328 	unsigned long ret;
329 	unsigned long count = 0;
330 	int i;
331 
332 	pagevec_init(&pvec, 0);
333 	while (next <= end &&
334 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
335 		mem_cgroup_uncharge_start();
336 		for (i = 0; i < pagevec_count(&pvec); i++) {
337 			struct page *page = pvec.pages[i];
338 			pgoff_t index;
339 			int lock_failed;
340 
341 			lock_failed = !trylock_page(page);
342 
343 			/*
344 			 * We really shouldn't be looking at the ->index of an
345 			 * unlocked page.  But we're not allowed to lock these
346 			 * pages.  So we rely upon nobody altering the ->index
347 			 * of this (pinned-by-us) page.
348 			 */
349 			index = page->index;
350 			if (index > next)
351 				next = index;
352 			next++;
353 			if (lock_failed)
354 				continue;
355 
356 			ret = invalidate_inode_page(page);
357 			unlock_page(page);
358 			/*
359 			 * Invalidation is a hint that the page is no longer
360 			 * of interest and try to speed up its reclaim.
361 			 */
362 			if (!ret)
363 				deactivate_page(page);
364 			count += ret;
365 			if (next > end)
366 				break;
367 		}
368 		pagevec_release(&pvec);
369 		mem_cgroup_uncharge_end();
370 		cond_resched();
371 	}
372 	return count;
373 }
374 EXPORT_SYMBOL(invalidate_mapping_pages);
375 
376 /*
377  * This is like invalidate_complete_page(), except it ignores the page's
378  * refcount.  We do this because invalidate_inode_pages2() needs stronger
379  * invalidation guarantees, and cannot afford to leave pages behind because
380  * shrink_page_list() has a temp ref on them, or because they're transiently
381  * sitting in the lru_cache_add() pagevecs.
382  */
383 static int
384 invalidate_complete_page2(struct address_space *mapping, struct page *page)
385 {
386 	if (page->mapping != mapping)
387 		return 0;
388 
389 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
390 		return 0;
391 
392 	spin_lock_irq(&mapping->tree_lock);
393 	if (PageDirty(page))
394 		goto failed;
395 
396 	clear_page_mlock(page);
397 	BUG_ON(page_has_private(page));
398 	__delete_from_page_cache(page);
399 	spin_unlock_irq(&mapping->tree_lock);
400 	mem_cgroup_uncharge_cache_page(page);
401 
402 	if (mapping->a_ops->freepage)
403 		mapping->a_ops->freepage(page);
404 
405 	page_cache_release(page);	/* pagecache ref */
406 	return 1;
407 failed:
408 	spin_unlock_irq(&mapping->tree_lock);
409 	return 0;
410 }
411 
412 static int do_launder_page(struct address_space *mapping, struct page *page)
413 {
414 	if (!PageDirty(page))
415 		return 0;
416 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
417 		return 0;
418 	return mapping->a_ops->launder_page(page);
419 }
420 
421 /**
422  * invalidate_inode_pages2_range - remove range of pages from an address_space
423  * @mapping: the address_space
424  * @start: the page offset 'from' which to invalidate
425  * @end: the page offset 'to' which to invalidate (inclusive)
426  *
427  * Any pages which are found to be mapped into pagetables are unmapped prior to
428  * invalidation.
429  *
430  * Returns -EBUSY if any pages could not be invalidated.
431  */
432 int invalidate_inode_pages2_range(struct address_space *mapping,
433 				  pgoff_t start, pgoff_t end)
434 {
435 	struct pagevec pvec;
436 	pgoff_t next;
437 	int i;
438 	int ret = 0;
439 	int ret2 = 0;
440 	int did_range_unmap = 0;
441 	int wrapped = 0;
442 
443 	pagevec_init(&pvec, 0);
444 	next = start;
445 	while (next <= end && !wrapped &&
446 		pagevec_lookup(&pvec, mapping, next,
447 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
448 		mem_cgroup_uncharge_start();
449 		for (i = 0; i < pagevec_count(&pvec); i++) {
450 			struct page *page = pvec.pages[i];
451 			pgoff_t page_index;
452 
453 			lock_page(page);
454 			if (page->mapping != mapping) {
455 				unlock_page(page);
456 				continue;
457 			}
458 			page_index = page->index;
459 			next = page_index + 1;
460 			if (next == 0)
461 				wrapped = 1;
462 			if (page_index > end) {
463 				unlock_page(page);
464 				break;
465 			}
466 			wait_on_page_writeback(page);
467 			if (page_mapped(page)) {
468 				if (!did_range_unmap) {
469 					/*
470 					 * Zap the rest of the file in one hit.
471 					 */
472 					unmap_mapping_range(mapping,
473 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
474 					   (loff_t)(end - page_index + 1)
475 							<< PAGE_CACHE_SHIFT,
476 					    0);
477 					did_range_unmap = 1;
478 				} else {
479 					/*
480 					 * Just zap this page
481 					 */
482 					unmap_mapping_range(mapping,
483 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
484 					  PAGE_CACHE_SIZE, 0);
485 				}
486 			}
487 			BUG_ON(page_mapped(page));
488 			ret2 = do_launder_page(mapping, page);
489 			if (ret2 == 0) {
490 				if (!invalidate_complete_page2(mapping, page))
491 					ret2 = -EBUSY;
492 			}
493 			if (ret2 < 0)
494 				ret = ret2;
495 			unlock_page(page);
496 		}
497 		pagevec_release(&pvec);
498 		mem_cgroup_uncharge_end();
499 		cond_resched();
500 	}
501 	return ret;
502 }
503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
504 
505 /**
506  * invalidate_inode_pages2 - remove all pages from an address_space
507  * @mapping: the address_space
508  *
509  * Any pages which are found to be mapped into pagetables are unmapped prior to
510  * invalidation.
511  *
512  * Returns -EBUSY if any pages could not be invalidated.
513  */
514 int invalidate_inode_pages2(struct address_space *mapping)
515 {
516 	return invalidate_inode_pages2_range(mapping, 0, -1);
517 }
518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
519 
520 /**
521  * truncate_pagecache - unmap and remove pagecache that has been truncated
522  * @inode: inode
523  * @old: old file offset
524  * @new: new file offset
525  *
526  * inode's new i_size must already be written before truncate_pagecache
527  * is called.
528  *
529  * This function should typically be called before the filesystem
530  * releases resources associated with the freed range (eg. deallocates
531  * blocks). This way, pagecache will always stay logically coherent
532  * with on-disk format, and the filesystem would not have to deal with
533  * situations such as writepage being called for a page that has already
534  * had its underlying blocks deallocated.
535  */
536 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
537 {
538 	struct address_space *mapping = inode->i_mapping;
539 
540 	/*
541 	 * unmap_mapping_range is called twice, first simply for
542 	 * efficiency so that truncate_inode_pages does fewer
543 	 * single-page unmaps.  However after this first call, and
544 	 * before truncate_inode_pages finishes, it is possible for
545 	 * private pages to be COWed, which remain after
546 	 * truncate_inode_pages finishes, hence the second
547 	 * unmap_mapping_range call must be made for correctness.
548 	 */
549 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
550 	truncate_inode_pages(mapping, new);
551 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
552 }
553 EXPORT_SYMBOL(truncate_pagecache);
554 
555 /**
556  * truncate_setsize - update inode and pagecache for a new file size
557  * @inode: inode
558  * @newsize: new file size
559  *
560  * truncate_setsize updates i_size and performs pagecache truncation (if
561  * necessary) to @newsize. It will be typically be called from the filesystem's
562  * setattr function when ATTR_SIZE is passed in.
563  *
564  * Must be called with inode_mutex held and before all filesystem specific
565  * block truncation has been performed.
566  */
567 void truncate_setsize(struct inode *inode, loff_t newsize)
568 {
569 	loff_t oldsize;
570 
571 	oldsize = inode->i_size;
572 	i_size_write(inode, newsize);
573 
574 	truncate_pagecache(inode, oldsize, newsize);
575 }
576 EXPORT_SYMBOL(truncate_setsize);
577 
578 /**
579  * vmtruncate - unmap mappings "freed" by truncate() syscall
580  * @inode: inode of the file used
581  * @offset: file offset to start truncating
582  *
583  * This function is deprecated and truncate_setsize or truncate_pagecache
584  * should be used instead, together with filesystem specific block truncation.
585  */
586 int vmtruncate(struct inode *inode, loff_t offset)
587 {
588 	int error;
589 
590 	error = inode_newsize_ok(inode, offset);
591 	if (error)
592 		return error;
593 
594 	truncate_setsize(inode, offset);
595 	if (inode->i_op->truncate)
596 		inode->i_op->truncate(inode);
597 	return 0;
598 }
599 EXPORT_SYMBOL(vmtruncate);
600