1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/module.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include "internal.h" 23 24 25 /** 26 * do_invalidatepage - invalidate part or all of a page 27 * @page: the page which is affected 28 * @offset: the index of the truncation point 29 * 30 * do_invalidatepage() is called when all or part of the page has become 31 * invalidated by a truncate operation. 32 * 33 * do_invalidatepage() does not have to release all buffers, but it must 34 * ensure that no dirty buffer is left outside @offset and that no I/O 35 * is underway against any of the blocks which are outside the truncation 36 * point. Because the caller is about to free (and possibly reuse) those 37 * blocks on-disk. 38 */ 39 void do_invalidatepage(struct page *page, unsigned long offset) 40 { 41 void (*invalidatepage)(struct page *, unsigned long); 42 invalidatepage = page->mapping->a_ops->invalidatepage; 43 #ifdef CONFIG_BLOCK 44 if (!invalidatepage) 45 invalidatepage = block_invalidatepage; 46 #endif 47 if (invalidatepage) 48 (*invalidatepage)(page, offset); 49 } 50 51 static inline void truncate_partial_page(struct page *page, unsigned partial) 52 { 53 zero_user_segment(page, partial, PAGE_CACHE_SIZE); 54 if (page_has_private(page)) 55 do_invalidatepage(page, partial); 56 } 57 58 /* 59 * This cancels just the dirty bit on the kernel page itself, it 60 * does NOT actually remove dirty bits on any mmap's that may be 61 * around. It also leaves the page tagged dirty, so any sync 62 * activity will still find it on the dirty lists, and in particular, 63 * clear_page_dirty_for_io() will still look at the dirty bits in 64 * the VM. 65 * 66 * Doing this should *normally* only ever be done when a page 67 * is truncated, and is not actually mapped anywhere at all. However, 68 * fs/buffer.c does this when it notices that somebody has cleaned 69 * out all the buffers on a page without actually doing it through 70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 71 */ 72 void cancel_dirty_page(struct page *page, unsigned int account_size) 73 { 74 if (TestClearPageDirty(page)) { 75 struct address_space *mapping = page->mapping; 76 if (mapping && mapping_cap_account_dirty(mapping)) { 77 dec_zone_page_state(page, NR_FILE_DIRTY); 78 dec_bdi_stat(mapping->backing_dev_info, 79 BDI_RECLAIMABLE); 80 if (account_size) 81 task_io_account_cancelled_write(account_size); 82 } 83 } 84 } 85 EXPORT_SYMBOL(cancel_dirty_page); 86 87 /* 88 * If truncate cannot remove the fs-private metadata from the page, the page 89 * becomes orphaned. It will be left on the LRU and may even be mapped into 90 * user pagetables if we're racing with filemap_fault(). 91 * 92 * We need to bale out if page->mapping is no longer equal to the original 93 * mapping. This happens a) when the VM reclaimed the page while we waited on 94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 96 */ 97 static int 98 truncate_complete_page(struct address_space *mapping, struct page *page) 99 { 100 if (page->mapping != mapping) 101 return -EIO; 102 103 if (page_has_private(page)) 104 do_invalidatepage(page, 0); 105 106 cancel_dirty_page(page, PAGE_CACHE_SIZE); 107 108 clear_page_mlock(page); 109 ClearPageMappedToDisk(page); 110 delete_from_page_cache(page); 111 return 0; 112 } 113 114 /* 115 * This is for invalidate_mapping_pages(). That function can be called at 116 * any time, and is not supposed to throw away dirty pages. But pages can 117 * be marked dirty at any time too, so use remove_mapping which safely 118 * discards clean, unused pages. 119 * 120 * Returns non-zero if the page was successfully invalidated. 121 */ 122 static int 123 invalidate_complete_page(struct address_space *mapping, struct page *page) 124 { 125 int ret; 126 127 if (page->mapping != mapping) 128 return 0; 129 130 if (page_has_private(page) && !try_to_release_page(page, 0)) 131 return 0; 132 133 clear_page_mlock(page); 134 ret = remove_mapping(mapping, page); 135 136 return ret; 137 } 138 139 int truncate_inode_page(struct address_space *mapping, struct page *page) 140 { 141 if (page_mapped(page)) { 142 unmap_mapping_range(mapping, 143 (loff_t)page->index << PAGE_CACHE_SHIFT, 144 PAGE_CACHE_SIZE, 0); 145 } 146 return truncate_complete_page(mapping, page); 147 } 148 149 /* 150 * Used to get rid of pages on hardware memory corruption. 151 */ 152 int generic_error_remove_page(struct address_space *mapping, struct page *page) 153 { 154 if (!mapping) 155 return -EINVAL; 156 /* 157 * Only punch for normal data pages for now. 158 * Handling other types like directories would need more auditing. 159 */ 160 if (!S_ISREG(mapping->host->i_mode)) 161 return -EIO; 162 return truncate_inode_page(mapping, page); 163 } 164 EXPORT_SYMBOL(generic_error_remove_page); 165 166 /* 167 * Safely invalidate one page from its pagecache mapping. 168 * It only drops clean, unused pages. The page must be locked. 169 * 170 * Returns 1 if the page is successfully invalidated, otherwise 0. 171 */ 172 int invalidate_inode_page(struct page *page) 173 { 174 struct address_space *mapping = page_mapping(page); 175 if (!mapping) 176 return 0; 177 if (PageDirty(page) || PageWriteback(page)) 178 return 0; 179 if (page_mapped(page)) 180 return 0; 181 return invalidate_complete_page(mapping, page); 182 } 183 184 /** 185 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 186 * @mapping: mapping to truncate 187 * @lstart: offset from which to truncate 188 * @lend: offset to which to truncate 189 * 190 * Truncate the page cache, removing the pages that are between 191 * specified offsets (and zeroing out partial page 192 * (if lstart is not page aligned)). 193 * 194 * Truncate takes two passes - the first pass is nonblocking. It will not 195 * block on page locks and it will not block on writeback. The second pass 196 * will wait. This is to prevent as much IO as possible in the affected region. 197 * The first pass will remove most pages, so the search cost of the second pass 198 * is low. 199 * 200 * When looking at page->index outside the page lock we need to be careful to 201 * copy it into a local to avoid races (it could change at any time). 202 * 203 * We pass down the cache-hot hint to the page freeing code. Even if the 204 * mapping is large, it is probably the case that the final pages are the most 205 * recently touched, and freeing happens in ascending file offset order. 206 */ 207 void truncate_inode_pages_range(struct address_space *mapping, 208 loff_t lstart, loff_t lend) 209 { 210 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 211 pgoff_t end; 212 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 213 struct pagevec pvec; 214 pgoff_t next; 215 int i; 216 217 if (mapping->nrpages == 0) 218 return; 219 220 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 221 end = (lend >> PAGE_CACHE_SHIFT); 222 223 pagevec_init(&pvec, 0); 224 next = start; 225 while (next <= end && 226 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 227 mem_cgroup_uncharge_start(); 228 for (i = 0; i < pagevec_count(&pvec); i++) { 229 struct page *page = pvec.pages[i]; 230 pgoff_t page_index = page->index; 231 232 if (page_index > end) { 233 next = page_index; 234 break; 235 } 236 237 if (page_index > next) 238 next = page_index; 239 next++; 240 if (!trylock_page(page)) 241 continue; 242 if (PageWriteback(page)) { 243 unlock_page(page); 244 continue; 245 } 246 truncate_inode_page(mapping, page); 247 unlock_page(page); 248 } 249 pagevec_release(&pvec); 250 mem_cgroup_uncharge_end(); 251 cond_resched(); 252 } 253 254 if (partial) { 255 struct page *page = find_lock_page(mapping, start - 1); 256 if (page) { 257 wait_on_page_writeback(page); 258 truncate_partial_page(page, partial); 259 unlock_page(page); 260 page_cache_release(page); 261 } 262 } 263 264 next = start; 265 for ( ; ; ) { 266 cond_resched(); 267 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 268 if (next == start) 269 break; 270 next = start; 271 continue; 272 } 273 if (pvec.pages[0]->index > end) { 274 pagevec_release(&pvec); 275 break; 276 } 277 mem_cgroup_uncharge_start(); 278 for (i = 0; i < pagevec_count(&pvec); i++) { 279 struct page *page = pvec.pages[i]; 280 281 if (page->index > end) 282 break; 283 lock_page(page); 284 wait_on_page_writeback(page); 285 truncate_inode_page(mapping, page); 286 if (page->index > next) 287 next = page->index; 288 next++; 289 unlock_page(page); 290 } 291 pagevec_release(&pvec); 292 mem_cgroup_uncharge_end(); 293 } 294 } 295 EXPORT_SYMBOL(truncate_inode_pages_range); 296 297 /** 298 * truncate_inode_pages - truncate *all* the pages from an offset 299 * @mapping: mapping to truncate 300 * @lstart: offset from which to truncate 301 * 302 * Called under (and serialised by) inode->i_mutex. 303 */ 304 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 305 { 306 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 307 } 308 EXPORT_SYMBOL(truncate_inode_pages); 309 310 /** 311 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 312 * @mapping: the address_space which holds the pages to invalidate 313 * @start: the offset 'from' which to invalidate 314 * @end: the offset 'to' which to invalidate (inclusive) 315 * 316 * This function only removes the unlocked pages, if you want to 317 * remove all the pages of one inode, you must call truncate_inode_pages. 318 * 319 * invalidate_mapping_pages() will not block on IO activity. It will not 320 * invalidate pages which are dirty, locked, under writeback or mapped into 321 * pagetables. 322 */ 323 unsigned long invalidate_mapping_pages(struct address_space *mapping, 324 pgoff_t start, pgoff_t end) 325 { 326 struct pagevec pvec; 327 pgoff_t next = start; 328 unsigned long ret; 329 unsigned long count = 0; 330 int i; 331 332 pagevec_init(&pvec, 0); 333 while (next <= end && 334 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 335 mem_cgroup_uncharge_start(); 336 for (i = 0; i < pagevec_count(&pvec); i++) { 337 struct page *page = pvec.pages[i]; 338 pgoff_t index; 339 int lock_failed; 340 341 lock_failed = !trylock_page(page); 342 343 /* 344 * We really shouldn't be looking at the ->index of an 345 * unlocked page. But we're not allowed to lock these 346 * pages. So we rely upon nobody altering the ->index 347 * of this (pinned-by-us) page. 348 */ 349 index = page->index; 350 if (index > next) 351 next = index; 352 next++; 353 if (lock_failed) 354 continue; 355 356 ret = invalidate_inode_page(page); 357 unlock_page(page); 358 /* 359 * Invalidation is a hint that the page is no longer 360 * of interest and try to speed up its reclaim. 361 */ 362 if (!ret) 363 deactivate_page(page); 364 count += ret; 365 if (next > end) 366 break; 367 } 368 pagevec_release(&pvec); 369 mem_cgroup_uncharge_end(); 370 cond_resched(); 371 } 372 return count; 373 } 374 EXPORT_SYMBOL(invalidate_mapping_pages); 375 376 /* 377 * This is like invalidate_complete_page(), except it ignores the page's 378 * refcount. We do this because invalidate_inode_pages2() needs stronger 379 * invalidation guarantees, and cannot afford to leave pages behind because 380 * shrink_page_list() has a temp ref on them, or because they're transiently 381 * sitting in the lru_cache_add() pagevecs. 382 */ 383 static int 384 invalidate_complete_page2(struct address_space *mapping, struct page *page) 385 { 386 if (page->mapping != mapping) 387 return 0; 388 389 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 390 return 0; 391 392 spin_lock_irq(&mapping->tree_lock); 393 if (PageDirty(page)) 394 goto failed; 395 396 clear_page_mlock(page); 397 BUG_ON(page_has_private(page)); 398 __delete_from_page_cache(page); 399 spin_unlock_irq(&mapping->tree_lock); 400 mem_cgroup_uncharge_cache_page(page); 401 402 if (mapping->a_ops->freepage) 403 mapping->a_ops->freepage(page); 404 405 page_cache_release(page); /* pagecache ref */ 406 return 1; 407 failed: 408 spin_unlock_irq(&mapping->tree_lock); 409 return 0; 410 } 411 412 static int do_launder_page(struct address_space *mapping, struct page *page) 413 { 414 if (!PageDirty(page)) 415 return 0; 416 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 417 return 0; 418 return mapping->a_ops->launder_page(page); 419 } 420 421 /** 422 * invalidate_inode_pages2_range - remove range of pages from an address_space 423 * @mapping: the address_space 424 * @start: the page offset 'from' which to invalidate 425 * @end: the page offset 'to' which to invalidate (inclusive) 426 * 427 * Any pages which are found to be mapped into pagetables are unmapped prior to 428 * invalidation. 429 * 430 * Returns -EBUSY if any pages could not be invalidated. 431 */ 432 int invalidate_inode_pages2_range(struct address_space *mapping, 433 pgoff_t start, pgoff_t end) 434 { 435 struct pagevec pvec; 436 pgoff_t next; 437 int i; 438 int ret = 0; 439 int ret2 = 0; 440 int did_range_unmap = 0; 441 int wrapped = 0; 442 443 pagevec_init(&pvec, 0); 444 next = start; 445 while (next <= end && !wrapped && 446 pagevec_lookup(&pvec, mapping, next, 447 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 448 mem_cgroup_uncharge_start(); 449 for (i = 0; i < pagevec_count(&pvec); i++) { 450 struct page *page = pvec.pages[i]; 451 pgoff_t page_index; 452 453 lock_page(page); 454 if (page->mapping != mapping) { 455 unlock_page(page); 456 continue; 457 } 458 page_index = page->index; 459 next = page_index + 1; 460 if (next == 0) 461 wrapped = 1; 462 if (page_index > end) { 463 unlock_page(page); 464 break; 465 } 466 wait_on_page_writeback(page); 467 if (page_mapped(page)) { 468 if (!did_range_unmap) { 469 /* 470 * Zap the rest of the file in one hit. 471 */ 472 unmap_mapping_range(mapping, 473 (loff_t)page_index<<PAGE_CACHE_SHIFT, 474 (loff_t)(end - page_index + 1) 475 << PAGE_CACHE_SHIFT, 476 0); 477 did_range_unmap = 1; 478 } else { 479 /* 480 * Just zap this page 481 */ 482 unmap_mapping_range(mapping, 483 (loff_t)page_index<<PAGE_CACHE_SHIFT, 484 PAGE_CACHE_SIZE, 0); 485 } 486 } 487 BUG_ON(page_mapped(page)); 488 ret2 = do_launder_page(mapping, page); 489 if (ret2 == 0) { 490 if (!invalidate_complete_page2(mapping, page)) 491 ret2 = -EBUSY; 492 } 493 if (ret2 < 0) 494 ret = ret2; 495 unlock_page(page); 496 } 497 pagevec_release(&pvec); 498 mem_cgroup_uncharge_end(); 499 cond_resched(); 500 } 501 return ret; 502 } 503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 504 505 /** 506 * invalidate_inode_pages2 - remove all pages from an address_space 507 * @mapping: the address_space 508 * 509 * Any pages which are found to be mapped into pagetables are unmapped prior to 510 * invalidation. 511 * 512 * Returns -EBUSY if any pages could not be invalidated. 513 */ 514 int invalidate_inode_pages2(struct address_space *mapping) 515 { 516 return invalidate_inode_pages2_range(mapping, 0, -1); 517 } 518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 519 520 /** 521 * truncate_pagecache - unmap and remove pagecache that has been truncated 522 * @inode: inode 523 * @old: old file offset 524 * @new: new file offset 525 * 526 * inode's new i_size must already be written before truncate_pagecache 527 * is called. 528 * 529 * This function should typically be called before the filesystem 530 * releases resources associated with the freed range (eg. deallocates 531 * blocks). This way, pagecache will always stay logically coherent 532 * with on-disk format, and the filesystem would not have to deal with 533 * situations such as writepage being called for a page that has already 534 * had its underlying blocks deallocated. 535 */ 536 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new) 537 { 538 struct address_space *mapping = inode->i_mapping; 539 540 /* 541 * unmap_mapping_range is called twice, first simply for 542 * efficiency so that truncate_inode_pages does fewer 543 * single-page unmaps. However after this first call, and 544 * before truncate_inode_pages finishes, it is possible for 545 * private pages to be COWed, which remain after 546 * truncate_inode_pages finishes, hence the second 547 * unmap_mapping_range call must be made for correctness. 548 */ 549 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 550 truncate_inode_pages(mapping, new); 551 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 552 } 553 EXPORT_SYMBOL(truncate_pagecache); 554 555 /** 556 * truncate_setsize - update inode and pagecache for a new file size 557 * @inode: inode 558 * @newsize: new file size 559 * 560 * truncate_setsize updates i_size and performs pagecache truncation (if 561 * necessary) to @newsize. It will be typically be called from the filesystem's 562 * setattr function when ATTR_SIZE is passed in. 563 * 564 * Must be called with inode_mutex held and before all filesystem specific 565 * block truncation has been performed. 566 */ 567 void truncate_setsize(struct inode *inode, loff_t newsize) 568 { 569 loff_t oldsize; 570 571 oldsize = inode->i_size; 572 i_size_write(inode, newsize); 573 574 truncate_pagecache(inode, oldsize, newsize); 575 } 576 EXPORT_SYMBOL(truncate_setsize); 577 578 /** 579 * vmtruncate - unmap mappings "freed" by truncate() syscall 580 * @inode: inode of the file used 581 * @offset: file offset to start truncating 582 * 583 * This function is deprecated and truncate_setsize or truncate_pagecache 584 * should be used instead, together with filesystem specific block truncation. 585 */ 586 int vmtruncate(struct inode *inode, loff_t offset) 587 { 588 int error; 589 590 error = inode_newsize_ok(inode, offset); 591 if (error) 592 return error; 593 594 truncate_setsize(inode, offset); 595 if (inode->i_op->truncate) 596 inode->i_op->truncate(inode); 597 return 0; 598 } 599 EXPORT_SYMBOL(vmtruncate); 600