xref: /linux/mm/truncate.c (revision 9d8a2b033db179bef9b6b5bad492f611a0fe89b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25 
26 /*
27  * Regular page slots are stabilized by the page lock even without the tree
28  * itself locked.  These unlocked entries need verification under the tree
29  * lock.
30  */
31 static inline void __clear_shadow_entry(struct address_space *mapping,
32 				pgoff_t index, void *entry)
33 {
34 	XA_STATE(xas, &mapping->i_pages, index);
35 
36 	xas_set_update(&xas, workingset_update_node);
37 	if (xas_load(&xas) != entry)
38 		return;
39 	xas_store(&xas, NULL);
40 }
41 
42 static void clear_shadow_entries(struct address_space *mapping,
43 				 struct folio_batch *fbatch, pgoff_t *indices)
44 {
45 	int i;
46 
47 	/* Handled by shmem itself, or for DAX we do nothing. */
48 	if (shmem_mapping(mapping) || dax_mapping(mapping))
49 		return;
50 
51 	spin_lock(&mapping->host->i_lock);
52 	xa_lock_irq(&mapping->i_pages);
53 
54 	for (i = 0; i < folio_batch_count(fbatch); i++) {
55 		struct folio *folio = fbatch->folios[i];
56 
57 		if (xa_is_value(folio))
58 			__clear_shadow_entry(mapping, indices[i], folio);
59 	}
60 
61 	xa_unlock_irq(&mapping->i_pages);
62 	if (mapping_shrinkable(mapping))
63 		inode_add_lru(mapping->host);
64 	spin_unlock(&mapping->host->i_lock);
65 }
66 
67 /*
68  * Unconditionally remove exceptional entries. Usually called from truncate
69  * path. Note that the folio_batch may be altered by this function by removing
70  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
71  */
72 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
73 				struct folio_batch *fbatch, pgoff_t *indices)
74 {
75 	int i, j;
76 	bool dax;
77 
78 	/* Handled by shmem itself */
79 	if (shmem_mapping(mapping))
80 		return;
81 
82 	for (j = 0; j < folio_batch_count(fbatch); j++)
83 		if (xa_is_value(fbatch->folios[j]))
84 			break;
85 
86 	if (j == folio_batch_count(fbatch))
87 		return;
88 
89 	dax = dax_mapping(mapping);
90 	if (!dax) {
91 		spin_lock(&mapping->host->i_lock);
92 		xa_lock_irq(&mapping->i_pages);
93 	}
94 
95 	for (i = j; i < folio_batch_count(fbatch); i++) {
96 		struct folio *folio = fbatch->folios[i];
97 		pgoff_t index = indices[i];
98 
99 		if (!xa_is_value(folio)) {
100 			fbatch->folios[j++] = folio;
101 			continue;
102 		}
103 
104 		if (unlikely(dax)) {
105 			dax_delete_mapping_entry(mapping, index);
106 			continue;
107 		}
108 
109 		__clear_shadow_entry(mapping, index, folio);
110 	}
111 
112 	if (!dax) {
113 		xa_unlock_irq(&mapping->i_pages);
114 		if (mapping_shrinkable(mapping))
115 			inode_add_lru(mapping->host);
116 		spin_unlock(&mapping->host->i_lock);
117 	}
118 	fbatch->nr = j;
119 }
120 
121 /**
122  * folio_invalidate - Invalidate part or all of a folio.
123  * @folio: The folio which is affected.
124  * @offset: start of the range to invalidate
125  * @length: length of the range to invalidate
126  *
127  * folio_invalidate() is called when all or part of the folio has become
128  * invalidated by a truncate operation.
129  *
130  * folio_invalidate() does not have to release all buffers, but it must
131  * ensure that no dirty buffer is left outside @offset and that no I/O
132  * is underway against any of the blocks which are outside the truncation
133  * point.  Because the caller is about to free (and possibly reuse) those
134  * blocks on-disk.
135  */
136 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
137 {
138 	const struct address_space_operations *aops = folio->mapping->a_ops;
139 
140 	if (aops->invalidate_folio)
141 		aops->invalidate_folio(folio, offset, length);
142 }
143 EXPORT_SYMBOL_GPL(folio_invalidate);
144 
145 /*
146  * If truncate cannot remove the fs-private metadata from the page, the page
147  * becomes orphaned.  It will be left on the LRU and may even be mapped into
148  * user pagetables if we're racing with filemap_fault().
149  *
150  * We need to bail out if page->mapping is no longer equal to the original
151  * mapping.  This happens a) when the VM reclaimed the page while we waited on
152  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
153  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
154  */
155 static void truncate_cleanup_folio(struct folio *folio)
156 {
157 	if (folio_mapped(folio))
158 		unmap_mapping_folio(folio);
159 
160 	if (folio_needs_release(folio))
161 		folio_invalidate(folio, 0, folio_size(folio));
162 
163 	/*
164 	 * Some filesystems seem to re-dirty the page even after
165 	 * the VM has canceled the dirty bit (eg ext3 journaling).
166 	 * Hence dirty accounting check is placed after invalidation.
167 	 */
168 	folio_cancel_dirty(folio);
169 }
170 
171 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
172 {
173 	if (folio->mapping != mapping)
174 		return -EIO;
175 
176 	truncate_cleanup_folio(folio);
177 	filemap_remove_folio(folio);
178 	return 0;
179 }
180 
181 /*
182  * Handle partial folios.  The folio may be entirely within the
183  * range if a split has raced with us.  If not, we zero the part of the
184  * folio that's within the [start, end] range, and then split the folio if
185  * it's large.  split_page_range() will discard pages which now lie beyond
186  * i_size, and we rely on the caller to discard pages which lie within a
187  * newly created hole.
188  *
189  * Returns false if splitting failed so the caller can avoid
190  * discarding the entire folio which is stubbornly unsplit.
191  */
192 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
193 {
194 	loff_t pos = folio_pos(folio);
195 	unsigned int offset, length;
196 
197 	if (pos < start)
198 		offset = start - pos;
199 	else
200 		offset = 0;
201 	length = folio_size(folio);
202 	if (pos + length <= (u64)end)
203 		length = length - offset;
204 	else
205 		length = end + 1 - pos - offset;
206 
207 	folio_wait_writeback(folio);
208 	if (length == folio_size(folio)) {
209 		truncate_inode_folio(folio->mapping, folio);
210 		return true;
211 	}
212 
213 	/*
214 	 * We may be zeroing pages we're about to discard, but it avoids
215 	 * doing a complex calculation here, and then doing the zeroing
216 	 * anyway if the page split fails.
217 	 */
218 	if (!mapping_inaccessible(folio->mapping))
219 		folio_zero_range(folio, offset, length);
220 
221 	if (folio_needs_release(folio))
222 		folio_invalidate(folio, offset, length);
223 	if (!folio_test_large(folio))
224 		return true;
225 	if (split_folio(folio) == 0)
226 		return true;
227 	if (folio_test_dirty(folio))
228 		return false;
229 	truncate_inode_folio(folio->mapping, folio);
230 	return true;
231 }
232 
233 /*
234  * Used to get rid of pages on hardware memory corruption.
235  */
236 int generic_error_remove_folio(struct address_space *mapping,
237 		struct folio *folio)
238 {
239 	if (!mapping)
240 		return -EINVAL;
241 	/*
242 	 * Only punch for normal data pages for now.
243 	 * Handling other types like directories would need more auditing.
244 	 */
245 	if (!S_ISREG(mapping->host->i_mode))
246 		return -EIO;
247 	return truncate_inode_folio(mapping, folio);
248 }
249 EXPORT_SYMBOL(generic_error_remove_folio);
250 
251 /**
252  * mapping_evict_folio() - Remove an unused folio from the page-cache.
253  * @mapping: The mapping this folio belongs to.
254  * @folio: The folio to remove.
255  *
256  * Safely remove one folio from the page cache.
257  * It only drops clean, unused folios.
258  *
259  * Context: Folio must be locked.
260  * Return: The number of pages successfully removed.
261  */
262 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
263 {
264 	/* The page may have been truncated before it was locked */
265 	if (!mapping)
266 		return 0;
267 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
268 		return 0;
269 	/* The refcount will be elevated if any page in the folio is mapped */
270 	if (folio_ref_count(folio) >
271 			folio_nr_pages(folio) + folio_has_private(folio) + 1)
272 		return 0;
273 	if (!filemap_release_folio(folio, 0))
274 		return 0;
275 
276 	return remove_mapping(mapping, folio);
277 }
278 
279 /**
280  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
281  * @mapping: mapping to truncate
282  * @lstart: offset from which to truncate
283  * @lend: offset to which to truncate (inclusive)
284  *
285  * Truncate the page cache, removing the pages that are between
286  * specified offsets (and zeroing out partial pages
287  * if lstart or lend + 1 is not page aligned).
288  *
289  * Truncate takes two passes - the first pass is nonblocking.  It will not
290  * block on page locks and it will not block on writeback.  The second pass
291  * will wait.  This is to prevent as much IO as possible in the affected region.
292  * The first pass will remove most pages, so the search cost of the second pass
293  * is low.
294  *
295  * We pass down the cache-hot hint to the page freeing code.  Even if the
296  * mapping is large, it is probably the case that the final pages are the most
297  * recently touched, and freeing happens in ascending file offset order.
298  *
299  * Note that since ->invalidate_folio() accepts range to invalidate
300  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
301  * page aligned properly.
302  */
303 void truncate_inode_pages_range(struct address_space *mapping,
304 				loff_t lstart, loff_t lend)
305 {
306 	pgoff_t		start;		/* inclusive */
307 	pgoff_t		end;		/* exclusive */
308 	struct folio_batch fbatch;
309 	pgoff_t		indices[PAGEVEC_SIZE];
310 	pgoff_t		index;
311 	int		i;
312 	struct folio	*folio;
313 	bool		same_folio;
314 
315 	if (mapping_empty(mapping))
316 		return;
317 
318 	/*
319 	 * 'start' and 'end' always covers the range of pages to be fully
320 	 * truncated. Partial pages are covered with 'partial_start' at the
321 	 * start of the range and 'partial_end' at the end of the range.
322 	 * Note that 'end' is exclusive while 'lend' is inclusive.
323 	 */
324 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
325 	if (lend == -1)
326 		/*
327 		 * lend == -1 indicates end-of-file so we have to set 'end'
328 		 * to the highest possible pgoff_t and since the type is
329 		 * unsigned we're using -1.
330 		 */
331 		end = -1;
332 	else
333 		end = (lend + 1) >> PAGE_SHIFT;
334 
335 	folio_batch_init(&fbatch);
336 	index = start;
337 	while (index < end && find_lock_entries(mapping, &index, end - 1,
338 			&fbatch, indices)) {
339 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
340 		for (i = 0; i < folio_batch_count(&fbatch); i++)
341 			truncate_cleanup_folio(fbatch.folios[i]);
342 		delete_from_page_cache_batch(mapping, &fbatch);
343 		for (i = 0; i < folio_batch_count(&fbatch); i++)
344 			folio_unlock(fbatch.folios[i]);
345 		folio_batch_release(&fbatch);
346 		cond_resched();
347 	}
348 
349 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
350 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
351 	if (!IS_ERR(folio)) {
352 		same_folio = lend < folio_pos(folio) + folio_size(folio);
353 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
354 			start = folio_next_index(folio);
355 			if (same_folio)
356 				end = folio->index;
357 		}
358 		folio_unlock(folio);
359 		folio_put(folio);
360 		folio = NULL;
361 	}
362 
363 	if (!same_folio) {
364 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
365 						FGP_LOCK, 0);
366 		if (!IS_ERR(folio)) {
367 			if (!truncate_inode_partial_folio(folio, lstart, lend))
368 				end = folio->index;
369 			folio_unlock(folio);
370 			folio_put(folio);
371 		}
372 	}
373 
374 	index = start;
375 	while (index < end) {
376 		cond_resched();
377 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
378 				indices)) {
379 			/* If all gone from start onwards, we're done */
380 			if (index == start)
381 				break;
382 			/* Otherwise restart to make sure all gone */
383 			index = start;
384 			continue;
385 		}
386 
387 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
388 			struct folio *folio = fbatch.folios[i];
389 
390 			/* We rely upon deletion not changing page->index */
391 
392 			if (xa_is_value(folio))
393 				continue;
394 
395 			folio_lock(folio);
396 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
397 			folio_wait_writeback(folio);
398 			truncate_inode_folio(mapping, folio);
399 			folio_unlock(folio);
400 		}
401 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
402 		folio_batch_release(&fbatch);
403 	}
404 }
405 EXPORT_SYMBOL(truncate_inode_pages_range);
406 
407 /**
408  * truncate_inode_pages - truncate *all* the pages from an offset
409  * @mapping: mapping to truncate
410  * @lstart: offset from which to truncate
411  *
412  * Called under (and serialised by) inode->i_rwsem and
413  * mapping->invalidate_lock.
414  *
415  * Note: When this function returns, there can be a page in the process of
416  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
417  * mapping->nrpages can be non-zero when this function returns even after
418  * truncation of the whole mapping.
419  */
420 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
421 {
422 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
423 }
424 EXPORT_SYMBOL(truncate_inode_pages);
425 
426 /**
427  * truncate_inode_pages_final - truncate *all* pages before inode dies
428  * @mapping: mapping to truncate
429  *
430  * Called under (and serialized by) inode->i_rwsem.
431  *
432  * Filesystems have to use this in the .evict_inode path to inform the
433  * VM that this is the final truncate and the inode is going away.
434  */
435 void truncate_inode_pages_final(struct address_space *mapping)
436 {
437 	/*
438 	 * Page reclaim can not participate in regular inode lifetime
439 	 * management (can't call iput()) and thus can race with the
440 	 * inode teardown.  Tell it when the address space is exiting,
441 	 * so that it does not install eviction information after the
442 	 * final truncate has begun.
443 	 */
444 	mapping_set_exiting(mapping);
445 
446 	if (!mapping_empty(mapping)) {
447 		/*
448 		 * As truncation uses a lockless tree lookup, cycle
449 		 * the tree lock to make sure any ongoing tree
450 		 * modification that does not see AS_EXITING is
451 		 * completed before starting the final truncate.
452 		 */
453 		xa_lock_irq(&mapping->i_pages);
454 		xa_unlock_irq(&mapping->i_pages);
455 	}
456 
457 	truncate_inode_pages(mapping, 0);
458 }
459 EXPORT_SYMBOL(truncate_inode_pages_final);
460 
461 /**
462  * mapping_try_invalidate - Invalidate all the evictable folios of one inode
463  * @mapping: the address_space which holds the folios to invalidate
464  * @start: the offset 'from' which to invalidate
465  * @end: the offset 'to' which to invalidate (inclusive)
466  * @nr_failed: How many folio invalidations failed
467  *
468  * This function is similar to invalidate_mapping_pages(), except that it
469  * returns the number of folios which could not be evicted in @nr_failed.
470  */
471 unsigned long mapping_try_invalidate(struct address_space *mapping,
472 		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
473 {
474 	pgoff_t indices[PAGEVEC_SIZE];
475 	struct folio_batch fbatch;
476 	pgoff_t index = start;
477 	unsigned long ret;
478 	unsigned long count = 0;
479 	int i;
480 	bool xa_has_values = false;
481 
482 	folio_batch_init(&fbatch);
483 	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
484 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
485 			struct folio *folio = fbatch.folios[i];
486 
487 			/* We rely upon deletion not changing folio->index */
488 
489 			if (xa_is_value(folio)) {
490 				xa_has_values = true;
491 				count++;
492 				continue;
493 			}
494 
495 			ret = mapping_evict_folio(mapping, folio);
496 			folio_unlock(folio);
497 			/*
498 			 * Invalidation is a hint that the folio is no longer
499 			 * of interest and try to speed up its reclaim.
500 			 */
501 			if (!ret) {
502 				deactivate_file_folio(folio);
503 				/* Likely in the lru cache of a remote CPU */
504 				if (nr_failed)
505 					(*nr_failed)++;
506 			}
507 			count += ret;
508 		}
509 
510 		if (xa_has_values)
511 			clear_shadow_entries(mapping, &fbatch, indices);
512 
513 		folio_batch_remove_exceptionals(&fbatch);
514 		folio_batch_release(&fbatch);
515 		cond_resched();
516 	}
517 	return count;
518 }
519 
520 /**
521  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
522  * @mapping: the address_space which holds the cache to invalidate
523  * @start: the offset 'from' which to invalidate
524  * @end: the offset 'to' which to invalidate (inclusive)
525  *
526  * This function removes pages that are clean, unmapped and unlocked,
527  * as well as shadow entries. It will not block on IO activity.
528  *
529  * If you want to remove all the pages of one inode, regardless of
530  * their use and writeback state, use truncate_inode_pages().
531  *
532  * Return: The number of indices that had their contents invalidated
533  */
534 unsigned long invalidate_mapping_pages(struct address_space *mapping,
535 		pgoff_t start, pgoff_t end)
536 {
537 	return mapping_try_invalidate(mapping, start, end, NULL);
538 }
539 EXPORT_SYMBOL(invalidate_mapping_pages);
540 
541 /*
542  * This is like mapping_evict_folio(), except it ignores the folio's
543  * refcount.  We do this because invalidate_inode_pages2() needs stronger
544  * invalidation guarantees, and cannot afford to leave folios behind because
545  * shrink_folio_list() has a temp ref on them, or because they're transiently
546  * sitting in the folio_add_lru() caches.
547  */
548 static int invalidate_complete_folio2(struct address_space *mapping,
549 					struct folio *folio)
550 {
551 	if (folio->mapping != mapping)
552 		return 0;
553 
554 	if (!filemap_release_folio(folio, GFP_KERNEL))
555 		return 0;
556 
557 	spin_lock(&mapping->host->i_lock);
558 	xa_lock_irq(&mapping->i_pages);
559 	if (folio_test_dirty(folio))
560 		goto failed;
561 
562 	BUG_ON(folio_has_private(folio));
563 	__filemap_remove_folio(folio, NULL);
564 	xa_unlock_irq(&mapping->i_pages);
565 	if (mapping_shrinkable(mapping))
566 		inode_add_lru(mapping->host);
567 	spin_unlock(&mapping->host->i_lock);
568 
569 	filemap_free_folio(mapping, folio);
570 	return 1;
571 failed:
572 	xa_unlock_irq(&mapping->i_pages);
573 	spin_unlock(&mapping->host->i_lock);
574 	return 0;
575 }
576 
577 static int folio_launder(struct address_space *mapping, struct folio *folio)
578 {
579 	if (!folio_test_dirty(folio))
580 		return 0;
581 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
582 		return 0;
583 	return mapping->a_ops->launder_folio(folio);
584 }
585 
586 /**
587  * invalidate_inode_pages2_range - remove range of pages from an address_space
588  * @mapping: the address_space
589  * @start: the page offset 'from' which to invalidate
590  * @end: the page offset 'to' which to invalidate (inclusive)
591  *
592  * Any pages which are found to be mapped into pagetables are unmapped prior to
593  * invalidation.
594  *
595  * Return: -EBUSY if any pages could not be invalidated.
596  */
597 int invalidate_inode_pages2_range(struct address_space *mapping,
598 				  pgoff_t start, pgoff_t end)
599 {
600 	pgoff_t indices[PAGEVEC_SIZE];
601 	struct folio_batch fbatch;
602 	pgoff_t index;
603 	int i;
604 	int ret = 0;
605 	int ret2 = 0;
606 	int did_range_unmap = 0;
607 	bool xa_has_values = false;
608 
609 	if (mapping_empty(mapping))
610 		return 0;
611 
612 	folio_batch_init(&fbatch);
613 	index = start;
614 	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
615 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
616 			struct folio *folio = fbatch.folios[i];
617 
618 			/* We rely upon deletion not changing folio->index */
619 
620 			if (xa_is_value(folio)) {
621 				xa_has_values = true;
622 				if (dax_mapping(mapping) &&
623 				    !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
624 					ret = -EBUSY;
625 				continue;
626 			}
627 
628 			if (!did_range_unmap && folio_mapped(folio)) {
629 				/*
630 				 * If folio is mapped, before taking its lock,
631 				 * zap the rest of the file in one hit.
632 				 */
633 				unmap_mapping_pages(mapping, indices[i],
634 						(1 + end - indices[i]), false);
635 				did_range_unmap = 1;
636 			}
637 
638 			folio_lock(folio);
639 			if (unlikely(folio->mapping != mapping)) {
640 				folio_unlock(folio);
641 				continue;
642 			}
643 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
644 			folio_wait_writeback(folio);
645 
646 			if (folio_mapped(folio))
647 				unmap_mapping_folio(folio);
648 			BUG_ON(folio_mapped(folio));
649 
650 			ret2 = folio_launder(mapping, folio);
651 			if (ret2 == 0) {
652 				if (!invalidate_complete_folio2(mapping, folio))
653 					ret2 = -EBUSY;
654 			}
655 			if (ret2 < 0)
656 				ret = ret2;
657 			folio_unlock(folio);
658 		}
659 
660 		if (xa_has_values)
661 			clear_shadow_entries(mapping, &fbatch, indices);
662 
663 		folio_batch_remove_exceptionals(&fbatch);
664 		folio_batch_release(&fbatch);
665 		cond_resched();
666 	}
667 	/*
668 	 * For DAX we invalidate page tables after invalidating page cache.  We
669 	 * could invalidate page tables while invalidating each entry however
670 	 * that would be expensive. And doing range unmapping before doesn't
671 	 * work as we have no cheap way to find whether page cache entry didn't
672 	 * get remapped later.
673 	 */
674 	if (dax_mapping(mapping)) {
675 		unmap_mapping_pages(mapping, start, end - start + 1, false);
676 	}
677 	return ret;
678 }
679 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
680 
681 /**
682  * invalidate_inode_pages2 - remove all pages from an address_space
683  * @mapping: the address_space
684  *
685  * Any pages which are found to be mapped into pagetables are unmapped prior to
686  * invalidation.
687  *
688  * Return: -EBUSY if any pages could not be invalidated.
689  */
690 int invalidate_inode_pages2(struct address_space *mapping)
691 {
692 	return invalidate_inode_pages2_range(mapping, 0, -1);
693 }
694 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
695 
696 /**
697  * truncate_pagecache - unmap and remove pagecache that has been truncated
698  * @inode: inode
699  * @newsize: new file size
700  *
701  * inode's new i_size must already be written before truncate_pagecache
702  * is called.
703  *
704  * This function should typically be called before the filesystem
705  * releases resources associated with the freed range (eg. deallocates
706  * blocks). This way, pagecache will always stay logically coherent
707  * with on-disk format, and the filesystem would not have to deal with
708  * situations such as writepage being called for a page that has already
709  * had its underlying blocks deallocated.
710  */
711 void truncate_pagecache(struct inode *inode, loff_t newsize)
712 {
713 	struct address_space *mapping = inode->i_mapping;
714 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
715 
716 	/*
717 	 * unmap_mapping_range is called twice, first simply for
718 	 * efficiency so that truncate_inode_pages does fewer
719 	 * single-page unmaps.  However after this first call, and
720 	 * before truncate_inode_pages finishes, it is possible for
721 	 * private pages to be COWed, which remain after
722 	 * truncate_inode_pages finishes, hence the second
723 	 * unmap_mapping_range call must be made for correctness.
724 	 */
725 	unmap_mapping_range(mapping, holebegin, 0, 1);
726 	truncate_inode_pages(mapping, newsize);
727 	unmap_mapping_range(mapping, holebegin, 0, 1);
728 }
729 EXPORT_SYMBOL(truncate_pagecache);
730 
731 /**
732  * truncate_setsize - update inode and pagecache for a new file size
733  * @inode: inode
734  * @newsize: new file size
735  *
736  * truncate_setsize updates i_size and performs pagecache truncation (if
737  * necessary) to @newsize. It will be typically be called from the filesystem's
738  * setattr function when ATTR_SIZE is passed in.
739  *
740  * Must be called with a lock serializing truncates and writes (generally
741  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
742  * specific block truncation has been performed.
743  */
744 void truncate_setsize(struct inode *inode, loff_t newsize)
745 {
746 	loff_t oldsize = inode->i_size;
747 
748 	i_size_write(inode, newsize);
749 	if (newsize > oldsize)
750 		pagecache_isize_extended(inode, oldsize, newsize);
751 	truncate_pagecache(inode, newsize);
752 }
753 EXPORT_SYMBOL(truncate_setsize);
754 
755 /**
756  * pagecache_isize_extended - update pagecache after extension of i_size
757  * @inode:	inode for which i_size was extended
758  * @from:	original inode size
759  * @to:		new inode size
760  *
761  * Handle extension of inode size either caused by extending truncate or
762  * by write starting after current i_size.  We mark the page straddling
763  * current i_size RO so that page_mkwrite() is called on the first
764  * write access to the page.  The filesystem will update its per-block
765  * information before user writes to the page via mmap after the i_size
766  * has been changed.
767  *
768  * The function must be called after i_size is updated so that page fault
769  * coming after we unlock the folio will already see the new i_size.
770  * The function must be called while we still hold i_rwsem - this not only
771  * makes sure i_size is stable but also that userspace cannot observe new
772  * i_size value before we are prepared to store mmap writes at new inode size.
773  */
774 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
775 {
776 	int bsize = i_blocksize(inode);
777 	loff_t rounded_from;
778 	struct folio *folio;
779 
780 	WARN_ON(to > inode->i_size);
781 
782 	if (from >= to || bsize >= PAGE_SIZE)
783 		return;
784 	/* Page straddling @from will not have any hole block created? */
785 	rounded_from = round_up(from, bsize);
786 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
787 		return;
788 
789 	folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
790 	/* Folio not cached? Nothing to do */
791 	if (IS_ERR(folio))
792 		return;
793 	/*
794 	 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
795 	 * is needed.
796 	 */
797 	if (folio_mkclean(folio))
798 		folio_mark_dirty(folio);
799 
800 	/*
801 	 * The post-eof range of the folio must be zeroed before it is exposed
802 	 * to the file. Writeback normally does this, but since i_size has been
803 	 * increased we handle it here.
804 	 */
805 	if (folio_test_dirty(folio)) {
806 		unsigned int offset, end;
807 
808 		offset = from - folio_pos(folio);
809 		end = min_t(unsigned int, to - folio_pos(folio),
810 			    folio_size(folio));
811 		folio_zero_segment(folio, offset, end);
812 	}
813 
814 	folio_unlock(folio);
815 	folio_put(folio);
816 }
817 EXPORT_SYMBOL(pagecache_isize_extended);
818 
819 /**
820  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
821  * @inode: inode
822  * @lstart: offset of beginning of hole
823  * @lend: offset of last byte of hole
824  *
825  * This function should typically be called before the filesystem
826  * releases resources associated with the freed range (eg. deallocates
827  * blocks). This way, pagecache will always stay logically coherent
828  * with on-disk format, and the filesystem would not have to deal with
829  * situations such as writepage being called for a page that has already
830  * had its underlying blocks deallocated.
831  */
832 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
833 {
834 	struct address_space *mapping = inode->i_mapping;
835 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
836 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
837 	/*
838 	 * This rounding is currently just for example: unmap_mapping_range
839 	 * expands its hole outwards, whereas we want it to contract the hole
840 	 * inwards.  However, existing callers of truncate_pagecache_range are
841 	 * doing their own page rounding first.  Note that unmap_mapping_range
842 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
843 	 */
844 
845 	/*
846 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
847 	 * once (before truncating pagecache), and without "even_cows" flag:
848 	 * hole-punching should not remove private COWed pages from the hole.
849 	 */
850 	if ((u64)unmap_end > (u64)unmap_start)
851 		unmap_mapping_range(mapping, unmap_start,
852 				    1 + unmap_end - unmap_start, 0);
853 	truncate_inode_pages_range(mapping, lstart, lend);
854 }
855 EXPORT_SYMBOL(truncate_pagecache_range);
856