xref: /linux/mm/truncate.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25 
26 static void clear_exceptional_entry(struct address_space *mapping,
27 				    pgoff_t index, void *entry)
28 {
29 	struct radix_tree_node *node;
30 	void **slot;
31 
32 	/* Handled by shmem itself */
33 	if (shmem_mapping(mapping))
34 		return;
35 
36 	spin_lock_irq(&mapping->tree_lock);
37 	/*
38 	 * Regular page slots are stabilized by the page lock even
39 	 * without the tree itself locked.  These unlocked entries
40 	 * need verification under the tree lock.
41 	 */
42 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
43 		goto unlock;
44 	if (*slot != entry)
45 		goto unlock;
46 	radix_tree_replace_slot(slot, NULL);
47 	mapping->nrshadows--;
48 	if (!node)
49 		goto unlock;
50 	workingset_node_shadows_dec(node);
51 	/*
52 	 * Don't track node without shadow entries.
53 	 *
54 	 * Avoid acquiring the list_lru lock if already untracked.
55 	 * The list_empty() test is safe as node->private_list is
56 	 * protected by mapping->tree_lock.
57 	 */
58 	if (!workingset_node_shadows(node) &&
59 	    !list_empty(&node->private_list))
60 		list_lru_del(&workingset_shadow_nodes, &node->private_list);
61 	__radix_tree_delete_node(&mapping->page_tree, node);
62 unlock:
63 	spin_unlock_irq(&mapping->tree_lock);
64 }
65 
66 /**
67  * do_invalidatepage - invalidate part or all of a page
68  * @page: the page which is affected
69  * @offset: start of the range to invalidate
70  * @length: length of the range to invalidate
71  *
72  * do_invalidatepage() is called when all or part of the page has become
73  * invalidated by a truncate operation.
74  *
75  * do_invalidatepage() does not have to release all buffers, but it must
76  * ensure that no dirty buffer is left outside @offset and that no I/O
77  * is underway against any of the blocks which are outside the truncation
78  * point.  Because the caller is about to free (and possibly reuse) those
79  * blocks on-disk.
80  */
81 void do_invalidatepage(struct page *page, unsigned int offset,
82 		       unsigned int length)
83 {
84 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
85 
86 	invalidatepage = page->mapping->a_ops->invalidatepage;
87 #ifdef CONFIG_BLOCK
88 	if (!invalidatepage)
89 		invalidatepage = block_invalidatepage;
90 #endif
91 	if (invalidatepage)
92 		(*invalidatepage)(page, offset, length);
93 }
94 
95 /*
96  * If truncate cannot remove the fs-private metadata from the page, the page
97  * becomes orphaned.  It will be left on the LRU and may even be mapped into
98  * user pagetables if we're racing with filemap_fault().
99  *
100  * We need to bale out if page->mapping is no longer equal to the original
101  * mapping.  This happens a) when the VM reclaimed the page while we waited on
102  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
103  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
104  */
105 static int
106 truncate_complete_page(struct address_space *mapping, struct page *page)
107 {
108 	if (page->mapping != mapping)
109 		return -EIO;
110 
111 	if (page_has_private(page))
112 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
113 
114 	/*
115 	 * Some filesystems seem to re-dirty the page even after
116 	 * the VM has canceled the dirty bit (eg ext3 journaling).
117 	 * Hence dirty accounting check is placed after invalidation.
118 	 */
119 	cancel_dirty_page(page);
120 	ClearPageMappedToDisk(page);
121 	delete_from_page_cache(page);
122 	return 0;
123 }
124 
125 /*
126  * This is for invalidate_mapping_pages().  That function can be called at
127  * any time, and is not supposed to throw away dirty pages.  But pages can
128  * be marked dirty at any time too, so use remove_mapping which safely
129  * discards clean, unused pages.
130  *
131  * Returns non-zero if the page was successfully invalidated.
132  */
133 static int
134 invalidate_complete_page(struct address_space *mapping, struct page *page)
135 {
136 	int ret;
137 
138 	if (page->mapping != mapping)
139 		return 0;
140 
141 	if (page_has_private(page) && !try_to_release_page(page, 0))
142 		return 0;
143 
144 	ret = remove_mapping(mapping, page);
145 
146 	return ret;
147 }
148 
149 int truncate_inode_page(struct address_space *mapping, struct page *page)
150 {
151 	if (page_mapped(page)) {
152 		unmap_mapping_range(mapping,
153 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
154 				   PAGE_CACHE_SIZE, 0);
155 	}
156 	return truncate_complete_page(mapping, page);
157 }
158 
159 /*
160  * Used to get rid of pages on hardware memory corruption.
161  */
162 int generic_error_remove_page(struct address_space *mapping, struct page *page)
163 {
164 	if (!mapping)
165 		return -EINVAL;
166 	/*
167 	 * Only punch for normal data pages for now.
168 	 * Handling other types like directories would need more auditing.
169 	 */
170 	if (!S_ISREG(mapping->host->i_mode))
171 		return -EIO;
172 	return truncate_inode_page(mapping, page);
173 }
174 EXPORT_SYMBOL(generic_error_remove_page);
175 
176 /*
177  * Safely invalidate one page from its pagecache mapping.
178  * It only drops clean, unused pages. The page must be locked.
179  *
180  * Returns 1 if the page is successfully invalidated, otherwise 0.
181  */
182 int invalidate_inode_page(struct page *page)
183 {
184 	struct address_space *mapping = page_mapping(page);
185 	if (!mapping)
186 		return 0;
187 	if (PageDirty(page) || PageWriteback(page))
188 		return 0;
189 	if (page_mapped(page))
190 		return 0;
191 	return invalidate_complete_page(mapping, page);
192 }
193 
194 /**
195  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
196  * @mapping: mapping to truncate
197  * @lstart: offset from which to truncate
198  * @lend: offset to which to truncate (inclusive)
199  *
200  * Truncate the page cache, removing the pages that are between
201  * specified offsets (and zeroing out partial pages
202  * if lstart or lend + 1 is not page aligned).
203  *
204  * Truncate takes two passes - the first pass is nonblocking.  It will not
205  * block on page locks and it will not block on writeback.  The second pass
206  * will wait.  This is to prevent as much IO as possible in the affected region.
207  * The first pass will remove most pages, so the search cost of the second pass
208  * is low.
209  *
210  * We pass down the cache-hot hint to the page freeing code.  Even if the
211  * mapping is large, it is probably the case that the final pages are the most
212  * recently touched, and freeing happens in ascending file offset order.
213  *
214  * Note that since ->invalidatepage() accepts range to invalidate
215  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
216  * page aligned properly.
217  */
218 void truncate_inode_pages_range(struct address_space *mapping,
219 				loff_t lstart, loff_t lend)
220 {
221 	pgoff_t		start;		/* inclusive */
222 	pgoff_t		end;		/* exclusive */
223 	unsigned int	partial_start;	/* inclusive */
224 	unsigned int	partial_end;	/* exclusive */
225 	struct pagevec	pvec;
226 	pgoff_t		indices[PAGEVEC_SIZE];
227 	pgoff_t		index;
228 	int		i;
229 
230 	cleancache_invalidate_inode(mapping);
231 	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
232 		return;
233 
234 	/* Offsets within partial pages */
235 	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
236 	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
237 
238 	/*
239 	 * 'start' and 'end' always covers the range of pages to be fully
240 	 * truncated. Partial pages are covered with 'partial_start' at the
241 	 * start of the range and 'partial_end' at the end of the range.
242 	 * Note that 'end' is exclusive while 'lend' is inclusive.
243 	 */
244 	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
245 	if (lend == -1)
246 		/*
247 		 * lend == -1 indicates end-of-file so we have to set 'end'
248 		 * to the highest possible pgoff_t and since the type is
249 		 * unsigned we're using -1.
250 		 */
251 		end = -1;
252 	else
253 		end = (lend + 1) >> PAGE_CACHE_SHIFT;
254 
255 	pagevec_init(&pvec, 0);
256 	index = start;
257 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
258 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
259 			indices)) {
260 		for (i = 0; i < pagevec_count(&pvec); i++) {
261 			struct page *page = pvec.pages[i];
262 
263 			/* We rely upon deletion not changing page->index */
264 			index = indices[i];
265 			if (index >= end)
266 				break;
267 
268 			if (radix_tree_exceptional_entry(page)) {
269 				clear_exceptional_entry(mapping, index, page);
270 				continue;
271 			}
272 
273 			if (!trylock_page(page))
274 				continue;
275 			WARN_ON(page->index != index);
276 			if (PageWriteback(page)) {
277 				unlock_page(page);
278 				continue;
279 			}
280 			truncate_inode_page(mapping, page);
281 			unlock_page(page);
282 		}
283 		pagevec_remove_exceptionals(&pvec);
284 		pagevec_release(&pvec);
285 		cond_resched();
286 		index++;
287 	}
288 
289 	if (partial_start) {
290 		struct page *page = find_lock_page(mapping, start - 1);
291 		if (page) {
292 			unsigned int top = PAGE_CACHE_SIZE;
293 			if (start > end) {
294 				/* Truncation within a single page */
295 				top = partial_end;
296 				partial_end = 0;
297 			}
298 			wait_on_page_writeback(page);
299 			zero_user_segment(page, partial_start, top);
300 			cleancache_invalidate_page(mapping, page);
301 			if (page_has_private(page))
302 				do_invalidatepage(page, partial_start,
303 						  top - partial_start);
304 			unlock_page(page);
305 			page_cache_release(page);
306 		}
307 	}
308 	if (partial_end) {
309 		struct page *page = find_lock_page(mapping, end);
310 		if (page) {
311 			wait_on_page_writeback(page);
312 			zero_user_segment(page, 0, partial_end);
313 			cleancache_invalidate_page(mapping, page);
314 			if (page_has_private(page))
315 				do_invalidatepage(page, 0,
316 						  partial_end);
317 			unlock_page(page);
318 			page_cache_release(page);
319 		}
320 	}
321 	/*
322 	 * If the truncation happened within a single page no pages
323 	 * will be released, just zeroed, so we can bail out now.
324 	 */
325 	if (start >= end)
326 		return;
327 
328 	index = start;
329 	for ( ; ; ) {
330 		cond_resched();
331 		if (!pagevec_lookup_entries(&pvec, mapping, index,
332 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
333 			/* If all gone from start onwards, we're done */
334 			if (index == start)
335 				break;
336 			/* Otherwise restart to make sure all gone */
337 			index = start;
338 			continue;
339 		}
340 		if (index == start && indices[0] >= end) {
341 			/* All gone out of hole to be punched, we're done */
342 			pagevec_remove_exceptionals(&pvec);
343 			pagevec_release(&pvec);
344 			break;
345 		}
346 		for (i = 0; i < pagevec_count(&pvec); i++) {
347 			struct page *page = pvec.pages[i];
348 
349 			/* We rely upon deletion not changing page->index */
350 			index = indices[i];
351 			if (index >= end) {
352 				/* Restart punch to make sure all gone */
353 				index = start - 1;
354 				break;
355 			}
356 
357 			if (radix_tree_exceptional_entry(page)) {
358 				clear_exceptional_entry(mapping, index, page);
359 				continue;
360 			}
361 
362 			lock_page(page);
363 			WARN_ON(page->index != index);
364 			wait_on_page_writeback(page);
365 			truncate_inode_page(mapping, page);
366 			unlock_page(page);
367 		}
368 		pagevec_remove_exceptionals(&pvec);
369 		pagevec_release(&pvec);
370 		index++;
371 	}
372 	cleancache_invalidate_inode(mapping);
373 }
374 EXPORT_SYMBOL(truncate_inode_pages_range);
375 
376 /**
377  * truncate_inode_pages - truncate *all* the pages from an offset
378  * @mapping: mapping to truncate
379  * @lstart: offset from which to truncate
380  *
381  * Called under (and serialised by) inode->i_mutex.
382  *
383  * Note: When this function returns, there can be a page in the process of
384  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
385  * mapping->nrpages can be non-zero when this function returns even after
386  * truncation of the whole mapping.
387  */
388 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
389 {
390 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
391 }
392 EXPORT_SYMBOL(truncate_inode_pages);
393 
394 /**
395  * truncate_inode_pages_final - truncate *all* pages before inode dies
396  * @mapping: mapping to truncate
397  *
398  * Called under (and serialized by) inode->i_mutex.
399  *
400  * Filesystems have to use this in the .evict_inode path to inform the
401  * VM that this is the final truncate and the inode is going away.
402  */
403 void truncate_inode_pages_final(struct address_space *mapping)
404 {
405 	unsigned long nrshadows;
406 	unsigned long nrpages;
407 
408 	/*
409 	 * Page reclaim can not participate in regular inode lifetime
410 	 * management (can't call iput()) and thus can race with the
411 	 * inode teardown.  Tell it when the address space is exiting,
412 	 * so that it does not install eviction information after the
413 	 * final truncate has begun.
414 	 */
415 	mapping_set_exiting(mapping);
416 
417 	/*
418 	 * When reclaim installs eviction entries, it increases
419 	 * nrshadows first, then decreases nrpages.  Make sure we see
420 	 * this in the right order or we might miss an entry.
421 	 */
422 	nrpages = mapping->nrpages;
423 	smp_rmb();
424 	nrshadows = mapping->nrshadows;
425 
426 	if (nrpages || nrshadows) {
427 		/*
428 		 * As truncation uses a lockless tree lookup, cycle
429 		 * the tree lock to make sure any ongoing tree
430 		 * modification that does not see AS_EXITING is
431 		 * completed before starting the final truncate.
432 		 */
433 		spin_lock_irq(&mapping->tree_lock);
434 		spin_unlock_irq(&mapping->tree_lock);
435 
436 		truncate_inode_pages(mapping, 0);
437 	}
438 }
439 EXPORT_SYMBOL(truncate_inode_pages_final);
440 
441 /**
442  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
443  * @mapping: the address_space which holds the pages to invalidate
444  * @start: the offset 'from' which to invalidate
445  * @end: the offset 'to' which to invalidate (inclusive)
446  *
447  * This function only removes the unlocked pages, if you want to
448  * remove all the pages of one inode, you must call truncate_inode_pages.
449  *
450  * invalidate_mapping_pages() will not block on IO activity. It will not
451  * invalidate pages which are dirty, locked, under writeback or mapped into
452  * pagetables.
453  */
454 unsigned long invalidate_mapping_pages(struct address_space *mapping,
455 		pgoff_t start, pgoff_t end)
456 {
457 	pgoff_t indices[PAGEVEC_SIZE];
458 	struct pagevec pvec;
459 	pgoff_t index = start;
460 	unsigned long ret;
461 	unsigned long count = 0;
462 	int i;
463 
464 	pagevec_init(&pvec, 0);
465 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
466 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
467 			indices)) {
468 		for (i = 0; i < pagevec_count(&pvec); i++) {
469 			struct page *page = pvec.pages[i];
470 
471 			/* We rely upon deletion not changing page->index */
472 			index = indices[i];
473 			if (index > end)
474 				break;
475 
476 			if (radix_tree_exceptional_entry(page)) {
477 				clear_exceptional_entry(mapping, index, page);
478 				continue;
479 			}
480 
481 			if (!trylock_page(page))
482 				continue;
483 			WARN_ON(page->index != index);
484 			ret = invalidate_inode_page(page);
485 			unlock_page(page);
486 			/*
487 			 * Invalidation is a hint that the page is no longer
488 			 * of interest and try to speed up its reclaim.
489 			 */
490 			if (!ret)
491 				deactivate_file_page(page);
492 			count += ret;
493 		}
494 		pagevec_remove_exceptionals(&pvec);
495 		pagevec_release(&pvec);
496 		cond_resched();
497 		index++;
498 	}
499 	return count;
500 }
501 EXPORT_SYMBOL(invalidate_mapping_pages);
502 
503 /*
504  * This is like invalidate_complete_page(), except it ignores the page's
505  * refcount.  We do this because invalidate_inode_pages2() needs stronger
506  * invalidation guarantees, and cannot afford to leave pages behind because
507  * shrink_page_list() has a temp ref on them, or because they're transiently
508  * sitting in the lru_cache_add() pagevecs.
509  */
510 static int
511 invalidate_complete_page2(struct address_space *mapping, struct page *page)
512 {
513 	struct mem_cgroup *memcg;
514 	unsigned long flags;
515 
516 	if (page->mapping != mapping)
517 		return 0;
518 
519 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
520 		return 0;
521 
522 	memcg = mem_cgroup_begin_page_stat(page);
523 	spin_lock_irqsave(&mapping->tree_lock, flags);
524 	if (PageDirty(page))
525 		goto failed;
526 
527 	BUG_ON(page_has_private(page));
528 	__delete_from_page_cache(page, NULL, memcg);
529 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
530 	mem_cgroup_end_page_stat(memcg);
531 
532 	if (mapping->a_ops->freepage)
533 		mapping->a_ops->freepage(page);
534 
535 	page_cache_release(page);	/* pagecache ref */
536 	return 1;
537 failed:
538 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
539 	mem_cgroup_end_page_stat(memcg);
540 	return 0;
541 }
542 
543 static int do_launder_page(struct address_space *mapping, struct page *page)
544 {
545 	if (!PageDirty(page))
546 		return 0;
547 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
548 		return 0;
549 	return mapping->a_ops->launder_page(page);
550 }
551 
552 /**
553  * invalidate_inode_pages2_range - remove range of pages from an address_space
554  * @mapping: the address_space
555  * @start: the page offset 'from' which to invalidate
556  * @end: the page offset 'to' which to invalidate (inclusive)
557  *
558  * Any pages which are found to be mapped into pagetables are unmapped prior to
559  * invalidation.
560  *
561  * Returns -EBUSY if any pages could not be invalidated.
562  */
563 int invalidate_inode_pages2_range(struct address_space *mapping,
564 				  pgoff_t start, pgoff_t end)
565 {
566 	pgoff_t indices[PAGEVEC_SIZE];
567 	struct pagevec pvec;
568 	pgoff_t index;
569 	int i;
570 	int ret = 0;
571 	int ret2 = 0;
572 	int did_range_unmap = 0;
573 
574 	cleancache_invalidate_inode(mapping);
575 	pagevec_init(&pvec, 0);
576 	index = start;
577 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
578 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
579 			indices)) {
580 		for (i = 0; i < pagevec_count(&pvec); i++) {
581 			struct page *page = pvec.pages[i];
582 
583 			/* We rely upon deletion not changing page->index */
584 			index = indices[i];
585 			if (index > end)
586 				break;
587 
588 			if (radix_tree_exceptional_entry(page)) {
589 				clear_exceptional_entry(mapping, index, page);
590 				continue;
591 			}
592 
593 			lock_page(page);
594 			WARN_ON(page->index != index);
595 			if (page->mapping != mapping) {
596 				unlock_page(page);
597 				continue;
598 			}
599 			wait_on_page_writeback(page);
600 			if (page_mapped(page)) {
601 				if (!did_range_unmap) {
602 					/*
603 					 * Zap the rest of the file in one hit.
604 					 */
605 					unmap_mapping_range(mapping,
606 					   (loff_t)index << PAGE_CACHE_SHIFT,
607 					   (loff_t)(1 + end - index)
608 							 << PAGE_CACHE_SHIFT,
609 					    0);
610 					did_range_unmap = 1;
611 				} else {
612 					/*
613 					 * Just zap this page
614 					 */
615 					unmap_mapping_range(mapping,
616 					   (loff_t)index << PAGE_CACHE_SHIFT,
617 					   PAGE_CACHE_SIZE, 0);
618 				}
619 			}
620 			BUG_ON(page_mapped(page));
621 			ret2 = do_launder_page(mapping, page);
622 			if (ret2 == 0) {
623 				if (!invalidate_complete_page2(mapping, page))
624 					ret2 = -EBUSY;
625 			}
626 			if (ret2 < 0)
627 				ret = ret2;
628 			unlock_page(page);
629 		}
630 		pagevec_remove_exceptionals(&pvec);
631 		pagevec_release(&pvec);
632 		cond_resched();
633 		index++;
634 	}
635 	cleancache_invalidate_inode(mapping);
636 	return ret;
637 }
638 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
639 
640 /**
641  * invalidate_inode_pages2 - remove all pages from an address_space
642  * @mapping: the address_space
643  *
644  * Any pages which are found to be mapped into pagetables are unmapped prior to
645  * invalidation.
646  *
647  * Returns -EBUSY if any pages could not be invalidated.
648  */
649 int invalidate_inode_pages2(struct address_space *mapping)
650 {
651 	return invalidate_inode_pages2_range(mapping, 0, -1);
652 }
653 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
654 
655 /**
656  * truncate_pagecache - unmap and remove pagecache that has been truncated
657  * @inode: inode
658  * @newsize: new file size
659  *
660  * inode's new i_size must already be written before truncate_pagecache
661  * is called.
662  *
663  * This function should typically be called before the filesystem
664  * releases resources associated with the freed range (eg. deallocates
665  * blocks). This way, pagecache will always stay logically coherent
666  * with on-disk format, and the filesystem would not have to deal with
667  * situations such as writepage being called for a page that has already
668  * had its underlying blocks deallocated.
669  */
670 void truncate_pagecache(struct inode *inode, loff_t newsize)
671 {
672 	struct address_space *mapping = inode->i_mapping;
673 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
674 
675 	/*
676 	 * unmap_mapping_range is called twice, first simply for
677 	 * efficiency so that truncate_inode_pages does fewer
678 	 * single-page unmaps.  However after this first call, and
679 	 * before truncate_inode_pages finishes, it is possible for
680 	 * private pages to be COWed, which remain after
681 	 * truncate_inode_pages finishes, hence the second
682 	 * unmap_mapping_range call must be made for correctness.
683 	 */
684 	unmap_mapping_range(mapping, holebegin, 0, 1);
685 	truncate_inode_pages(mapping, newsize);
686 	unmap_mapping_range(mapping, holebegin, 0, 1);
687 }
688 EXPORT_SYMBOL(truncate_pagecache);
689 
690 /**
691  * truncate_setsize - update inode and pagecache for a new file size
692  * @inode: inode
693  * @newsize: new file size
694  *
695  * truncate_setsize updates i_size and performs pagecache truncation (if
696  * necessary) to @newsize. It will be typically be called from the filesystem's
697  * setattr function when ATTR_SIZE is passed in.
698  *
699  * Must be called with a lock serializing truncates and writes (generally
700  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
701  * specific block truncation has been performed.
702  */
703 void truncate_setsize(struct inode *inode, loff_t newsize)
704 {
705 	loff_t oldsize = inode->i_size;
706 
707 	i_size_write(inode, newsize);
708 	if (newsize > oldsize)
709 		pagecache_isize_extended(inode, oldsize, newsize);
710 	truncate_pagecache(inode, newsize);
711 }
712 EXPORT_SYMBOL(truncate_setsize);
713 
714 /**
715  * pagecache_isize_extended - update pagecache after extension of i_size
716  * @inode:	inode for which i_size was extended
717  * @from:	original inode size
718  * @to:		new inode size
719  *
720  * Handle extension of inode size either caused by extending truncate or by
721  * write starting after current i_size. We mark the page straddling current
722  * i_size RO so that page_mkwrite() is called on the nearest write access to
723  * the page.  This way filesystem can be sure that page_mkwrite() is called on
724  * the page before user writes to the page via mmap after the i_size has been
725  * changed.
726  *
727  * The function must be called after i_size is updated so that page fault
728  * coming after we unlock the page will already see the new i_size.
729  * The function must be called while we still hold i_mutex - this not only
730  * makes sure i_size is stable but also that userspace cannot observe new
731  * i_size value before we are prepared to store mmap writes at new inode size.
732  */
733 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
734 {
735 	int bsize = 1 << inode->i_blkbits;
736 	loff_t rounded_from;
737 	struct page *page;
738 	pgoff_t index;
739 
740 	WARN_ON(to > inode->i_size);
741 
742 	if (from >= to || bsize == PAGE_CACHE_SIZE)
743 		return;
744 	/* Page straddling @from will not have any hole block created? */
745 	rounded_from = round_up(from, bsize);
746 	if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
747 		return;
748 
749 	index = from >> PAGE_CACHE_SHIFT;
750 	page = find_lock_page(inode->i_mapping, index);
751 	/* Page not cached? Nothing to do */
752 	if (!page)
753 		return;
754 	/*
755 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
756 	 * is needed.
757 	 */
758 	if (page_mkclean(page))
759 		set_page_dirty(page);
760 	unlock_page(page);
761 	page_cache_release(page);
762 }
763 EXPORT_SYMBOL(pagecache_isize_extended);
764 
765 /**
766  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
767  * @inode: inode
768  * @lstart: offset of beginning of hole
769  * @lend: offset of last byte of hole
770  *
771  * This function should typically be called before the filesystem
772  * releases resources associated with the freed range (eg. deallocates
773  * blocks). This way, pagecache will always stay logically coherent
774  * with on-disk format, and the filesystem would not have to deal with
775  * situations such as writepage being called for a page that has already
776  * had its underlying blocks deallocated.
777  */
778 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
779 {
780 	struct address_space *mapping = inode->i_mapping;
781 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
782 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
783 	/*
784 	 * This rounding is currently just for example: unmap_mapping_range
785 	 * expands its hole outwards, whereas we want it to contract the hole
786 	 * inwards.  However, existing callers of truncate_pagecache_range are
787 	 * doing their own page rounding first.  Note that unmap_mapping_range
788 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
789 	 */
790 
791 	/*
792 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
793 	 * once (before truncating pagecache), and without "even_cows" flag:
794 	 * hole-punching should not remove private COWed pages from the hole.
795 	 */
796 	if ((u64)unmap_end > (u64)unmap_start)
797 		unmap_mapping_range(mapping, unmap_start,
798 				    1 + unmap_end - unmap_start, 0);
799 	truncate_inode_pages_range(mapping, lstart, lend);
800 }
801 EXPORT_SYMBOL(truncate_pagecache_range);
802