xref: /linux/mm/truncate.c (revision 8fb72b4a76933ae6f86725cc8e4a8190ba84d755)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page */
23 #include <linux/shmem_fs.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26 
27 /*
28  * Regular page slots are stabilized by the page lock even without the tree
29  * itself locked.  These unlocked entries need verification under the tree
30  * lock.
31  */
32 static inline void __clear_shadow_entry(struct address_space *mapping,
33 				pgoff_t index, void *entry)
34 {
35 	XA_STATE(xas, &mapping->i_pages, index);
36 
37 	xas_set_update(&xas, workingset_update_node);
38 	if (xas_load(&xas) != entry)
39 		return;
40 	xas_store(&xas, NULL);
41 }
42 
43 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
44 			       void *entry)
45 {
46 	spin_lock(&mapping->host->i_lock);
47 	xa_lock_irq(&mapping->i_pages);
48 	__clear_shadow_entry(mapping, index, entry);
49 	xa_unlock_irq(&mapping->i_pages);
50 	if (mapping_shrinkable(mapping))
51 		inode_add_lru(mapping->host);
52 	spin_unlock(&mapping->host->i_lock);
53 }
54 
55 /*
56  * Unconditionally remove exceptional entries. Usually called from truncate
57  * path. Note that the folio_batch may be altered by this function by removing
58  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
59  */
60 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
61 				struct folio_batch *fbatch, pgoff_t *indices)
62 {
63 	int i, j;
64 	bool dax;
65 
66 	/* Handled by shmem itself */
67 	if (shmem_mapping(mapping))
68 		return;
69 
70 	for (j = 0; j < folio_batch_count(fbatch); j++)
71 		if (xa_is_value(fbatch->folios[j]))
72 			break;
73 
74 	if (j == folio_batch_count(fbatch))
75 		return;
76 
77 	dax = dax_mapping(mapping);
78 	if (!dax) {
79 		spin_lock(&mapping->host->i_lock);
80 		xa_lock_irq(&mapping->i_pages);
81 	}
82 
83 	for (i = j; i < folio_batch_count(fbatch); i++) {
84 		struct folio *folio = fbatch->folios[i];
85 		pgoff_t index = indices[i];
86 
87 		if (!xa_is_value(folio)) {
88 			fbatch->folios[j++] = folio;
89 			continue;
90 		}
91 
92 		if (unlikely(dax)) {
93 			dax_delete_mapping_entry(mapping, index);
94 			continue;
95 		}
96 
97 		__clear_shadow_entry(mapping, index, folio);
98 	}
99 
100 	if (!dax) {
101 		xa_unlock_irq(&mapping->i_pages);
102 		if (mapping_shrinkable(mapping))
103 			inode_add_lru(mapping->host);
104 		spin_unlock(&mapping->host->i_lock);
105 	}
106 	fbatch->nr = j;
107 }
108 
109 /*
110  * Invalidate exceptional entry if easily possible. This handles exceptional
111  * entries for invalidate_inode_pages().
112  */
113 static int invalidate_exceptional_entry(struct address_space *mapping,
114 					pgoff_t index, void *entry)
115 {
116 	/* Handled by shmem itself, or for DAX we do nothing. */
117 	if (shmem_mapping(mapping) || dax_mapping(mapping))
118 		return 1;
119 	clear_shadow_entry(mapping, index, entry);
120 	return 1;
121 }
122 
123 /*
124  * Invalidate exceptional entry if clean. This handles exceptional entries for
125  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126  */
127 static int invalidate_exceptional_entry2(struct address_space *mapping,
128 					 pgoff_t index, void *entry)
129 {
130 	/* Handled by shmem itself */
131 	if (shmem_mapping(mapping))
132 		return 1;
133 	if (dax_mapping(mapping))
134 		return dax_invalidate_mapping_entry_sync(mapping, index);
135 	clear_shadow_entry(mapping, index, entry);
136 	return 1;
137 }
138 
139 /**
140  * folio_invalidate - Invalidate part or all of a folio.
141  * @folio: The folio which is affected.
142  * @offset: start of the range to invalidate
143  * @length: length of the range to invalidate
144  *
145  * folio_invalidate() is called when all or part of the folio has become
146  * invalidated by a truncate operation.
147  *
148  * folio_invalidate() does not have to release all buffers, but it must
149  * ensure that no dirty buffer is left outside @offset and that no I/O
150  * is underway against any of the blocks which are outside the truncation
151  * point.  Because the caller is about to free (and possibly reuse) those
152  * blocks on-disk.
153  */
154 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
155 {
156 	const struct address_space_operations *aops = folio->mapping->a_ops;
157 
158 	if (aops->invalidate_folio)
159 		aops->invalidate_folio(folio, offset, length);
160 }
161 EXPORT_SYMBOL_GPL(folio_invalidate);
162 
163 /*
164  * If truncate cannot remove the fs-private metadata from the page, the page
165  * becomes orphaned.  It will be left on the LRU and may even be mapped into
166  * user pagetables if we're racing with filemap_fault().
167  *
168  * We need to bail out if page->mapping is no longer equal to the original
169  * mapping.  This happens a) when the VM reclaimed the page while we waited on
170  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
171  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
172  */
173 static void truncate_cleanup_folio(struct folio *folio)
174 {
175 	if (folio_mapped(folio))
176 		unmap_mapping_folio(folio);
177 
178 	if (folio_has_private(folio))
179 		folio_invalidate(folio, 0, folio_size(folio));
180 
181 	/*
182 	 * Some filesystems seem to re-dirty the page even after
183 	 * the VM has canceled the dirty bit (eg ext3 journaling).
184 	 * Hence dirty accounting check is placed after invalidation.
185 	 */
186 	folio_cancel_dirty(folio);
187 	folio_clear_mappedtodisk(folio);
188 }
189 
190 /*
191  * This is for invalidate_mapping_pages().  That function can be called at
192  * any time, and is not supposed to throw away dirty pages.  But pages can
193  * be marked dirty at any time too, so use remove_mapping which safely
194  * discards clean, unused pages.
195  *
196  * Returns non-zero if the page was successfully invalidated.
197  */
198 static int
199 invalidate_complete_page(struct address_space *mapping, struct page *page)
200 {
201 
202 	if (page->mapping != mapping)
203 		return 0;
204 
205 	if (page_has_private(page) && !try_to_release_page(page, 0))
206 		return 0;
207 
208 	return remove_mapping(mapping, page);
209 }
210 
211 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
212 {
213 	if (folio->mapping != mapping)
214 		return -EIO;
215 
216 	truncate_cleanup_folio(folio);
217 	filemap_remove_folio(folio);
218 	return 0;
219 }
220 
221 /*
222  * Handle partial folios.  The folio may be entirely within the
223  * range if a split has raced with us.  If not, we zero the part of the
224  * folio that's within the [start, end] range, and then split the folio if
225  * it's large.  split_page_range() will discard pages which now lie beyond
226  * i_size, and we rely on the caller to discard pages which lie within a
227  * newly created hole.
228  *
229  * Returns false if splitting failed so the caller can avoid
230  * discarding the entire folio which is stubbornly unsplit.
231  */
232 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
233 {
234 	loff_t pos = folio_pos(folio);
235 	unsigned int offset, length;
236 
237 	if (pos < start)
238 		offset = start - pos;
239 	else
240 		offset = 0;
241 	length = folio_size(folio);
242 	if (pos + length <= (u64)end)
243 		length = length - offset;
244 	else
245 		length = end + 1 - pos - offset;
246 
247 	folio_wait_writeback(folio);
248 	if (length == folio_size(folio)) {
249 		truncate_inode_folio(folio->mapping, folio);
250 		return true;
251 	}
252 
253 	/*
254 	 * We may be zeroing pages we're about to discard, but it avoids
255 	 * doing a complex calculation here, and then doing the zeroing
256 	 * anyway if the page split fails.
257 	 */
258 	folio_zero_range(folio, offset, length);
259 
260 	if (folio_has_private(folio))
261 		folio_invalidate(folio, offset, length);
262 	if (!folio_test_large(folio))
263 		return true;
264 	if (split_huge_page(&folio->page) == 0)
265 		return true;
266 	if (folio_test_dirty(folio))
267 		return false;
268 	truncate_inode_folio(folio->mapping, folio);
269 	return true;
270 }
271 
272 /*
273  * Used to get rid of pages on hardware memory corruption.
274  */
275 int generic_error_remove_page(struct address_space *mapping, struct page *page)
276 {
277 	VM_BUG_ON_PAGE(PageTail(page), page);
278 
279 	if (!mapping)
280 		return -EINVAL;
281 	/*
282 	 * Only punch for normal data pages for now.
283 	 * Handling other types like directories would need more auditing.
284 	 */
285 	if (!S_ISREG(mapping->host->i_mode))
286 		return -EIO;
287 	return truncate_inode_folio(mapping, page_folio(page));
288 }
289 EXPORT_SYMBOL(generic_error_remove_page);
290 
291 /*
292  * Safely invalidate one page from its pagecache mapping.
293  * It only drops clean, unused pages. The page must be locked.
294  *
295  * Returns 1 if the page is successfully invalidated, otherwise 0.
296  */
297 int invalidate_inode_page(struct page *page)
298 {
299 	struct address_space *mapping = page_mapping(page);
300 	if (!mapping)
301 		return 0;
302 	if (PageDirty(page) || PageWriteback(page))
303 		return 0;
304 	if (page_mapped(page))
305 		return 0;
306 	return invalidate_complete_page(mapping, page);
307 }
308 
309 /**
310  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
311  * @mapping: mapping to truncate
312  * @lstart: offset from which to truncate
313  * @lend: offset to which to truncate (inclusive)
314  *
315  * Truncate the page cache, removing the pages that are between
316  * specified offsets (and zeroing out partial pages
317  * if lstart or lend + 1 is not page aligned).
318  *
319  * Truncate takes two passes - the first pass is nonblocking.  It will not
320  * block on page locks and it will not block on writeback.  The second pass
321  * will wait.  This is to prevent as much IO as possible in the affected region.
322  * The first pass will remove most pages, so the search cost of the second pass
323  * is low.
324  *
325  * We pass down the cache-hot hint to the page freeing code.  Even if the
326  * mapping is large, it is probably the case that the final pages are the most
327  * recently touched, and freeing happens in ascending file offset order.
328  *
329  * Note that since ->invalidate_folio() accepts range to invalidate
330  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
331  * page aligned properly.
332  */
333 void truncate_inode_pages_range(struct address_space *mapping,
334 				loff_t lstart, loff_t lend)
335 {
336 	pgoff_t		start;		/* inclusive */
337 	pgoff_t		end;		/* exclusive */
338 	struct folio_batch fbatch;
339 	pgoff_t		indices[PAGEVEC_SIZE];
340 	pgoff_t		index;
341 	int		i;
342 	struct folio	*folio;
343 	bool		same_folio;
344 
345 	if (mapping_empty(mapping))
346 		return;
347 
348 	/*
349 	 * 'start' and 'end' always covers the range of pages to be fully
350 	 * truncated. Partial pages are covered with 'partial_start' at the
351 	 * start of the range and 'partial_end' at the end of the range.
352 	 * Note that 'end' is exclusive while 'lend' is inclusive.
353 	 */
354 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
355 	if (lend == -1)
356 		/*
357 		 * lend == -1 indicates end-of-file so we have to set 'end'
358 		 * to the highest possible pgoff_t and since the type is
359 		 * unsigned we're using -1.
360 		 */
361 		end = -1;
362 	else
363 		end = (lend + 1) >> PAGE_SHIFT;
364 
365 	folio_batch_init(&fbatch);
366 	index = start;
367 	while (index < end && find_lock_entries(mapping, index, end - 1,
368 			&fbatch, indices)) {
369 		index = indices[folio_batch_count(&fbatch) - 1] + 1;
370 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
371 		for (i = 0; i < folio_batch_count(&fbatch); i++)
372 			truncate_cleanup_folio(fbatch.folios[i]);
373 		delete_from_page_cache_batch(mapping, &fbatch);
374 		for (i = 0; i < folio_batch_count(&fbatch); i++)
375 			folio_unlock(fbatch.folios[i]);
376 		folio_batch_release(&fbatch);
377 		cond_resched();
378 	}
379 
380 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
381 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
382 	if (folio) {
383 		same_folio = lend < folio_pos(folio) + folio_size(folio);
384 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
385 			start = folio->index + folio_nr_pages(folio);
386 			if (same_folio)
387 				end = folio->index;
388 		}
389 		folio_unlock(folio);
390 		folio_put(folio);
391 		folio = NULL;
392 	}
393 
394 	if (!same_folio)
395 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
396 						FGP_LOCK, 0);
397 	if (folio) {
398 		if (!truncate_inode_partial_folio(folio, lstart, lend))
399 			end = folio->index;
400 		folio_unlock(folio);
401 		folio_put(folio);
402 	}
403 
404 	index = start;
405 	while (index < end) {
406 		cond_resched();
407 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
408 				indices)) {
409 			/* If all gone from start onwards, we're done */
410 			if (index == start)
411 				break;
412 			/* Otherwise restart to make sure all gone */
413 			index = start;
414 			continue;
415 		}
416 
417 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
418 			struct folio *folio = fbatch.folios[i];
419 
420 			/* We rely upon deletion not changing page->index */
421 			index = indices[i];
422 
423 			if (xa_is_value(folio))
424 				continue;
425 
426 			folio_lock(folio);
427 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
428 			folio_wait_writeback(folio);
429 			truncate_inode_folio(mapping, folio);
430 			folio_unlock(folio);
431 			index = folio_index(folio) + folio_nr_pages(folio) - 1;
432 		}
433 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
434 		folio_batch_release(&fbatch);
435 		index++;
436 	}
437 }
438 EXPORT_SYMBOL(truncate_inode_pages_range);
439 
440 /**
441  * truncate_inode_pages - truncate *all* the pages from an offset
442  * @mapping: mapping to truncate
443  * @lstart: offset from which to truncate
444  *
445  * Called under (and serialised by) inode->i_rwsem and
446  * mapping->invalidate_lock.
447  *
448  * Note: When this function returns, there can be a page in the process of
449  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
450  * mapping->nrpages can be non-zero when this function returns even after
451  * truncation of the whole mapping.
452  */
453 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
454 {
455 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
456 }
457 EXPORT_SYMBOL(truncate_inode_pages);
458 
459 /**
460  * truncate_inode_pages_final - truncate *all* pages before inode dies
461  * @mapping: mapping to truncate
462  *
463  * Called under (and serialized by) inode->i_rwsem.
464  *
465  * Filesystems have to use this in the .evict_inode path to inform the
466  * VM that this is the final truncate and the inode is going away.
467  */
468 void truncate_inode_pages_final(struct address_space *mapping)
469 {
470 	/*
471 	 * Page reclaim can not participate in regular inode lifetime
472 	 * management (can't call iput()) and thus can race with the
473 	 * inode teardown.  Tell it when the address space is exiting,
474 	 * so that it does not install eviction information after the
475 	 * final truncate has begun.
476 	 */
477 	mapping_set_exiting(mapping);
478 
479 	if (!mapping_empty(mapping)) {
480 		/*
481 		 * As truncation uses a lockless tree lookup, cycle
482 		 * the tree lock to make sure any ongoing tree
483 		 * modification that does not see AS_EXITING is
484 		 * completed before starting the final truncate.
485 		 */
486 		xa_lock_irq(&mapping->i_pages);
487 		xa_unlock_irq(&mapping->i_pages);
488 	}
489 
490 	truncate_inode_pages(mapping, 0);
491 }
492 EXPORT_SYMBOL(truncate_inode_pages_final);
493 
494 static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
495 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
496 {
497 	pgoff_t indices[PAGEVEC_SIZE];
498 	struct folio_batch fbatch;
499 	pgoff_t index = start;
500 	unsigned long ret;
501 	unsigned long count = 0;
502 	int i;
503 
504 	folio_batch_init(&fbatch);
505 	while (find_lock_entries(mapping, index, end, &fbatch, indices)) {
506 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
507 			struct page *page = &fbatch.folios[i]->page;
508 
509 			/* We rely upon deletion not changing page->index */
510 			index = indices[i];
511 
512 			if (xa_is_value(page)) {
513 				count += invalidate_exceptional_entry(mapping,
514 								      index,
515 								      page);
516 				continue;
517 			}
518 			index += thp_nr_pages(page) - 1;
519 
520 			ret = invalidate_inode_page(page);
521 			unlock_page(page);
522 			/*
523 			 * Invalidation is a hint that the page is no longer
524 			 * of interest and try to speed up its reclaim.
525 			 */
526 			if (!ret) {
527 				deactivate_file_page(page);
528 				/* It is likely on the pagevec of a remote CPU */
529 				if (nr_pagevec)
530 					(*nr_pagevec)++;
531 			}
532 			count += ret;
533 		}
534 		folio_batch_remove_exceptionals(&fbatch);
535 		folio_batch_release(&fbatch);
536 		cond_resched();
537 		index++;
538 	}
539 	return count;
540 }
541 
542 /**
543  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
544  * @mapping: the address_space which holds the cache to invalidate
545  * @start: the offset 'from' which to invalidate
546  * @end: the offset 'to' which to invalidate (inclusive)
547  *
548  * This function removes pages that are clean, unmapped and unlocked,
549  * as well as shadow entries. It will not block on IO activity.
550  *
551  * If you want to remove all the pages of one inode, regardless of
552  * their use and writeback state, use truncate_inode_pages().
553  *
554  * Return: the number of the cache entries that were invalidated
555  */
556 unsigned long invalidate_mapping_pages(struct address_space *mapping,
557 		pgoff_t start, pgoff_t end)
558 {
559 	return __invalidate_mapping_pages(mapping, start, end, NULL);
560 }
561 EXPORT_SYMBOL(invalidate_mapping_pages);
562 
563 /**
564  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
565  * @mapping: the address_space which holds the pages to invalidate
566  * @start: the offset 'from' which to invalidate
567  * @end: the offset 'to' which to invalidate (inclusive)
568  * @nr_pagevec: invalidate failed page number for caller
569  *
570  * This helper is similar to invalidate_mapping_pages(), except that it accounts
571  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
572  * will be used by the caller.
573  */
574 void invalidate_mapping_pagevec(struct address_space *mapping,
575 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
576 {
577 	__invalidate_mapping_pages(mapping, start, end, nr_pagevec);
578 }
579 
580 /*
581  * This is like invalidate_complete_page(), except it ignores the page's
582  * refcount.  We do this because invalidate_inode_pages2() needs stronger
583  * invalidation guarantees, and cannot afford to leave pages behind because
584  * shrink_page_list() has a temp ref on them, or because they're transiently
585  * sitting in the lru_cache_add() pagevecs.
586  */
587 static int invalidate_complete_folio2(struct address_space *mapping,
588 					struct folio *folio)
589 {
590 	if (folio->mapping != mapping)
591 		return 0;
592 
593 	if (folio_has_private(folio) &&
594 	    !filemap_release_folio(folio, GFP_KERNEL))
595 		return 0;
596 
597 	spin_lock(&mapping->host->i_lock);
598 	xa_lock_irq(&mapping->i_pages);
599 	if (folio_test_dirty(folio))
600 		goto failed;
601 
602 	BUG_ON(folio_has_private(folio));
603 	__filemap_remove_folio(folio, NULL);
604 	xa_unlock_irq(&mapping->i_pages);
605 	if (mapping_shrinkable(mapping))
606 		inode_add_lru(mapping->host);
607 	spin_unlock(&mapping->host->i_lock);
608 
609 	filemap_free_folio(mapping, folio);
610 	return 1;
611 failed:
612 	xa_unlock_irq(&mapping->i_pages);
613 	spin_unlock(&mapping->host->i_lock);
614 	return 0;
615 }
616 
617 static int folio_launder(struct address_space *mapping, struct folio *folio)
618 {
619 	if (!folio_test_dirty(folio))
620 		return 0;
621 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
622 		return 0;
623 	return mapping->a_ops->launder_folio(folio);
624 }
625 
626 /**
627  * invalidate_inode_pages2_range - remove range of pages from an address_space
628  * @mapping: the address_space
629  * @start: the page offset 'from' which to invalidate
630  * @end: the page offset 'to' which to invalidate (inclusive)
631  *
632  * Any pages which are found to be mapped into pagetables are unmapped prior to
633  * invalidation.
634  *
635  * Return: -EBUSY if any pages could not be invalidated.
636  */
637 int invalidate_inode_pages2_range(struct address_space *mapping,
638 				  pgoff_t start, pgoff_t end)
639 {
640 	pgoff_t indices[PAGEVEC_SIZE];
641 	struct folio_batch fbatch;
642 	pgoff_t index;
643 	int i;
644 	int ret = 0;
645 	int ret2 = 0;
646 	int did_range_unmap = 0;
647 
648 	if (mapping_empty(mapping))
649 		return 0;
650 
651 	folio_batch_init(&fbatch);
652 	index = start;
653 	while (find_get_entries(mapping, index, end, &fbatch, indices)) {
654 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
655 			struct folio *folio = fbatch.folios[i];
656 
657 			/* We rely upon deletion not changing folio->index */
658 			index = indices[i];
659 
660 			if (xa_is_value(folio)) {
661 				if (!invalidate_exceptional_entry2(mapping,
662 						index, folio))
663 					ret = -EBUSY;
664 				continue;
665 			}
666 
667 			if (!did_range_unmap && folio_mapped(folio)) {
668 				/*
669 				 * If folio is mapped, before taking its lock,
670 				 * zap the rest of the file in one hit.
671 				 */
672 				unmap_mapping_pages(mapping, index,
673 						(1 + end - index), false);
674 				did_range_unmap = 1;
675 			}
676 
677 			folio_lock(folio);
678 			VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
679 			if (folio->mapping != mapping) {
680 				folio_unlock(folio);
681 				continue;
682 			}
683 			folio_wait_writeback(folio);
684 
685 			if (folio_mapped(folio))
686 				unmap_mapping_folio(folio);
687 			BUG_ON(folio_mapped(folio));
688 
689 			ret2 = folio_launder(mapping, folio);
690 			if (ret2 == 0) {
691 				if (!invalidate_complete_folio2(mapping, folio))
692 					ret2 = -EBUSY;
693 			}
694 			if (ret2 < 0)
695 				ret = ret2;
696 			folio_unlock(folio);
697 		}
698 		folio_batch_remove_exceptionals(&fbatch);
699 		folio_batch_release(&fbatch);
700 		cond_resched();
701 		index++;
702 	}
703 	/*
704 	 * For DAX we invalidate page tables after invalidating page cache.  We
705 	 * could invalidate page tables while invalidating each entry however
706 	 * that would be expensive. And doing range unmapping before doesn't
707 	 * work as we have no cheap way to find whether page cache entry didn't
708 	 * get remapped later.
709 	 */
710 	if (dax_mapping(mapping)) {
711 		unmap_mapping_pages(mapping, start, end - start + 1, false);
712 	}
713 	return ret;
714 }
715 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
716 
717 /**
718  * invalidate_inode_pages2 - remove all pages from an address_space
719  * @mapping: the address_space
720  *
721  * Any pages which are found to be mapped into pagetables are unmapped prior to
722  * invalidation.
723  *
724  * Return: -EBUSY if any pages could not be invalidated.
725  */
726 int invalidate_inode_pages2(struct address_space *mapping)
727 {
728 	return invalidate_inode_pages2_range(mapping, 0, -1);
729 }
730 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
731 
732 /**
733  * truncate_pagecache - unmap and remove pagecache that has been truncated
734  * @inode: inode
735  * @newsize: new file size
736  *
737  * inode's new i_size must already be written before truncate_pagecache
738  * is called.
739  *
740  * This function should typically be called before the filesystem
741  * releases resources associated with the freed range (eg. deallocates
742  * blocks). This way, pagecache will always stay logically coherent
743  * with on-disk format, and the filesystem would not have to deal with
744  * situations such as writepage being called for a page that has already
745  * had its underlying blocks deallocated.
746  */
747 void truncate_pagecache(struct inode *inode, loff_t newsize)
748 {
749 	struct address_space *mapping = inode->i_mapping;
750 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
751 
752 	/*
753 	 * unmap_mapping_range is called twice, first simply for
754 	 * efficiency so that truncate_inode_pages does fewer
755 	 * single-page unmaps.  However after this first call, and
756 	 * before truncate_inode_pages finishes, it is possible for
757 	 * private pages to be COWed, which remain after
758 	 * truncate_inode_pages finishes, hence the second
759 	 * unmap_mapping_range call must be made for correctness.
760 	 */
761 	unmap_mapping_range(mapping, holebegin, 0, 1);
762 	truncate_inode_pages(mapping, newsize);
763 	unmap_mapping_range(mapping, holebegin, 0, 1);
764 }
765 EXPORT_SYMBOL(truncate_pagecache);
766 
767 /**
768  * truncate_setsize - update inode and pagecache for a new file size
769  * @inode: inode
770  * @newsize: new file size
771  *
772  * truncate_setsize updates i_size and performs pagecache truncation (if
773  * necessary) to @newsize. It will be typically be called from the filesystem's
774  * setattr function when ATTR_SIZE is passed in.
775  *
776  * Must be called with a lock serializing truncates and writes (generally
777  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
778  * specific block truncation has been performed.
779  */
780 void truncate_setsize(struct inode *inode, loff_t newsize)
781 {
782 	loff_t oldsize = inode->i_size;
783 
784 	i_size_write(inode, newsize);
785 	if (newsize > oldsize)
786 		pagecache_isize_extended(inode, oldsize, newsize);
787 	truncate_pagecache(inode, newsize);
788 }
789 EXPORT_SYMBOL(truncate_setsize);
790 
791 /**
792  * pagecache_isize_extended - update pagecache after extension of i_size
793  * @inode:	inode for which i_size was extended
794  * @from:	original inode size
795  * @to:		new inode size
796  *
797  * Handle extension of inode size either caused by extending truncate or by
798  * write starting after current i_size. We mark the page straddling current
799  * i_size RO so that page_mkwrite() is called on the nearest write access to
800  * the page.  This way filesystem can be sure that page_mkwrite() is called on
801  * the page before user writes to the page via mmap after the i_size has been
802  * changed.
803  *
804  * The function must be called after i_size is updated so that page fault
805  * coming after we unlock the page will already see the new i_size.
806  * The function must be called while we still hold i_rwsem - this not only
807  * makes sure i_size is stable but also that userspace cannot observe new
808  * i_size value before we are prepared to store mmap writes at new inode size.
809  */
810 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
811 {
812 	int bsize = i_blocksize(inode);
813 	loff_t rounded_from;
814 	struct page *page;
815 	pgoff_t index;
816 
817 	WARN_ON(to > inode->i_size);
818 
819 	if (from >= to || bsize == PAGE_SIZE)
820 		return;
821 	/* Page straddling @from will not have any hole block created? */
822 	rounded_from = round_up(from, bsize);
823 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
824 		return;
825 
826 	index = from >> PAGE_SHIFT;
827 	page = find_lock_page(inode->i_mapping, index);
828 	/* Page not cached? Nothing to do */
829 	if (!page)
830 		return;
831 	/*
832 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
833 	 * is needed.
834 	 */
835 	if (page_mkclean(page))
836 		set_page_dirty(page);
837 	unlock_page(page);
838 	put_page(page);
839 }
840 EXPORT_SYMBOL(pagecache_isize_extended);
841 
842 /**
843  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
844  * @inode: inode
845  * @lstart: offset of beginning of hole
846  * @lend: offset of last byte of hole
847  *
848  * This function should typically be called before the filesystem
849  * releases resources associated with the freed range (eg. deallocates
850  * blocks). This way, pagecache will always stay logically coherent
851  * with on-disk format, and the filesystem would not have to deal with
852  * situations such as writepage being called for a page that has already
853  * had its underlying blocks deallocated.
854  */
855 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
856 {
857 	struct address_space *mapping = inode->i_mapping;
858 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
859 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
860 	/*
861 	 * This rounding is currently just for example: unmap_mapping_range
862 	 * expands its hole outwards, whereas we want it to contract the hole
863 	 * inwards.  However, existing callers of truncate_pagecache_range are
864 	 * doing their own page rounding first.  Note that unmap_mapping_range
865 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
866 	 */
867 
868 	/*
869 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
870 	 * once (before truncating pagecache), and without "even_cows" flag:
871 	 * hole-punching should not remove private COWed pages from the hole.
872 	 */
873 	if ((u64)unmap_end > (u64)unmap_start)
874 		unmap_mapping_range(mapping, unmap_start,
875 				    1 + unmap_end - unmap_start, 0);
876 	truncate_inode_pages_range(mapping, lstart, lend);
877 }
878 EXPORT_SYMBOL(truncate_pagecache_range);
879