1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/module.h> 15 #include <linux/pagemap.h> 16 #include <linux/highmem.h> 17 #include <linux/pagevec.h> 18 #include <linux/task_io_accounting_ops.h> 19 #include <linux/buffer_head.h> /* grr. try_to_release_page, 20 do_invalidatepage */ 21 #include "internal.h" 22 23 24 /** 25 * do_invalidatepage - invalidate part or all of a page 26 * @page: the page which is affected 27 * @offset: the index of the truncation point 28 * 29 * do_invalidatepage() is called when all or part of the page has become 30 * invalidated by a truncate operation. 31 * 32 * do_invalidatepage() does not have to release all buffers, but it must 33 * ensure that no dirty buffer is left outside @offset and that no I/O 34 * is underway against any of the blocks which are outside the truncation 35 * point. Because the caller is about to free (and possibly reuse) those 36 * blocks on-disk. 37 */ 38 void do_invalidatepage(struct page *page, unsigned long offset) 39 { 40 void (*invalidatepage)(struct page *, unsigned long); 41 invalidatepage = page->mapping->a_ops->invalidatepage; 42 #ifdef CONFIG_BLOCK 43 if (!invalidatepage) 44 invalidatepage = block_invalidatepage; 45 #endif 46 if (invalidatepage) 47 (*invalidatepage)(page, offset); 48 } 49 50 static inline void truncate_partial_page(struct page *page, unsigned partial) 51 { 52 zero_user_segment(page, partial, PAGE_CACHE_SIZE); 53 if (PagePrivate(page)) 54 do_invalidatepage(page, partial); 55 } 56 57 /* 58 * This cancels just the dirty bit on the kernel page itself, it 59 * does NOT actually remove dirty bits on any mmap's that may be 60 * around. It also leaves the page tagged dirty, so any sync 61 * activity will still find it on the dirty lists, and in particular, 62 * clear_page_dirty_for_io() will still look at the dirty bits in 63 * the VM. 64 * 65 * Doing this should *normally* only ever be done when a page 66 * is truncated, and is not actually mapped anywhere at all. However, 67 * fs/buffer.c does this when it notices that somebody has cleaned 68 * out all the buffers on a page without actually doing it through 69 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 70 */ 71 void cancel_dirty_page(struct page *page, unsigned int account_size) 72 { 73 if (TestClearPageDirty(page)) { 74 struct address_space *mapping = page->mapping; 75 if (mapping && mapping_cap_account_dirty(mapping)) { 76 dec_zone_page_state(page, NR_FILE_DIRTY); 77 dec_bdi_stat(mapping->backing_dev_info, 78 BDI_RECLAIMABLE); 79 if (account_size) 80 task_io_account_cancelled_write(account_size); 81 } 82 } 83 } 84 EXPORT_SYMBOL(cancel_dirty_page); 85 86 /* 87 * If truncate cannot remove the fs-private metadata from the page, the page 88 * becomes orphaned. It will be left on the LRU and may even be mapped into 89 * user pagetables if we're racing with filemap_fault(). 90 * 91 * We need to bale out if page->mapping is no longer equal to the original 92 * mapping. This happens a) when the VM reclaimed the page while we waited on 93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 95 */ 96 static void 97 truncate_complete_page(struct address_space *mapping, struct page *page) 98 { 99 if (page->mapping != mapping) 100 return; 101 102 if (PagePrivate(page)) 103 do_invalidatepage(page, 0); 104 105 cancel_dirty_page(page, PAGE_CACHE_SIZE); 106 107 clear_page_mlock(page); 108 remove_from_page_cache(page); 109 ClearPageMappedToDisk(page); 110 page_cache_release(page); /* pagecache ref */ 111 } 112 113 /* 114 * This is for invalidate_mapping_pages(). That function can be called at 115 * any time, and is not supposed to throw away dirty pages. But pages can 116 * be marked dirty at any time too, so use remove_mapping which safely 117 * discards clean, unused pages. 118 * 119 * Returns non-zero if the page was successfully invalidated. 120 */ 121 static int 122 invalidate_complete_page(struct address_space *mapping, struct page *page) 123 { 124 int ret; 125 126 if (page->mapping != mapping) 127 return 0; 128 129 if (PagePrivate(page) && !try_to_release_page(page, 0)) 130 return 0; 131 132 clear_page_mlock(page); 133 ret = remove_mapping(mapping, page); 134 135 return ret; 136 } 137 138 /** 139 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 140 * @mapping: mapping to truncate 141 * @lstart: offset from which to truncate 142 * @lend: offset to which to truncate 143 * 144 * Truncate the page cache, removing the pages that are between 145 * specified offsets (and zeroing out partial page 146 * (if lstart is not page aligned)). 147 * 148 * Truncate takes two passes - the first pass is nonblocking. It will not 149 * block on page locks and it will not block on writeback. The second pass 150 * will wait. This is to prevent as much IO as possible in the affected region. 151 * The first pass will remove most pages, so the search cost of the second pass 152 * is low. 153 * 154 * When looking at page->index outside the page lock we need to be careful to 155 * copy it into a local to avoid races (it could change at any time). 156 * 157 * We pass down the cache-hot hint to the page freeing code. Even if the 158 * mapping is large, it is probably the case that the final pages are the most 159 * recently touched, and freeing happens in ascending file offset order. 160 */ 161 void truncate_inode_pages_range(struct address_space *mapping, 162 loff_t lstart, loff_t lend) 163 { 164 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 165 pgoff_t end; 166 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 167 struct pagevec pvec; 168 pgoff_t next; 169 int i; 170 171 if (mapping->nrpages == 0) 172 return; 173 174 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 175 end = (lend >> PAGE_CACHE_SHIFT); 176 177 pagevec_init(&pvec, 0); 178 next = start; 179 while (next <= end && 180 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 181 for (i = 0; i < pagevec_count(&pvec); i++) { 182 struct page *page = pvec.pages[i]; 183 pgoff_t page_index = page->index; 184 185 if (page_index > end) { 186 next = page_index; 187 break; 188 } 189 190 if (page_index > next) 191 next = page_index; 192 next++; 193 if (!trylock_page(page)) 194 continue; 195 if (PageWriteback(page)) { 196 unlock_page(page); 197 continue; 198 } 199 if (page_mapped(page)) { 200 unmap_mapping_range(mapping, 201 (loff_t)page_index<<PAGE_CACHE_SHIFT, 202 PAGE_CACHE_SIZE, 0); 203 } 204 truncate_complete_page(mapping, page); 205 unlock_page(page); 206 } 207 pagevec_release(&pvec); 208 cond_resched(); 209 } 210 211 if (partial) { 212 struct page *page = find_lock_page(mapping, start - 1); 213 if (page) { 214 wait_on_page_writeback(page); 215 truncate_partial_page(page, partial); 216 unlock_page(page); 217 page_cache_release(page); 218 } 219 } 220 221 next = start; 222 for ( ; ; ) { 223 cond_resched(); 224 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 225 if (next == start) 226 break; 227 next = start; 228 continue; 229 } 230 if (pvec.pages[0]->index > end) { 231 pagevec_release(&pvec); 232 break; 233 } 234 for (i = 0; i < pagevec_count(&pvec); i++) { 235 struct page *page = pvec.pages[i]; 236 237 if (page->index > end) 238 break; 239 lock_page(page); 240 wait_on_page_writeback(page); 241 if (page_mapped(page)) { 242 unmap_mapping_range(mapping, 243 (loff_t)page->index<<PAGE_CACHE_SHIFT, 244 PAGE_CACHE_SIZE, 0); 245 } 246 if (page->index > next) 247 next = page->index; 248 next++; 249 truncate_complete_page(mapping, page); 250 unlock_page(page); 251 } 252 pagevec_release(&pvec); 253 } 254 } 255 EXPORT_SYMBOL(truncate_inode_pages_range); 256 257 /** 258 * truncate_inode_pages - truncate *all* the pages from an offset 259 * @mapping: mapping to truncate 260 * @lstart: offset from which to truncate 261 * 262 * Called under (and serialised by) inode->i_mutex. 263 */ 264 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 265 { 266 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 267 } 268 EXPORT_SYMBOL(truncate_inode_pages); 269 270 unsigned long __invalidate_mapping_pages(struct address_space *mapping, 271 pgoff_t start, pgoff_t end, bool be_atomic) 272 { 273 struct pagevec pvec; 274 pgoff_t next = start; 275 unsigned long ret = 0; 276 int i; 277 278 pagevec_init(&pvec, 0); 279 while (next <= end && 280 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 281 for (i = 0; i < pagevec_count(&pvec); i++) { 282 struct page *page = pvec.pages[i]; 283 pgoff_t index; 284 int lock_failed; 285 286 lock_failed = !trylock_page(page); 287 288 /* 289 * We really shouldn't be looking at the ->index of an 290 * unlocked page. But we're not allowed to lock these 291 * pages. So we rely upon nobody altering the ->index 292 * of this (pinned-by-us) page. 293 */ 294 index = page->index; 295 if (index > next) 296 next = index; 297 next++; 298 if (lock_failed) 299 continue; 300 301 if (PageDirty(page) || PageWriteback(page)) 302 goto unlock; 303 if (page_mapped(page)) 304 goto unlock; 305 ret += invalidate_complete_page(mapping, page); 306 unlock: 307 unlock_page(page); 308 if (next > end) 309 break; 310 } 311 pagevec_release(&pvec); 312 if (likely(!be_atomic)) 313 cond_resched(); 314 } 315 return ret; 316 } 317 318 /** 319 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 320 * @mapping: the address_space which holds the pages to invalidate 321 * @start: the offset 'from' which to invalidate 322 * @end: the offset 'to' which to invalidate (inclusive) 323 * 324 * This function only removes the unlocked pages, if you want to 325 * remove all the pages of one inode, you must call truncate_inode_pages. 326 * 327 * invalidate_mapping_pages() will not block on IO activity. It will not 328 * invalidate pages which are dirty, locked, under writeback or mapped into 329 * pagetables. 330 */ 331 unsigned long invalidate_mapping_pages(struct address_space *mapping, 332 pgoff_t start, pgoff_t end) 333 { 334 return __invalidate_mapping_pages(mapping, start, end, false); 335 } 336 EXPORT_SYMBOL(invalidate_mapping_pages); 337 338 /* 339 * This is like invalidate_complete_page(), except it ignores the page's 340 * refcount. We do this because invalidate_inode_pages2() needs stronger 341 * invalidation guarantees, and cannot afford to leave pages behind because 342 * shrink_page_list() has a temp ref on them, or because they're transiently 343 * sitting in the lru_cache_add() pagevecs. 344 */ 345 static int 346 invalidate_complete_page2(struct address_space *mapping, struct page *page) 347 { 348 if (page->mapping != mapping) 349 return 0; 350 351 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) 352 return 0; 353 354 spin_lock_irq(&mapping->tree_lock); 355 if (PageDirty(page)) 356 goto failed; 357 358 clear_page_mlock(page); 359 BUG_ON(PagePrivate(page)); 360 __remove_from_page_cache(page); 361 spin_unlock_irq(&mapping->tree_lock); 362 page_cache_release(page); /* pagecache ref */ 363 return 1; 364 failed: 365 spin_unlock_irq(&mapping->tree_lock); 366 return 0; 367 } 368 369 static int do_launder_page(struct address_space *mapping, struct page *page) 370 { 371 if (!PageDirty(page)) 372 return 0; 373 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 374 return 0; 375 return mapping->a_ops->launder_page(page); 376 } 377 378 /** 379 * invalidate_inode_pages2_range - remove range of pages from an address_space 380 * @mapping: the address_space 381 * @start: the page offset 'from' which to invalidate 382 * @end: the page offset 'to' which to invalidate (inclusive) 383 * 384 * Any pages which are found to be mapped into pagetables are unmapped prior to 385 * invalidation. 386 * 387 * Returns -EBUSY if any pages could not be invalidated. 388 */ 389 int invalidate_inode_pages2_range(struct address_space *mapping, 390 pgoff_t start, pgoff_t end) 391 { 392 struct pagevec pvec; 393 pgoff_t next; 394 int i; 395 int ret = 0; 396 int ret2 = 0; 397 int did_range_unmap = 0; 398 int wrapped = 0; 399 400 pagevec_init(&pvec, 0); 401 next = start; 402 while (next <= end && !wrapped && 403 pagevec_lookup(&pvec, mapping, next, 404 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 405 for (i = 0; i < pagevec_count(&pvec); i++) { 406 struct page *page = pvec.pages[i]; 407 pgoff_t page_index; 408 409 lock_page(page); 410 if (page->mapping != mapping) { 411 unlock_page(page); 412 continue; 413 } 414 page_index = page->index; 415 next = page_index + 1; 416 if (next == 0) 417 wrapped = 1; 418 if (page_index > end) { 419 unlock_page(page); 420 break; 421 } 422 wait_on_page_writeback(page); 423 if (page_mapped(page)) { 424 if (!did_range_unmap) { 425 /* 426 * Zap the rest of the file in one hit. 427 */ 428 unmap_mapping_range(mapping, 429 (loff_t)page_index<<PAGE_CACHE_SHIFT, 430 (loff_t)(end - page_index + 1) 431 << PAGE_CACHE_SHIFT, 432 0); 433 did_range_unmap = 1; 434 } else { 435 /* 436 * Just zap this page 437 */ 438 unmap_mapping_range(mapping, 439 (loff_t)page_index<<PAGE_CACHE_SHIFT, 440 PAGE_CACHE_SIZE, 0); 441 } 442 } 443 BUG_ON(page_mapped(page)); 444 ret2 = do_launder_page(mapping, page); 445 if (ret2 == 0) { 446 if (!invalidate_complete_page2(mapping, page)) 447 ret2 = -EBUSY; 448 } 449 if (ret2 < 0) 450 ret = ret2; 451 unlock_page(page); 452 } 453 pagevec_release(&pvec); 454 cond_resched(); 455 } 456 return ret; 457 } 458 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 459 460 /** 461 * invalidate_inode_pages2 - remove all pages from an address_space 462 * @mapping: the address_space 463 * 464 * Any pages which are found to be mapped into pagetables are unmapped prior to 465 * invalidation. 466 * 467 * Returns -EIO if any pages could not be invalidated. 468 */ 469 int invalidate_inode_pages2(struct address_space *mapping) 470 { 471 return invalidate_inode_pages2_range(mapping, 0, -1); 472 } 473 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 474