xref: /linux/mm/truncate.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
20 				   do_invalidatepage */
21 #include "internal.h"
22 
23 
24 /**
25  * do_invalidatepage - invalidate part or all of a page
26  * @page: the page which is affected
27  * @offset: the index of the truncation point
28  *
29  * do_invalidatepage() is called when all or part of the page has become
30  * invalidated by a truncate operation.
31  *
32  * do_invalidatepage() does not have to release all buffers, but it must
33  * ensure that no dirty buffer is left outside @offset and that no I/O
34  * is underway against any of the blocks which are outside the truncation
35  * point.  Because the caller is about to free (and possibly reuse) those
36  * blocks on-disk.
37  */
38 void do_invalidatepage(struct page *page, unsigned long offset)
39 {
40 	void (*invalidatepage)(struct page *, unsigned long);
41 	invalidatepage = page->mapping->a_ops->invalidatepage;
42 #ifdef CONFIG_BLOCK
43 	if (!invalidatepage)
44 		invalidatepage = block_invalidatepage;
45 #endif
46 	if (invalidatepage)
47 		(*invalidatepage)(page, offset);
48 }
49 
50 static inline void truncate_partial_page(struct page *page, unsigned partial)
51 {
52 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
53 	if (PagePrivate(page))
54 		do_invalidatepage(page, partial);
55 }
56 
57 /*
58  * This cancels just the dirty bit on the kernel page itself, it
59  * does NOT actually remove dirty bits on any mmap's that may be
60  * around. It also leaves the page tagged dirty, so any sync
61  * activity will still find it on the dirty lists, and in particular,
62  * clear_page_dirty_for_io() will still look at the dirty bits in
63  * the VM.
64  *
65  * Doing this should *normally* only ever be done when a page
66  * is truncated, and is not actually mapped anywhere at all. However,
67  * fs/buffer.c does this when it notices that somebody has cleaned
68  * out all the buffers on a page without actually doing it through
69  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
70  */
71 void cancel_dirty_page(struct page *page, unsigned int account_size)
72 {
73 	if (TestClearPageDirty(page)) {
74 		struct address_space *mapping = page->mapping;
75 		if (mapping && mapping_cap_account_dirty(mapping)) {
76 			dec_zone_page_state(page, NR_FILE_DIRTY);
77 			dec_bdi_stat(mapping->backing_dev_info,
78 					BDI_RECLAIMABLE);
79 			if (account_size)
80 				task_io_account_cancelled_write(account_size);
81 		}
82 	}
83 }
84 EXPORT_SYMBOL(cancel_dirty_page);
85 
86 /*
87  * If truncate cannot remove the fs-private metadata from the page, the page
88  * becomes orphaned.  It will be left on the LRU and may even be mapped into
89  * user pagetables if we're racing with filemap_fault().
90  *
91  * We need to bale out if page->mapping is no longer equal to the original
92  * mapping.  This happens a) when the VM reclaimed the page while we waited on
93  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
94  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
95  */
96 static void
97 truncate_complete_page(struct address_space *mapping, struct page *page)
98 {
99 	if (page->mapping != mapping)
100 		return;
101 
102 	if (PagePrivate(page))
103 		do_invalidatepage(page, 0);
104 
105 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
106 
107 	clear_page_mlock(page);
108 	remove_from_page_cache(page);
109 	ClearPageMappedToDisk(page);
110 	page_cache_release(page);	/* pagecache ref */
111 }
112 
113 /*
114  * This is for invalidate_mapping_pages().  That function can be called at
115  * any time, and is not supposed to throw away dirty pages.  But pages can
116  * be marked dirty at any time too, so use remove_mapping which safely
117  * discards clean, unused pages.
118  *
119  * Returns non-zero if the page was successfully invalidated.
120  */
121 static int
122 invalidate_complete_page(struct address_space *mapping, struct page *page)
123 {
124 	int ret;
125 
126 	if (page->mapping != mapping)
127 		return 0;
128 
129 	if (PagePrivate(page) && !try_to_release_page(page, 0))
130 		return 0;
131 
132 	clear_page_mlock(page);
133 	ret = remove_mapping(mapping, page);
134 
135 	return ret;
136 }
137 
138 /**
139  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
140  * @mapping: mapping to truncate
141  * @lstart: offset from which to truncate
142  * @lend: offset to which to truncate
143  *
144  * Truncate the page cache, removing the pages that are between
145  * specified offsets (and zeroing out partial page
146  * (if lstart is not page aligned)).
147  *
148  * Truncate takes two passes - the first pass is nonblocking.  It will not
149  * block on page locks and it will not block on writeback.  The second pass
150  * will wait.  This is to prevent as much IO as possible in the affected region.
151  * The first pass will remove most pages, so the search cost of the second pass
152  * is low.
153  *
154  * When looking at page->index outside the page lock we need to be careful to
155  * copy it into a local to avoid races (it could change at any time).
156  *
157  * We pass down the cache-hot hint to the page freeing code.  Even if the
158  * mapping is large, it is probably the case that the final pages are the most
159  * recently touched, and freeing happens in ascending file offset order.
160  */
161 void truncate_inode_pages_range(struct address_space *mapping,
162 				loff_t lstart, loff_t lend)
163 {
164 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
165 	pgoff_t end;
166 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
167 	struct pagevec pvec;
168 	pgoff_t next;
169 	int i;
170 
171 	if (mapping->nrpages == 0)
172 		return;
173 
174 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
175 	end = (lend >> PAGE_CACHE_SHIFT);
176 
177 	pagevec_init(&pvec, 0);
178 	next = start;
179 	while (next <= end &&
180 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
181 		for (i = 0; i < pagevec_count(&pvec); i++) {
182 			struct page *page = pvec.pages[i];
183 			pgoff_t page_index = page->index;
184 
185 			if (page_index > end) {
186 				next = page_index;
187 				break;
188 			}
189 
190 			if (page_index > next)
191 				next = page_index;
192 			next++;
193 			if (!trylock_page(page))
194 				continue;
195 			if (PageWriteback(page)) {
196 				unlock_page(page);
197 				continue;
198 			}
199 			if (page_mapped(page)) {
200 				unmap_mapping_range(mapping,
201 				  (loff_t)page_index<<PAGE_CACHE_SHIFT,
202 				  PAGE_CACHE_SIZE, 0);
203 			}
204 			truncate_complete_page(mapping, page);
205 			unlock_page(page);
206 		}
207 		pagevec_release(&pvec);
208 		cond_resched();
209 	}
210 
211 	if (partial) {
212 		struct page *page = find_lock_page(mapping, start - 1);
213 		if (page) {
214 			wait_on_page_writeback(page);
215 			truncate_partial_page(page, partial);
216 			unlock_page(page);
217 			page_cache_release(page);
218 		}
219 	}
220 
221 	next = start;
222 	for ( ; ; ) {
223 		cond_resched();
224 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
225 			if (next == start)
226 				break;
227 			next = start;
228 			continue;
229 		}
230 		if (pvec.pages[0]->index > end) {
231 			pagevec_release(&pvec);
232 			break;
233 		}
234 		for (i = 0; i < pagevec_count(&pvec); i++) {
235 			struct page *page = pvec.pages[i];
236 
237 			if (page->index > end)
238 				break;
239 			lock_page(page);
240 			wait_on_page_writeback(page);
241 			if (page_mapped(page)) {
242 				unmap_mapping_range(mapping,
243 				  (loff_t)page->index<<PAGE_CACHE_SHIFT,
244 				  PAGE_CACHE_SIZE, 0);
245 			}
246 			if (page->index > next)
247 				next = page->index;
248 			next++;
249 			truncate_complete_page(mapping, page);
250 			unlock_page(page);
251 		}
252 		pagevec_release(&pvec);
253 	}
254 }
255 EXPORT_SYMBOL(truncate_inode_pages_range);
256 
257 /**
258  * truncate_inode_pages - truncate *all* the pages from an offset
259  * @mapping: mapping to truncate
260  * @lstart: offset from which to truncate
261  *
262  * Called under (and serialised by) inode->i_mutex.
263  */
264 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
265 {
266 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
267 }
268 EXPORT_SYMBOL(truncate_inode_pages);
269 
270 unsigned long __invalidate_mapping_pages(struct address_space *mapping,
271 				pgoff_t start, pgoff_t end, bool be_atomic)
272 {
273 	struct pagevec pvec;
274 	pgoff_t next = start;
275 	unsigned long ret = 0;
276 	int i;
277 
278 	pagevec_init(&pvec, 0);
279 	while (next <= end &&
280 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
281 		for (i = 0; i < pagevec_count(&pvec); i++) {
282 			struct page *page = pvec.pages[i];
283 			pgoff_t index;
284 			int lock_failed;
285 
286 			lock_failed = !trylock_page(page);
287 
288 			/*
289 			 * We really shouldn't be looking at the ->index of an
290 			 * unlocked page.  But we're not allowed to lock these
291 			 * pages.  So we rely upon nobody altering the ->index
292 			 * of this (pinned-by-us) page.
293 			 */
294 			index = page->index;
295 			if (index > next)
296 				next = index;
297 			next++;
298 			if (lock_failed)
299 				continue;
300 
301 			if (PageDirty(page) || PageWriteback(page))
302 				goto unlock;
303 			if (page_mapped(page))
304 				goto unlock;
305 			ret += invalidate_complete_page(mapping, page);
306 unlock:
307 			unlock_page(page);
308 			if (next > end)
309 				break;
310 		}
311 		pagevec_release(&pvec);
312 		if (likely(!be_atomic))
313 			cond_resched();
314 	}
315 	return ret;
316 }
317 
318 /**
319  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
320  * @mapping: the address_space which holds the pages to invalidate
321  * @start: the offset 'from' which to invalidate
322  * @end: the offset 'to' which to invalidate (inclusive)
323  *
324  * This function only removes the unlocked pages, if you want to
325  * remove all the pages of one inode, you must call truncate_inode_pages.
326  *
327  * invalidate_mapping_pages() will not block on IO activity. It will not
328  * invalidate pages which are dirty, locked, under writeback or mapped into
329  * pagetables.
330  */
331 unsigned long invalidate_mapping_pages(struct address_space *mapping,
332 				pgoff_t start, pgoff_t end)
333 {
334 	return __invalidate_mapping_pages(mapping, start, end, false);
335 }
336 EXPORT_SYMBOL(invalidate_mapping_pages);
337 
338 /*
339  * This is like invalidate_complete_page(), except it ignores the page's
340  * refcount.  We do this because invalidate_inode_pages2() needs stronger
341  * invalidation guarantees, and cannot afford to leave pages behind because
342  * shrink_page_list() has a temp ref on them, or because they're transiently
343  * sitting in the lru_cache_add() pagevecs.
344  */
345 static int
346 invalidate_complete_page2(struct address_space *mapping, struct page *page)
347 {
348 	if (page->mapping != mapping)
349 		return 0;
350 
351 	if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
352 		return 0;
353 
354 	spin_lock_irq(&mapping->tree_lock);
355 	if (PageDirty(page))
356 		goto failed;
357 
358 	clear_page_mlock(page);
359 	BUG_ON(PagePrivate(page));
360 	__remove_from_page_cache(page);
361 	spin_unlock_irq(&mapping->tree_lock);
362 	page_cache_release(page);	/* pagecache ref */
363 	return 1;
364 failed:
365 	spin_unlock_irq(&mapping->tree_lock);
366 	return 0;
367 }
368 
369 static int do_launder_page(struct address_space *mapping, struct page *page)
370 {
371 	if (!PageDirty(page))
372 		return 0;
373 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
374 		return 0;
375 	return mapping->a_ops->launder_page(page);
376 }
377 
378 /**
379  * invalidate_inode_pages2_range - remove range of pages from an address_space
380  * @mapping: the address_space
381  * @start: the page offset 'from' which to invalidate
382  * @end: the page offset 'to' which to invalidate (inclusive)
383  *
384  * Any pages which are found to be mapped into pagetables are unmapped prior to
385  * invalidation.
386  *
387  * Returns -EBUSY if any pages could not be invalidated.
388  */
389 int invalidate_inode_pages2_range(struct address_space *mapping,
390 				  pgoff_t start, pgoff_t end)
391 {
392 	struct pagevec pvec;
393 	pgoff_t next;
394 	int i;
395 	int ret = 0;
396 	int ret2 = 0;
397 	int did_range_unmap = 0;
398 	int wrapped = 0;
399 
400 	pagevec_init(&pvec, 0);
401 	next = start;
402 	while (next <= end && !wrapped &&
403 		pagevec_lookup(&pvec, mapping, next,
404 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
405 		for (i = 0; i < pagevec_count(&pvec); i++) {
406 			struct page *page = pvec.pages[i];
407 			pgoff_t page_index;
408 
409 			lock_page(page);
410 			if (page->mapping != mapping) {
411 				unlock_page(page);
412 				continue;
413 			}
414 			page_index = page->index;
415 			next = page_index + 1;
416 			if (next == 0)
417 				wrapped = 1;
418 			if (page_index > end) {
419 				unlock_page(page);
420 				break;
421 			}
422 			wait_on_page_writeback(page);
423 			if (page_mapped(page)) {
424 				if (!did_range_unmap) {
425 					/*
426 					 * Zap the rest of the file in one hit.
427 					 */
428 					unmap_mapping_range(mapping,
429 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
430 					   (loff_t)(end - page_index + 1)
431 							<< PAGE_CACHE_SHIFT,
432 					    0);
433 					did_range_unmap = 1;
434 				} else {
435 					/*
436 					 * Just zap this page
437 					 */
438 					unmap_mapping_range(mapping,
439 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
440 					  PAGE_CACHE_SIZE, 0);
441 				}
442 			}
443 			BUG_ON(page_mapped(page));
444 			ret2 = do_launder_page(mapping, page);
445 			if (ret2 == 0) {
446 				if (!invalidate_complete_page2(mapping, page))
447 					ret2 = -EBUSY;
448 			}
449 			if (ret2 < 0)
450 				ret = ret2;
451 			unlock_page(page);
452 		}
453 		pagevec_release(&pvec);
454 		cond_resched();
455 	}
456 	return ret;
457 }
458 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
459 
460 /**
461  * invalidate_inode_pages2 - remove all pages from an address_space
462  * @mapping: the address_space
463  *
464  * Any pages which are found to be mapped into pagetables are unmapped prior to
465  * invalidation.
466  *
467  * Returns -EIO if any pages could not be invalidated.
468  */
469 int invalidate_inode_pages2(struct address_space *mapping)
470 {
471 	return invalidate_inode_pages2_range(mapping, 0, -1);
472 }
473 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
474