xref: /linux/mm/truncate.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27 
28 /*
29  * Regular page slots are stabilized by the page lock even without the tree
30  * itself locked.  These unlocked entries need verification under the tree
31  * lock.
32  */
33 static inline void __clear_shadow_entry(struct address_space *mapping,
34 				pgoff_t index, void *entry)
35 {
36 	XA_STATE(xas, &mapping->i_pages, index);
37 
38 	xas_set_update(&xas, workingset_update_node);
39 	if (xas_load(&xas) != entry)
40 		return;
41 	xas_store(&xas, NULL);
42 	mapping->nrexceptional--;
43 }
44 
45 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
46 			       void *entry)
47 {
48 	xa_lock_irq(&mapping->i_pages);
49 	__clear_shadow_entry(mapping, index, entry);
50 	xa_unlock_irq(&mapping->i_pages);
51 }
52 
53 /*
54  * Unconditionally remove exceptional entries. Usually called from truncate
55  * path. Note that the pagevec may be altered by this function by removing
56  * exceptional entries similar to what pagevec_remove_exceptionals does.
57  */
58 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
59 				struct pagevec *pvec, pgoff_t *indices,
60 				pgoff_t end)
61 {
62 	int i, j;
63 	bool dax, lock;
64 
65 	/* Handled by shmem itself */
66 	if (shmem_mapping(mapping))
67 		return;
68 
69 	for (j = 0; j < pagevec_count(pvec); j++)
70 		if (xa_is_value(pvec->pages[j]))
71 			break;
72 
73 	if (j == pagevec_count(pvec))
74 		return;
75 
76 	dax = dax_mapping(mapping);
77 	lock = !dax && indices[j] < end;
78 	if (lock)
79 		xa_lock_irq(&mapping->i_pages);
80 
81 	for (i = j; i < pagevec_count(pvec); i++) {
82 		struct page *page = pvec->pages[i];
83 		pgoff_t index = indices[i];
84 
85 		if (!xa_is_value(page)) {
86 			pvec->pages[j++] = page;
87 			continue;
88 		}
89 
90 		if (index >= end)
91 			continue;
92 
93 		if (unlikely(dax)) {
94 			dax_delete_mapping_entry(mapping, index);
95 			continue;
96 		}
97 
98 		__clear_shadow_entry(mapping, index, page);
99 	}
100 
101 	if (lock)
102 		xa_unlock_irq(&mapping->i_pages);
103 	pvec->nr = j;
104 }
105 
106 /*
107  * Invalidate exceptional entry if easily possible. This handles exceptional
108  * entries for invalidate_inode_pages().
109  */
110 static int invalidate_exceptional_entry(struct address_space *mapping,
111 					pgoff_t index, void *entry)
112 {
113 	/* Handled by shmem itself, or for DAX we do nothing. */
114 	if (shmem_mapping(mapping) || dax_mapping(mapping))
115 		return 1;
116 	clear_shadow_entry(mapping, index, entry);
117 	return 1;
118 }
119 
120 /*
121  * Invalidate exceptional entry if clean. This handles exceptional entries for
122  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
123  */
124 static int invalidate_exceptional_entry2(struct address_space *mapping,
125 					 pgoff_t index, void *entry)
126 {
127 	/* Handled by shmem itself */
128 	if (shmem_mapping(mapping))
129 		return 1;
130 	if (dax_mapping(mapping))
131 		return dax_invalidate_mapping_entry_sync(mapping, index);
132 	clear_shadow_entry(mapping, index, entry);
133 	return 1;
134 }
135 
136 /**
137  * do_invalidatepage - invalidate part or all of a page
138  * @page: the page which is affected
139  * @offset: start of the range to invalidate
140  * @length: length of the range to invalidate
141  *
142  * do_invalidatepage() is called when all or part of the page has become
143  * invalidated by a truncate operation.
144  *
145  * do_invalidatepage() does not have to release all buffers, but it must
146  * ensure that no dirty buffer is left outside @offset and that no I/O
147  * is underway against any of the blocks which are outside the truncation
148  * point.  Because the caller is about to free (and possibly reuse) those
149  * blocks on-disk.
150  */
151 void do_invalidatepage(struct page *page, unsigned int offset,
152 		       unsigned int length)
153 {
154 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
155 
156 	invalidatepage = page->mapping->a_ops->invalidatepage;
157 #ifdef CONFIG_BLOCK
158 	if (!invalidatepage)
159 		invalidatepage = block_invalidatepage;
160 #endif
161 	if (invalidatepage)
162 		(*invalidatepage)(page, offset, length);
163 }
164 
165 /*
166  * If truncate cannot remove the fs-private metadata from the page, the page
167  * becomes orphaned.  It will be left on the LRU and may even be mapped into
168  * user pagetables if we're racing with filemap_fault().
169  *
170  * We need to bale out if page->mapping is no longer equal to the original
171  * mapping.  This happens a) when the VM reclaimed the page while we waited on
172  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
173  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
174  */
175 static void
176 truncate_cleanup_page(struct address_space *mapping, struct page *page)
177 {
178 	if (page_mapped(page)) {
179 		pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
180 		unmap_mapping_pages(mapping, page->index, nr, false);
181 	}
182 
183 	if (page_has_private(page))
184 		do_invalidatepage(page, 0, PAGE_SIZE);
185 
186 	/*
187 	 * Some filesystems seem to re-dirty the page even after
188 	 * the VM has canceled the dirty bit (eg ext3 journaling).
189 	 * Hence dirty accounting check is placed after invalidation.
190 	 */
191 	cancel_dirty_page(page);
192 	ClearPageMappedToDisk(page);
193 }
194 
195 /*
196  * This is for invalidate_mapping_pages().  That function can be called at
197  * any time, and is not supposed to throw away dirty pages.  But pages can
198  * be marked dirty at any time too, so use remove_mapping which safely
199  * discards clean, unused pages.
200  *
201  * Returns non-zero if the page was successfully invalidated.
202  */
203 static int
204 invalidate_complete_page(struct address_space *mapping, struct page *page)
205 {
206 	int ret;
207 
208 	if (page->mapping != mapping)
209 		return 0;
210 
211 	if (page_has_private(page) && !try_to_release_page(page, 0))
212 		return 0;
213 
214 	ret = remove_mapping(mapping, page);
215 
216 	return ret;
217 }
218 
219 int truncate_inode_page(struct address_space *mapping, struct page *page)
220 {
221 	VM_BUG_ON_PAGE(PageTail(page), page);
222 
223 	if (page->mapping != mapping)
224 		return -EIO;
225 
226 	truncate_cleanup_page(mapping, page);
227 	delete_from_page_cache(page);
228 	return 0;
229 }
230 
231 /*
232  * Used to get rid of pages on hardware memory corruption.
233  */
234 int generic_error_remove_page(struct address_space *mapping, struct page *page)
235 {
236 	if (!mapping)
237 		return -EINVAL;
238 	/*
239 	 * Only punch for normal data pages for now.
240 	 * Handling other types like directories would need more auditing.
241 	 */
242 	if (!S_ISREG(mapping->host->i_mode))
243 		return -EIO;
244 	return truncate_inode_page(mapping, page);
245 }
246 EXPORT_SYMBOL(generic_error_remove_page);
247 
248 /*
249  * Safely invalidate one page from its pagecache mapping.
250  * It only drops clean, unused pages. The page must be locked.
251  *
252  * Returns 1 if the page is successfully invalidated, otherwise 0.
253  */
254 int invalidate_inode_page(struct page *page)
255 {
256 	struct address_space *mapping = page_mapping(page);
257 	if (!mapping)
258 		return 0;
259 	if (PageDirty(page) || PageWriteback(page))
260 		return 0;
261 	if (page_mapped(page))
262 		return 0;
263 	return invalidate_complete_page(mapping, page);
264 }
265 
266 /**
267  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
268  * @mapping: mapping to truncate
269  * @lstart: offset from which to truncate
270  * @lend: offset to which to truncate (inclusive)
271  *
272  * Truncate the page cache, removing the pages that are between
273  * specified offsets (and zeroing out partial pages
274  * if lstart or lend + 1 is not page aligned).
275  *
276  * Truncate takes two passes - the first pass is nonblocking.  It will not
277  * block on page locks and it will not block on writeback.  The second pass
278  * will wait.  This is to prevent as much IO as possible in the affected region.
279  * The first pass will remove most pages, so the search cost of the second pass
280  * is low.
281  *
282  * We pass down the cache-hot hint to the page freeing code.  Even if the
283  * mapping is large, it is probably the case that the final pages are the most
284  * recently touched, and freeing happens in ascending file offset order.
285  *
286  * Note that since ->invalidatepage() accepts range to invalidate
287  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
288  * page aligned properly.
289  */
290 void truncate_inode_pages_range(struct address_space *mapping,
291 				loff_t lstart, loff_t lend)
292 {
293 	pgoff_t		start;		/* inclusive */
294 	pgoff_t		end;		/* exclusive */
295 	unsigned int	partial_start;	/* inclusive */
296 	unsigned int	partial_end;	/* exclusive */
297 	struct pagevec	pvec;
298 	pgoff_t		indices[PAGEVEC_SIZE];
299 	pgoff_t		index;
300 	int		i;
301 
302 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
303 		goto out;
304 
305 	/* Offsets within partial pages */
306 	partial_start = lstart & (PAGE_SIZE - 1);
307 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
308 
309 	/*
310 	 * 'start' and 'end' always covers the range of pages to be fully
311 	 * truncated. Partial pages are covered with 'partial_start' at the
312 	 * start of the range and 'partial_end' at the end of the range.
313 	 * Note that 'end' is exclusive while 'lend' is inclusive.
314 	 */
315 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
316 	if (lend == -1)
317 		/*
318 		 * lend == -1 indicates end-of-file so we have to set 'end'
319 		 * to the highest possible pgoff_t and since the type is
320 		 * unsigned we're using -1.
321 		 */
322 		end = -1;
323 	else
324 		end = (lend + 1) >> PAGE_SHIFT;
325 
326 	pagevec_init(&pvec);
327 	index = start;
328 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
329 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
330 			indices)) {
331 		/*
332 		 * Pagevec array has exceptional entries and we may also fail
333 		 * to lock some pages. So we store pages that can be deleted
334 		 * in a new pagevec.
335 		 */
336 		struct pagevec locked_pvec;
337 
338 		pagevec_init(&locked_pvec);
339 		for (i = 0; i < pagevec_count(&pvec); i++) {
340 			struct page *page = pvec.pages[i];
341 
342 			/* We rely upon deletion not changing page->index */
343 			index = indices[i];
344 			if (index >= end)
345 				break;
346 
347 			if (xa_is_value(page))
348 				continue;
349 
350 			if (!trylock_page(page))
351 				continue;
352 			WARN_ON(page_to_index(page) != index);
353 			if (PageWriteback(page)) {
354 				unlock_page(page);
355 				continue;
356 			}
357 			if (page->mapping != mapping) {
358 				unlock_page(page);
359 				continue;
360 			}
361 			pagevec_add(&locked_pvec, page);
362 		}
363 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
364 			truncate_cleanup_page(mapping, locked_pvec.pages[i]);
365 		delete_from_page_cache_batch(mapping, &locked_pvec);
366 		for (i = 0; i < pagevec_count(&locked_pvec); i++)
367 			unlock_page(locked_pvec.pages[i]);
368 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
369 		pagevec_release(&pvec);
370 		cond_resched();
371 		index++;
372 	}
373 	if (partial_start) {
374 		struct page *page = find_lock_page(mapping, start - 1);
375 		if (page) {
376 			unsigned int top = PAGE_SIZE;
377 			if (start > end) {
378 				/* Truncation within a single page */
379 				top = partial_end;
380 				partial_end = 0;
381 			}
382 			wait_on_page_writeback(page);
383 			zero_user_segment(page, partial_start, top);
384 			cleancache_invalidate_page(mapping, page);
385 			if (page_has_private(page))
386 				do_invalidatepage(page, partial_start,
387 						  top - partial_start);
388 			unlock_page(page);
389 			put_page(page);
390 		}
391 	}
392 	if (partial_end) {
393 		struct page *page = find_lock_page(mapping, end);
394 		if (page) {
395 			wait_on_page_writeback(page);
396 			zero_user_segment(page, 0, partial_end);
397 			cleancache_invalidate_page(mapping, page);
398 			if (page_has_private(page))
399 				do_invalidatepage(page, 0,
400 						  partial_end);
401 			unlock_page(page);
402 			put_page(page);
403 		}
404 	}
405 	/*
406 	 * If the truncation happened within a single page no pages
407 	 * will be released, just zeroed, so we can bail out now.
408 	 */
409 	if (start >= end)
410 		goto out;
411 
412 	index = start;
413 	for ( ; ; ) {
414 		cond_resched();
415 		if (!pagevec_lookup_entries(&pvec, mapping, index,
416 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
417 			/* If all gone from start onwards, we're done */
418 			if (index == start)
419 				break;
420 			/* Otherwise restart to make sure all gone */
421 			index = start;
422 			continue;
423 		}
424 		if (index == start && indices[0] >= end) {
425 			/* All gone out of hole to be punched, we're done */
426 			pagevec_remove_exceptionals(&pvec);
427 			pagevec_release(&pvec);
428 			break;
429 		}
430 
431 		for (i = 0; i < pagevec_count(&pvec); i++) {
432 			struct page *page = pvec.pages[i];
433 
434 			/* We rely upon deletion not changing page->index */
435 			index = indices[i];
436 			if (index >= end) {
437 				/* Restart punch to make sure all gone */
438 				index = start - 1;
439 				break;
440 			}
441 
442 			if (xa_is_value(page))
443 				continue;
444 
445 			lock_page(page);
446 			WARN_ON(page_to_index(page) != index);
447 			wait_on_page_writeback(page);
448 			truncate_inode_page(mapping, page);
449 			unlock_page(page);
450 		}
451 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
452 		pagevec_release(&pvec);
453 		index++;
454 	}
455 
456 out:
457 	cleancache_invalidate_inode(mapping);
458 }
459 EXPORT_SYMBOL(truncate_inode_pages_range);
460 
461 /**
462  * truncate_inode_pages - truncate *all* the pages from an offset
463  * @mapping: mapping to truncate
464  * @lstart: offset from which to truncate
465  *
466  * Called under (and serialised by) inode->i_mutex.
467  *
468  * Note: When this function returns, there can be a page in the process of
469  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
470  * mapping->nrpages can be non-zero when this function returns even after
471  * truncation of the whole mapping.
472  */
473 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
474 {
475 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
476 }
477 EXPORT_SYMBOL(truncate_inode_pages);
478 
479 /**
480  * truncate_inode_pages_final - truncate *all* pages before inode dies
481  * @mapping: mapping to truncate
482  *
483  * Called under (and serialized by) inode->i_mutex.
484  *
485  * Filesystems have to use this in the .evict_inode path to inform the
486  * VM that this is the final truncate and the inode is going away.
487  */
488 void truncate_inode_pages_final(struct address_space *mapping)
489 {
490 	unsigned long nrexceptional;
491 	unsigned long nrpages;
492 
493 	/*
494 	 * Page reclaim can not participate in regular inode lifetime
495 	 * management (can't call iput()) and thus can race with the
496 	 * inode teardown.  Tell it when the address space is exiting,
497 	 * so that it does not install eviction information after the
498 	 * final truncate has begun.
499 	 */
500 	mapping_set_exiting(mapping);
501 
502 	/*
503 	 * When reclaim installs eviction entries, it increases
504 	 * nrexceptional first, then decreases nrpages.  Make sure we see
505 	 * this in the right order or we might miss an entry.
506 	 */
507 	nrpages = mapping->nrpages;
508 	smp_rmb();
509 	nrexceptional = mapping->nrexceptional;
510 
511 	if (nrpages || nrexceptional) {
512 		/*
513 		 * As truncation uses a lockless tree lookup, cycle
514 		 * the tree lock to make sure any ongoing tree
515 		 * modification that does not see AS_EXITING is
516 		 * completed before starting the final truncate.
517 		 */
518 		xa_lock_irq(&mapping->i_pages);
519 		xa_unlock_irq(&mapping->i_pages);
520 	}
521 
522 	/*
523 	 * Cleancache needs notification even if there are no pages or shadow
524 	 * entries.
525 	 */
526 	truncate_inode_pages(mapping, 0);
527 }
528 EXPORT_SYMBOL(truncate_inode_pages_final);
529 
530 /**
531  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
532  * @mapping: the address_space which holds the pages to invalidate
533  * @start: the offset 'from' which to invalidate
534  * @end: the offset 'to' which to invalidate (inclusive)
535  *
536  * This function only removes the unlocked pages, if you want to
537  * remove all the pages of one inode, you must call truncate_inode_pages.
538  *
539  * invalidate_mapping_pages() will not block on IO activity. It will not
540  * invalidate pages which are dirty, locked, under writeback or mapped into
541  * pagetables.
542  *
543  * Return: the number of the pages that were invalidated
544  */
545 unsigned long invalidate_mapping_pages(struct address_space *mapping,
546 		pgoff_t start, pgoff_t end)
547 {
548 	pgoff_t indices[PAGEVEC_SIZE];
549 	struct pagevec pvec;
550 	pgoff_t index = start;
551 	unsigned long ret;
552 	unsigned long count = 0;
553 	int i;
554 
555 	pagevec_init(&pvec);
556 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
557 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
558 			indices)) {
559 		for (i = 0; i < pagevec_count(&pvec); i++) {
560 			struct page *page = pvec.pages[i];
561 
562 			/* We rely upon deletion not changing page->index */
563 			index = indices[i];
564 			if (index > end)
565 				break;
566 
567 			if (xa_is_value(page)) {
568 				invalidate_exceptional_entry(mapping, index,
569 							     page);
570 				continue;
571 			}
572 
573 			if (!trylock_page(page))
574 				continue;
575 
576 			WARN_ON(page_to_index(page) != index);
577 
578 			/* Middle of THP: skip */
579 			if (PageTransTail(page)) {
580 				unlock_page(page);
581 				continue;
582 			} else if (PageTransHuge(page)) {
583 				index += HPAGE_PMD_NR - 1;
584 				i += HPAGE_PMD_NR - 1;
585 				/*
586 				 * 'end' is in the middle of THP. Don't
587 				 * invalidate the page as the part outside of
588 				 * 'end' could be still useful.
589 				 */
590 				if (index > end) {
591 					unlock_page(page);
592 					continue;
593 				}
594 			}
595 
596 			ret = invalidate_inode_page(page);
597 			unlock_page(page);
598 			/*
599 			 * Invalidation is a hint that the page is no longer
600 			 * of interest and try to speed up its reclaim.
601 			 */
602 			if (!ret)
603 				deactivate_file_page(page);
604 			count += ret;
605 		}
606 		pagevec_remove_exceptionals(&pvec);
607 		pagevec_release(&pvec);
608 		cond_resched();
609 		index++;
610 	}
611 	return count;
612 }
613 EXPORT_SYMBOL(invalidate_mapping_pages);
614 
615 /*
616  * This is like invalidate_complete_page(), except it ignores the page's
617  * refcount.  We do this because invalidate_inode_pages2() needs stronger
618  * invalidation guarantees, and cannot afford to leave pages behind because
619  * shrink_page_list() has a temp ref on them, or because they're transiently
620  * sitting in the lru_cache_add() pagevecs.
621  */
622 static int
623 invalidate_complete_page2(struct address_space *mapping, struct page *page)
624 {
625 	unsigned long flags;
626 
627 	if (page->mapping != mapping)
628 		return 0;
629 
630 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
631 		return 0;
632 
633 	xa_lock_irqsave(&mapping->i_pages, flags);
634 	if (PageDirty(page))
635 		goto failed;
636 
637 	BUG_ON(page_has_private(page));
638 	__delete_from_page_cache(page, NULL);
639 	xa_unlock_irqrestore(&mapping->i_pages, flags);
640 
641 	if (mapping->a_ops->freepage)
642 		mapping->a_ops->freepage(page);
643 
644 	put_page(page);	/* pagecache ref */
645 	return 1;
646 failed:
647 	xa_unlock_irqrestore(&mapping->i_pages, flags);
648 	return 0;
649 }
650 
651 static int do_launder_page(struct address_space *mapping, struct page *page)
652 {
653 	if (!PageDirty(page))
654 		return 0;
655 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
656 		return 0;
657 	return mapping->a_ops->launder_page(page);
658 }
659 
660 /**
661  * invalidate_inode_pages2_range - remove range of pages from an address_space
662  * @mapping: the address_space
663  * @start: the page offset 'from' which to invalidate
664  * @end: the page offset 'to' which to invalidate (inclusive)
665  *
666  * Any pages which are found to be mapped into pagetables are unmapped prior to
667  * invalidation.
668  *
669  * Return: -EBUSY if any pages could not be invalidated.
670  */
671 int invalidate_inode_pages2_range(struct address_space *mapping,
672 				  pgoff_t start, pgoff_t end)
673 {
674 	pgoff_t indices[PAGEVEC_SIZE];
675 	struct pagevec pvec;
676 	pgoff_t index;
677 	int i;
678 	int ret = 0;
679 	int ret2 = 0;
680 	int did_range_unmap = 0;
681 
682 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
683 		goto out;
684 
685 	pagevec_init(&pvec);
686 	index = start;
687 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
688 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
689 			indices)) {
690 		for (i = 0; i < pagevec_count(&pvec); i++) {
691 			struct page *page = pvec.pages[i];
692 
693 			/* We rely upon deletion not changing page->index */
694 			index = indices[i];
695 			if (index > end)
696 				break;
697 
698 			if (xa_is_value(page)) {
699 				if (!invalidate_exceptional_entry2(mapping,
700 								   index, page))
701 					ret = -EBUSY;
702 				continue;
703 			}
704 
705 			lock_page(page);
706 			WARN_ON(page_to_index(page) != index);
707 			if (page->mapping != mapping) {
708 				unlock_page(page);
709 				continue;
710 			}
711 			wait_on_page_writeback(page);
712 			if (page_mapped(page)) {
713 				if (!did_range_unmap) {
714 					/*
715 					 * Zap the rest of the file in one hit.
716 					 */
717 					unmap_mapping_pages(mapping, index,
718 						(1 + end - index), false);
719 					did_range_unmap = 1;
720 				} else {
721 					/*
722 					 * Just zap this page
723 					 */
724 					unmap_mapping_pages(mapping, index,
725 								1, false);
726 				}
727 			}
728 			BUG_ON(page_mapped(page));
729 			ret2 = do_launder_page(mapping, page);
730 			if (ret2 == 0) {
731 				if (!invalidate_complete_page2(mapping, page))
732 					ret2 = -EBUSY;
733 			}
734 			if (ret2 < 0)
735 				ret = ret2;
736 			unlock_page(page);
737 		}
738 		pagevec_remove_exceptionals(&pvec);
739 		pagevec_release(&pvec);
740 		cond_resched();
741 		index++;
742 	}
743 	/*
744 	 * For DAX we invalidate page tables after invalidating page cache.  We
745 	 * could invalidate page tables while invalidating each entry however
746 	 * that would be expensive. And doing range unmapping before doesn't
747 	 * work as we have no cheap way to find whether page cache entry didn't
748 	 * get remapped later.
749 	 */
750 	if (dax_mapping(mapping)) {
751 		unmap_mapping_pages(mapping, start, end - start + 1, false);
752 	}
753 out:
754 	cleancache_invalidate_inode(mapping);
755 	return ret;
756 }
757 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
758 
759 /**
760  * invalidate_inode_pages2 - remove all pages from an address_space
761  * @mapping: the address_space
762  *
763  * Any pages which are found to be mapped into pagetables are unmapped prior to
764  * invalidation.
765  *
766  * Return: -EBUSY if any pages could not be invalidated.
767  */
768 int invalidate_inode_pages2(struct address_space *mapping)
769 {
770 	return invalidate_inode_pages2_range(mapping, 0, -1);
771 }
772 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
773 
774 /**
775  * truncate_pagecache - unmap and remove pagecache that has been truncated
776  * @inode: inode
777  * @newsize: new file size
778  *
779  * inode's new i_size must already be written before truncate_pagecache
780  * is called.
781  *
782  * This function should typically be called before the filesystem
783  * releases resources associated with the freed range (eg. deallocates
784  * blocks). This way, pagecache will always stay logically coherent
785  * with on-disk format, and the filesystem would not have to deal with
786  * situations such as writepage being called for a page that has already
787  * had its underlying blocks deallocated.
788  */
789 void truncate_pagecache(struct inode *inode, loff_t newsize)
790 {
791 	struct address_space *mapping = inode->i_mapping;
792 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
793 
794 	/*
795 	 * unmap_mapping_range is called twice, first simply for
796 	 * efficiency so that truncate_inode_pages does fewer
797 	 * single-page unmaps.  However after this first call, and
798 	 * before truncate_inode_pages finishes, it is possible for
799 	 * private pages to be COWed, which remain after
800 	 * truncate_inode_pages finishes, hence the second
801 	 * unmap_mapping_range call must be made for correctness.
802 	 */
803 	unmap_mapping_range(mapping, holebegin, 0, 1);
804 	truncate_inode_pages(mapping, newsize);
805 	unmap_mapping_range(mapping, holebegin, 0, 1);
806 }
807 EXPORT_SYMBOL(truncate_pagecache);
808 
809 /**
810  * truncate_setsize - update inode and pagecache for a new file size
811  * @inode: inode
812  * @newsize: new file size
813  *
814  * truncate_setsize updates i_size and performs pagecache truncation (if
815  * necessary) to @newsize. It will be typically be called from the filesystem's
816  * setattr function when ATTR_SIZE is passed in.
817  *
818  * Must be called with a lock serializing truncates and writes (generally
819  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
820  * specific block truncation has been performed.
821  */
822 void truncate_setsize(struct inode *inode, loff_t newsize)
823 {
824 	loff_t oldsize = inode->i_size;
825 
826 	i_size_write(inode, newsize);
827 	if (newsize > oldsize)
828 		pagecache_isize_extended(inode, oldsize, newsize);
829 	truncate_pagecache(inode, newsize);
830 }
831 EXPORT_SYMBOL(truncate_setsize);
832 
833 /**
834  * pagecache_isize_extended - update pagecache after extension of i_size
835  * @inode:	inode for which i_size was extended
836  * @from:	original inode size
837  * @to:		new inode size
838  *
839  * Handle extension of inode size either caused by extending truncate or by
840  * write starting after current i_size. We mark the page straddling current
841  * i_size RO so that page_mkwrite() is called on the nearest write access to
842  * the page.  This way filesystem can be sure that page_mkwrite() is called on
843  * the page before user writes to the page via mmap after the i_size has been
844  * changed.
845  *
846  * The function must be called after i_size is updated so that page fault
847  * coming after we unlock the page will already see the new i_size.
848  * The function must be called while we still hold i_mutex - this not only
849  * makes sure i_size is stable but also that userspace cannot observe new
850  * i_size value before we are prepared to store mmap writes at new inode size.
851  */
852 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
853 {
854 	int bsize = i_blocksize(inode);
855 	loff_t rounded_from;
856 	struct page *page;
857 	pgoff_t index;
858 
859 	WARN_ON(to > inode->i_size);
860 
861 	if (from >= to || bsize == PAGE_SIZE)
862 		return;
863 	/* Page straddling @from will not have any hole block created? */
864 	rounded_from = round_up(from, bsize);
865 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
866 		return;
867 
868 	index = from >> PAGE_SHIFT;
869 	page = find_lock_page(inode->i_mapping, index);
870 	/* Page not cached? Nothing to do */
871 	if (!page)
872 		return;
873 	/*
874 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
875 	 * is needed.
876 	 */
877 	if (page_mkclean(page))
878 		set_page_dirty(page);
879 	unlock_page(page);
880 	put_page(page);
881 }
882 EXPORT_SYMBOL(pagecache_isize_extended);
883 
884 /**
885  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
886  * @inode: inode
887  * @lstart: offset of beginning of hole
888  * @lend: offset of last byte of hole
889  *
890  * This function should typically be called before the filesystem
891  * releases resources associated with the freed range (eg. deallocates
892  * blocks). This way, pagecache will always stay logically coherent
893  * with on-disk format, and the filesystem would not have to deal with
894  * situations such as writepage being called for a page that has already
895  * had its underlying blocks deallocated.
896  */
897 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
898 {
899 	struct address_space *mapping = inode->i_mapping;
900 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
901 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
902 	/*
903 	 * This rounding is currently just for example: unmap_mapping_range
904 	 * expands its hole outwards, whereas we want it to contract the hole
905 	 * inwards.  However, existing callers of truncate_pagecache_range are
906 	 * doing their own page rounding first.  Note that unmap_mapping_range
907 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
908 	 */
909 
910 	/*
911 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
912 	 * once (before truncating pagecache), and without "even_cows" flag:
913 	 * hole-punching should not remove private COWed pages from the hole.
914 	 */
915 	if ((u64)unmap_end > (u64)unmap_start)
916 		unmap_mapping_range(mapping, unmap_start,
917 				    1 + unmap_end - unmap_start, 0);
918 	truncate_inode_pages_range(mapping, lstart, lend);
919 }
920 EXPORT_SYMBOL(truncate_pagecache_range);
921