1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 /* 27 * Regular page slots are stabilized by the page lock even without the tree 28 * itself locked. These unlocked entries need verification under the tree 29 * lock. 30 */ 31 static inline void __clear_shadow_entry(struct address_space *mapping, 32 pgoff_t index, void *entry) 33 { 34 XA_STATE(xas, &mapping->i_pages, index); 35 36 xas_set_update(&xas, workingset_update_node); 37 if (xas_load(&xas) != entry) 38 return; 39 xas_store(&xas, NULL); 40 } 41 42 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 43 void *entry) 44 { 45 spin_lock(&mapping->host->i_lock); 46 xa_lock_irq(&mapping->i_pages); 47 __clear_shadow_entry(mapping, index, entry); 48 xa_unlock_irq(&mapping->i_pages); 49 if (mapping_shrinkable(mapping)) 50 inode_add_lru(mapping->host); 51 spin_unlock(&mapping->host->i_lock); 52 } 53 54 /* 55 * Unconditionally remove exceptional entries. Usually called from truncate 56 * path. Note that the folio_batch may be altered by this function by removing 57 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 58 */ 59 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 60 struct folio_batch *fbatch, pgoff_t *indices) 61 { 62 int i, j; 63 bool dax; 64 65 /* Handled by shmem itself */ 66 if (shmem_mapping(mapping)) 67 return; 68 69 for (j = 0; j < folio_batch_count(fbatch); j++) 70 if (xa_is_value(fbatch->folios[j])) 71 break; 72 73 if (j == folio_batch_count(fbatch)) 74 return; 75 76 dax = dax_mapping(mapping); 77 if (!dax) { 78 spin_lock(&mapping->host->i_lock); 79 xa_lock_irq(&mapping->i_pages); 80 } 81 82 for (i = j; i < folio_batch_count(fbatch); i++) { 83 struct folio *folio = fbatch->folios[i]; 84 pgoff_t index = indices[i]; 85 86 if (!xa_is_value(folio)) { 87 fbatch->folios[j++] = folio; 88 continue; 89 } 90 91 if (unlikely(dax)) { 92 dax_delete_mapping_entry(mapping, index); 93 continue; 94 } 95 96 __clear_shadow_entry(mapping, index, folio); 97 } 98 99 if (!dax) { 100 xa_unlock_irq(&mapping->i_pages); 101 if (mapping_shrinkable(mapping)) 102 inode_add_lru(mapping->host); 103 spin_unlock(&mapping->host->i_lock); 104 } 105 fbatch->nr = j; 106 } 107 108 /* 109 * Invalidate exceptional entry if easily possible. This handles exceptional 110 * entries for invalidate_inode_pages(). 111 */ 112 static int invalidate_exceptional_entry(struct address_space *mapping, 113 pgoff_t index, void *entry) 114 { 115 /* Handled by shmem itself, or for DAX we do nothing. */ 116 if (shmem_mapping(mapping) || dax_mapping(mapping)) 117 return 1; 118 clear_shadow_entry(mapping, index, entry); 119 return 1; 120 } 121 122 /* 123 * Invalidate exceptional entry if clean. This handles exceptional entries for 124 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 125 */ 126 static int invalidate_exceptional_entry2(struct address_space *mapping, 127 pgoff_t index, void *entry) 128 { 129 /* Handled by shmem itself */ 130 if (shmem_mapping(mapping)) 131 return 1; 132 if (dax_mapping(mapping)) 133 return dax_invalidate_mapping_entry_sync(mapping, index); 134 clear_shadow_entry(mapping, index, entry); 135 return 1; 136 } 137 138 /** 139 * folio_invalidate - Invalidate part or all of a folio. 140 * @folio: The folio which is affected. 141 * @offset: start of the range to invalidate 142 * @length: length of the range to invalidate 143 * 144 * folio_invalidate() is called when all or part of the folio has become 145 * invalidated by a truncate operation. 146 * 147 * folio_invalidate() does not have to release all buffers, but it must 148 * ensure that no dirty buffer is left outside @offset and that no I/O 149 * is underway against any of the blocks which are outside the truncation 150 * point. Because the caller is about to free (and possibly reuse) those 151 * blocks on-disk. 152 */ 153 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 154 { 155 const struct address_space_operations *aops = folio->mapping->a_ops; 156 157 if (aops->invalidate_folio) 158 aops->invalidate_folio(folio, offset, length); 159 } 160 EXPORT_SYMBOL_GPL(folio_invalidate); 161 162 /* 163 * If truncate cannot remove the fs-private metadata from the page, the page 164 * becomes orphaned. It will be left on the LRU and may even be mapped into 165 * user pagetables if we're racing with filemap_fault(). 166 * 167 * We need to bail out if page->mapping is no longer equal to the original 168 * mapping. This happens a) when the VM reclaimed the page while we waited on 169 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 170 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 171 */ 172 static void truncate_cleanup_folio(struct folio *folio) 173 { 174 if (folio_mapped(folio)) 175 unmap_mapping_folio(folio); 176 177 if (folio_has_private(folio)) 178 folio_invalidate(folio, 0, folio_size(folio)); 179 180 /* 181 * Some filesystems seem to re-dirty the page even after 182 * the VM has canceled the dirty bit (eg ext3 journaling). 183 * Hence dirty accounting check is placed after invalidation. 184 */ 185 folio_cancel_dirty(folio); 186 folio_clear_mappedtodisk(folio); 187 } 188 189 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 190 { 191 if (folio->mapping != mapping) 192 return -EIO; 193 194 truncate_cleanup_folio(folio); 195 filemap_remove_folio(folio); 196 return 0; 197 } 198 199 /* 200 * Handle partial folios. The folio may be entirely within the 201 * range if a split has raced with us. If not, we zero the part of the 202 * folio that's within the [start, end] range, and then split the folio if 203 * it's large. split_page_range() will discard pages which now lie beyond 204 * i_size, and we rely on the caller to discard pages which lie within a 205 * newly created hole. 206 * 207 * Returns false if splitting failed so the caller can avoid 208 * discarding the entire folio which is stubbornly unsplit. 209 */ 210 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 211 { 212 loff_t pos = folio_pos(folio); 213 unsigned int offset, length; 214 215 if (pos < start) 216 offset = start - pos; 217 else 218 offset = 0; 219 length = folio_size(folio); 220 if (pos + length <= (u64)end) 221 length = length - offset; 222 else 223 length = end + 1 - pos - offset; 224 225 folio_wait_writeback(folio); 226 if (length == folio_size(folio)) { 227 truncate_inode_folio(folio->mapping, folio); 228 return true; 229 } 230 231 /* 232 * We may be zeroing pages we're about to discard, but it avoids 233 * doing a complex calculation here, and then doing the zeroing 234 * anyway if the page split fails. 235 */ 236 folio_zero_range(folio, offset, length); 237 238 if (folio_has_private(folio)) 239 folio_invalidate(folio, offset, length); 240 if (!folio_test_large(folio)) 241 return true; 242 if (split_folio(folio) == 0) 243 return true; 244 if (folio_test_dirty(folio)) 245 return false; 246 truncate_inode_folio(folio->mapping, folio); 247 return true; 248 } 249 250 /* 251 * Used to get rid of pages on hardware memory corruption. 252 */ 253 int generic_error_remove_folio(struct address_space *mapping, 254 struct folio *folio) 255 { 256 if (!mapping) 257 return -EINVAL; 258 /* 259 * Only punch for normal data pages for now. 260 * Handling other types like directories would need more auditing. 261 */ 262 if (!S_ISREG(mapping->host->i_mode)) 263 return -EIO; 264 return truncate_inode_folio(mapping, folio); 265 } 266 EXPORT_SYMBOL(generic_error_remove_folio); 267 268 /** 269 * mapping_evict_folio() - Remove an unused folio from the page-cache. 270 * @mapping: The mapping this folio belongs to. 271 * @folio: The folio to remove. 272 * 273 * Safely remove one folio from the page cache. 274 * It only drops clean, unused folios. 275 * 276 * Context: Folio must be locked. 277 * Return: The number of pages successfully removed. 278 */ 279 long mapping_evict_folio(struct address_space *mapping, struct folio *folio) 280 { 281 /* The page may have been truncated before it was locked */ 282 if (!mapping) 283 return 0; 284 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 285 return 0; 286 /* The refcount will be elevated if any page in the folio is mapped */ 287 if (folio_ref_count(folio) > 288 folio_nr_pages(folio) + folio_has_private(folio) + 1) 289 return 0; 290 if (!filemap_release_folio(folio, 0)) 291 return 0; 292 293 return remove_mapping(mapping, folio); 294 } 295 296 /** 297 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 298 * @mapping: mapping to truncate 299 * @lstart: offset from which to truncate 300 * @lend: offset to which to truncate (inclusive) 301 * 302 * Truncate the page cache, removing the pages that are between 303 * specified offsets (and zeroing out partial pages 304 * if lstart or lend + 1 is not page aligned). 305 * 306 * Truncate takes two passes - the first pass is nonblocking. It will not 307 * block on page locks and it will not block on writeback. The second pass 308 * will wait. This is to prevent as much IO as possible in the affected region. 309 * The first pass will remove most pages, so the search cost of the second pass 310 * is low. 311 * 312 * We pass down the cache-hot hint to the page freeing code. Even if the 313 * mapping is large, it is probably the case that the final pages are the most 314 * recently touched, and freeing happens in ascending file offset order. 315 * 316 * Note that since ->invalidate_folio() accepts range to invalidate 317 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 318 * page aligned properly. 319 */ 320 void truncate_inode_pages_range(struct address_space *mapping, 321 loff_t lstart, loff_t lend) 322 { 323 pgoff_t start; /* inclusive */ 324 pgoff_t end; /* exclusive */ 325 struct folio_batch fbatch; 326 pgoff_t indices[PAGEVEC_SIZE]; 327 pgoff_t index; 328 int i; 329 struct folio *folio; 330 bool same_folio; 331 332 if (mapping_empty(mapping)) 333 return; 334 335 /* 336 * 'start' and 'end' always covers the range of pages to be fully 337 * truncated. Partial pages are covered with 'partial_start' at the 338 * start of the range and 'partial_end' at the end of the range. 339 * Note that 'end' is exclusive while 'lend' is inclusive. 340 */ 341 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 342 if (lend == -1) 343 /* 344 * lend == -1 indicates end-of-file so we have to set 'end' 345 * to the highest possible pgoff_t and since the type is 346 * unsigned we're using -1. 347 */ 348 end = -1; 349 else 350 end = (lend + 1) >> PAGE_SHIFT; 351 352 folio_batch_init(&fbatch); 353 index = start; 354 while (index < end && find_lock_entries(mapping, &index, end - 1, 355 &fbatch, indices)) { 356 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 357 for (i = 0; i < folio_batch_count(&fbatch); i++) 358 truncate_cleanup_folio(fbatch.folios[i]); 359 delete_from_page_cache_batch(mapping, &fbatch); 360 for (i = 0; i < folio_batch_count(&fbatch); i++) 361 folio_unlock(fbatch.folios[i]); 362 folio_batch_release(&fbatch); 363 cond_resched(); 364 } 365 366 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 367 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 368 if (!IS_ERR(folio)) { 369 same_folio = lend < folio_pos(folio) + folio_size(folio); 370 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 371 start = folio_next_index(folio); 372 if (same_folio) 373 end = folio->index; 374 } 375 folio_unlock(folio); 376 folio_put(folio); 377 folio = NULL; 378 } 379 380 if (!same_folio) { 381 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 382 FGP_LOCK, 0); 383 if (!IS_ERR(folio)) { 384 if (!truncate_inode_partial_folio(folio, lstart, lend)) 385 end = folio->index; 386 folio_unlock(folio); 387 folio_put(folio); 388 } 389 } 390 391 index = start; 392 while (index < end) { 393 cond_resched(); 394 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 395 indices)) { 396 /* If all gone from start onwards, we're done */ 397 if (index == start) 398 break; 399 /* Otherwise restart to make sure all gone */ 400 index = start; 401 continue; 402 } 403 404 for (i = 0; i < folio_batch_count(&fbatch); i++) { 405 struct folio *folio = fbatch.folios[i]; 406 407 /* We rely upon deletion not changing page->index */ 408 409 if (xa_is_value(folio)) 410 continue; 411 412 folio_lock(folio); 413 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 414 folio_wait_writeback(folio); 415 truncate_inode_folio(mapping, folio); 416 folio_unlock(folio); 417 } 418 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 419 folio_batch_release(&fbatch); 420 } 421 } 422 EXPORT_SYMBOL(truncate_inode_pages_range); 423 424 /** 425 * truncate_inode_pages - truncate *all* the pages from an offset 426 * @mapping: mapping to truncate 427 * @lstart: offset from which to truncate 428 * 429 * Called under (and serialised by) inode->i_rwsem and 430 * mapping->invalidate_lock. 431 * 432 * Note: When this function returns, there can be a page in the process of 433 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 434 * mapping->nrpages can be non-zero when this function returns even after 435 * truncation of the whole mapping. 436 */ 437 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 438 { 439 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 440 } 441 EXPORT_SYMBOL(truncate_inode_pages); 442 443 /** 444 * truncate_inode_pages_final - truncate *all* pages before inode dies 445 * @mapping: mapping to truncate 446 * 447 * Called under (and serialized by) inode->i_rwsem. 448 * 449 * Filesystems have to use this in the .evict_inode path to inform the 450 * VM that this is the final truncate and the inode is going away. 451 */ 452 void truncate_inode_pages_final(struct address_space *mapping) 453 { 454 /* 455 * Page reclaim can not participate in regular inode lifetime 456 * management (can't call iput()) and thus can race with the 457 * inode teardown. Tell it when the address space is exiting, 458 * so that it does not install eviction information after the 459 * final truncate has begun. 460 */ 461 mapping_set_exiting(mapping); 462 463 if (!mapping_empty(mapping)) { 464 /* 465 * As truncation uses a lockless tree lookup, cycle 466 * the tree lock to make sure any ongoing tree 467 * modification that does not see AS_EXITING is 468 * completed before starting the final truncate. 469 */ 470 xa_lock_irq(&mapping->i_pages); 471 xa_unlock_irq(&mapping->i_pages); 472 } 473 474 truncate_inode_pages(mapping, 0); 475 } 476 EXPORT_SYMBOL(truncate_inode_pages_final); 477 478 /** 479 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 480 * @mapping: the address_space which holds the folios to invalidate 481 * @start: the offset 'from' which to invalidate 482 * @end: the offset 'to' which to invalidate (inclusive) 483 * @nr_failed: How many folio invalidations failed 484 * 485 * This function is similar to invalidate_mapping_pages(), except that it 486 * returns the number of folios which could not be evicted in @nr_failed. 487 */ 488 unsigned long mapping_try_invalidate(struct address_space *mapping, 489 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 490 { 491 pgoff_t indices[PAGEVEC_SIZE]; 492 struct folio_batch fbatch; 493 pgoff_t index = start; 494 unsigned long ret; 495 unsigned long count = 0; 496 int i; 497 498 folio_batch_init(&fbatch); 499 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 500 for (i = 0; i < folio_batch_count(&fbatch); i++) { 501 struct folio *folio = fbatch.folios[i]; 502 503 /* We rely upon deletion not changing folio->index */ 504 505 if (xa_is_value(folio)) { 506 count += invalidate_exceptional_entry(mapping, 507 indices[i], folio); 508 continue; 509 } 510 511 ret = mapping_evict_folio(mapping, folio); 512 folio_unlock(folio); 513 /* 514 * Invalidation is a hint that the folio is no longer 515 * of interest and try to speed up its reclaim. 516 */ 517 if (!ret) { 518 deactivate_file_folio(folio); 519 /* Likely in the lru cache of a remote CPU */ 520 if (nr_failed) 521 (*nr_failed)++; 522 } 523 count += ret; 524 } 525 folio_batch_remove_exceptionals(&fbatch); 526 folio_batch_release(&fbatch); 527 cond_resched(); 528 } 529 return count; 530 } 531 532 /** 533 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 534 * @mapping: the address_space which holds the cache to invalidate 535 * @start: the offset 'from' which to invalidate 536 * @end: the offset 'to' which to invalidate (inclusive) 537 * 538 * This function removes pages that are clean, unmapped and unlocked, 539 * as well as shadow entries. It will not block on IO activity. 540 * 541 * If you want to remove all the pages of one inode, regardless of 542 * their use and writeback state, use truncate_inode_pages(). 543 * 544 * Return: The number of indices that had their contents invalidated 545 */ 546 unsigned long invalidate_mapping_pages(struct address_space *mapping, 547 pgoff_t start, pgoff_t end) 548 { 549 return mapping_try_invalidate(mapping, start, end, NULL); 550 } 551 EXPORT_SYMBOL(invalidate_mapping_pages); 552 553 /* 554 * This is like mapping_evict_folio(), except it ignores the folio's 555 * refcount. We do this because invalidate_inode_pages2() needs stronger 556 * invalidation guarantees, and cannot afford to leave folios behind because 557 * shrink_page_list() has a temp ref on them, or because they're transiently 558 * sitting in the folio_add_lru() caches. 559 */ 560 static int invalidate_complete_folio2(struct address_space *mapping, 561 struct folio *folio) 562 { 563 if (folio->mapping != mapping) 564 return 0; 565 566 if (!filemap_release_folio(folio, GFP_KERNEL)) 567 return 0; 568 569 spin_lock(&mapping->host->i_lock); 570 xa_lock_irq(&mapping->i_pages); 571 if (folio_test_dirty(folio)) 572 goto failed; 573 574 BUG_ON(folio_has_private(folio)); 575 __filemap_remove_folio(folio, NULL); 576 xa_unlock_irq(&mapping->i_pages); 577 if (mapping_shrinkable(mapping)) 578 inode_add_lru(mapping->host); 579 spin_unlock(&mapping->host->i_lock); 580 581 filemap_free_folio(mapping, folio); 582 return 1; 583 failed: 584 xa_unlock_irq(&mapping->i_pages); 585 spin_unlock(&mapping->host->i_lock); 586 return 0; 587 } 588 589 static int folio_launder(struct address_space *mapping, struct folio *folio) 590 { 591 if (!folio_test_dirty(folio)) 592 return 0; 593 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 594 return 0; 595 return mapping->a_ops->launder_folio(folio); 596 } 597 598 /** 599 * invalidate_inode_pages2_range - remove range of pages from an address_space 600 * @mapping: the address_space 601 * @start: the page offset 'from' which to invalidate 602 * @end: the page offset 'to' which to invalidate (inclusive) 603 * 604 * Any pages which are found to be mapped into pagetables are unmapped prior to 605 * invalidation. 606 * 607 * Return: -EBUSY if any pages could not be invalidated. 608 */ 609 int invalidate_inode_pages2_range(struct address_space *mapping, 610 pgoff_t start, pgoff_t end) 611 { 612 pgoff_t indices[PAGEVEC_SIZE]; 613 struct folio_batch fbatch; 614 pgoff_t index; 615 int i; 616 int ret = 0; 617 int ret2 = 0; 618 int did_range_unmap = 0; 619 620 if (mapping_empty(mapping)) 621 return 0; 622 623 folio_batch_init(&fbatch); 624 index = start; 625 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 626 for (i = 0; i < folio_batch_count(&fbatch); i++) { 627 struct folio *folio = fbatch.folios[i]; 628 629 /* We rely upon deletion not changing folio->index */ 630 631 if (xa_is_value(folio)) { 632 if (!invalidate_exceptional_entry2(mapping, 633 indices[i], folio)) 634 ret = -EBUSY; 635 continue; 636 } 637 638 if (!did_range_unmap && folio_mapped(folio)) { 639 /* 640 * If folio is mapped, before taking its lock, 641 * zap the rest of the file in one hit. 642 */ 643 unmap_mapping_pages(mapping, indices[i], 644 (1 + end - indices[i]), false); 645 did_range_unmap = 1; 646 } 647 648 folio_lock(folio); 649 if (unlikely(folio->mapping != mapping)) { 650 folio_unlock(folio); 651 continue; 652 } 653 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 654 folio_wait_writeback(folio); 655 656 if (folio_mapped(folio)) 657 unmap_mapping_folio(folio); 658 BUG_ON(folio_mapped(folio)); 659 660 ret2 = folio_launder(mapping, folio); 661 if (ret2 == 0) { 662 if (!invalidate_complete_folio2(mapping, folio)) 663 ret2 = -EBUSY; 664 } 665 if (ret2 < 0) 666 ret = ret2; 667 folio_unlock(folio); 668 } 669 folio_batch_remove_exceptionals(&fbatch); 670 folio_batch_release(&fbatch); 671 cond_resched(); 672 } 673 /* 674 * For DAX we invalidate page tables after invalidating page cache. We 675 * could invalidate page tables while invalidating each entry however 676 * that would be expensive. And doing range unmapping before doesn't 677 * work as we have no cheap way to find whether page cache entry didn't 678 * get remapped later. 679 */ 680 if (dax_mapping(mapping)) { 681 unmap_mapping_pages(mapping, start, end - start + 1, false); 682 } 683 return ret; 684 } 685 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 686 687 /** 688 * invalidate_inode_pages2 - remove all pages from an address_space 689 * @mapping: the address_space 690 * 691 * Any pages which are found to be mapped into pagetables are unmapped prior to 692 * invalidation. 693 * 694 * Return: -EBUSY if any pages could not be invalidated. 695 */ 696 int invalidate_inode_pages2(struct address_space *mapping) 697 { 698 return invalidate_inode_pages2_range(mapping, 0, -1); 699 } 700 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 701 702 /** 703 * truncate_pagecache - unmap and remove pagecache that has been truncated 704 * @inode: inode 705 * @newsize: new file size 706 * 707 * inode's new i_size must already be written before truncate_pagecache 708 * is called. 709 * 710 * This function should typically be called before the filesystem 711 * releases resources associated with the freed range (eg. deallocates 712 * blocks). This way, pagecache will always stay logically coherent 713 * with on-disk format, and the filesystem would not have to deal with 714 * situations such as writepage being called for a page that has already 715 * had its underlying blocks deallocated. 716 */ 717 void truncate_pagecache(struct inode *inode, loff_t newsize) 718 { 719 struct address_space *mapping = inode->i_mapping; 720 loff_t holebegin = round_up(newsize, PAGE_SIZE); 721 722 /* 723 * unmap_mapping_range is called twice, first simply for 724 * efficiency so that truncate_inode_pages does fewer 725 * single-page unmaps. However after this first call, and 726 * before truncate_inode_pages finishes, it is possible for 727 * private pages to be COWed, which remain after 728 * truncate_inode_pages finishes, hence the second 729 * unmap_mapping_range call must be made for correctness. 730 */ 731 unmap_mapping_range(mapping, holebegin, 0, 1); 732 truncate_inode_pages(mapping, newsize); 733 unmap_mapping_range(mapping, holebegin, 0, 1); 734 } 735 EXPORT_SYMBOL(truncate_pagecache); 736 737 /** 738 * truncate_setsize - update inode and pagecache for a new file size 739 * @inode: inode 740 * @newsize: new file size 741 * 742 * truncate_setsize updates i_size and performs pagecache truncation (if 743 * necessary) to @newsize. It will be typically be called from the filesystem's 744 * setattr function when ATTR_SIZE is passed in. 745 * 746 * Must be called with a lock serializing truncates and writes (generally 747 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 748 * specific block truncation has been performed. 749 */ 750 void truncate_setsize(struct inode *inode, loff_t newsize) 751 { 752 loff_t oldsize = inode->i_size; 753 754 i_size_write(inode, newsize); 755 if (newsize > oldsize) 756 pagecache_isize_extended(inode, oldsize, newsize); 757 truncate_pagecache(inode, newsize); 758 } 759 EXPORT_SYMBOL(truncate_setsize); 760 761 /** 762 * pagecache_isize_extended - update pagecache after extension of i_size 763 * @inode: inode for which i_size was extended 764 * @from: original inode size 765 * @to: new inode size 766 * 767 * Handle extension of inode size either caused by extending truncate or by 768 * write starting after current i_size. We mark the page straddling current 769 * i_size RO so that page_mkwrite() is called on the nearest write access to 770 * the page. This way filesystem can be sure that page_mkwrite() is called on 771 * the page before user writes to the page via mmap after the i_size has been 772 * changed. 773 * 774 * The function must be called after i_size is updated so that page fault 775 * coming after we unlock the page will already see the new i_size. 776 * The function must be called while we still hold i_rwsem - this not only 777 * makes sure i_size is stable but also that userspace cannot observe new 778 * i_size value before we are prepared to store mmap writes at new inode size. 779 */ 780 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 781 { 782 int bsize = i_blocksize(inode); 783 loff_t rounded_from; 784 struct page *page; 785 pgoff_t index; 786 787 WARN_ON(to > inode->i_size); 788 789 if (from >= to || bsize == PAGE_SIZE) 790 return; 791 /* Page straddling @from will not have any hole block created? */ 792 rounded_from = round_up(from, bsize); 793 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 794 return; 795 796 index = from >> PAGE_SHIFT; 797 page = find_lock_page(inode->i_mapping, index); 798 /* Page not cached? Nothing to do */ 799 if (!page) 800 return; 801 /* 802 * See clear_page_dirty_for_io() for details why set_page_dirty() 803 * is needed. 804 */ 805 if (page_mkclean(page)) 806 set_page_dirty(page); 807 unlock_page(page); 808 put_page(page); 809 } 810 EXPORT_SYMBOL(pagecache_isize_extended); 811 812 /** 813 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 814 * @inode: inode 815 * @lstart: offset of beginning of hole 816 * @lend: offset of last byte of hole 817 * 818 * This function should typically be called before the filesystem 819 * releases resources associated with the freed range (eg. deallocates 820 * blocks). This way, pagecache will always stay logically coherent 821 * with on-disk format, and the filesystem would not have to deal with 822 * situations such as writepage being called for a page that has already 823 * had its underlying blocks deallocated. 824 */ 825 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 826 { 827 struct address_space *mapping = inode->i_mapping; 828 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 829 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 830 /* 831 * This rounding is currently just for example: unmap_mapping_range 832 * expands its hole outwards, whereas we want it to contract the hole 833 * inwards. However, existing callers of truncate_pagecache_range are 834 * doing their own page rounding first. Note that unmap_mapping_range 835 * allows holelen 0 for all, and we allow lend -1 for end of file. 836 */ 837 838 /* 839 * Unlike in truncate_pagecache, unmap_mapping_range is called only 840 * once (before truncating pagecache), and without "even_cows" flag: 841 * hole-punching should not remove private COWed pages from the hole. 842 */ 843 if ((u64)unmap_end > (u64)unmap_start) 844 unmap_mapping_range(mapping, unmap_start, 845 1 + unmap_end - unmap_start, 0); 846 truncate_inode_pages_range(mapping, lstart, lend); 847 } 848 EXPORT_SYMBOL(truncate_pagecache_range); 849