xref: /linux/mm/truncate.c (revision 861e10be08c69808065d755d3e3cab5d520a2d32)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24 
25 
26 /**
27  * do_invalidatepage - invalidate part or all of a page
28  * @page: the page which is affected
29  * @offset: the index of the truncation point
30  *
31  * do_invalidatepage() is called when all or part of the page has become
32  * invalidated by a truncate operation.
33  *
34  * do_invalidatepage() does not have to release all buffers, but it must
35  * ensure that no dirty buffer is left outside @offset and that no I/O
36  * is underway against any of the blocks which are outside the truncation
37  * point.  Because the caller is about to free (and possibly reuse) those
38  * blocks on-disk.
39  */
40 void do_invalidatepage(struct page *page, unsigned long offset)
41 {
42 	void (*invalidatepage)(struct page *, unsigned long);
43 	invalidatepage = page->mapping->a_ops->invalidatepage;
44 #ifdef CONFIG_BLOCK
45 	if (!invalidatepage)
46 		invalidatepage = block_invalidatepage;
47 #endif
48 	if (invalidatepage)
49 		(*invalidatepage)(page, offset);
50 }
51 
52 static inline void truncate_partial_page(struct page *page, unsigned partial)
53 {
54 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
55 	cleancache_invalidate_page(page->mapping, page);
56 	if (page_has_private(page))
57 		do_invalidatepage(page, partial);
58 }
59 
60 /*
61  * This cancels just the dirty bit on the kernel page itself, it
62  * does NOT actually remove dirty bits on any mmap's that may be
63  * around. It also leaves the page tagged dirty, so any sync
64  * activity will still find it on the dirty lists, and in particular,
65  * clear_page_dirty_for_io() will still look at the dirty bits in
66  * the VM.
67  *
68  * Doing this should *normally* only ever be done when a page
69  * is truncated, and is not actually mapped anywhere at all. However,
70  * fs/buffer.c does this when it notices that somebody has cleaned
71  * out all the buffers on a page without actually doing it through
72  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
73  */
74 void cancel_dirty_page(struct page *page, unsigned int account_size)
75 {
76 	if (TestClearPageDirty(page)) {
77 		struct address_space *mapping = page->mapping;
78 		if (mapping && mapping_cap_account_dirty(mapping)) {
79 			dec_zone_page_state(page, NR_FILE_DIRTY);
80 			dec_bdi_stat(mapping->backing_dev_info,
81 					BDI_RECLAIMABLE);
82 			if (account_size)
83 				task_io_account_cancelled_write(account_size);
84 		}
85 	}
86 }
87 EXPORT_SYMBOL(cancel_dirty_page);
88 
89 /*
90  * If truncate cannot remove the fs-private metadata from the page, the page
91  * becomes orphaned.  It will be left on the LRU and may even be mapped into
92  * user pagetables if we're racing with filemap_fault().
93  *
94  * We need to bale out if page->mapping is no longer equal to the original
95  * mapping.  This happens a) when the VM reclaimed the page while we waited on
96  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
97  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98  */
99 static int
100 truncate_complete_page(struct address_space *mapping, struct page *page)
101 {
102 	if (page->mapping != mapping)
103 		return -EIO;
104 
105 	if (page_has_private(page))
106 		do_invalidatepage(page, 0);
107 
108 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
109 
110 	ClearPageMappedToDisk(page);
111 	delete_from_page_cache(page);
112 	return 0;
113 }
114 
115 /*
116  * This is for invalidate_mapping_pages().  That function can be called at
117  * any time, and is not supposed to throw away dirty pages.  But pages can
118  * be marked dirty at any time too, so use remove_mapping which safely
119  * discards clean, unused pages.
120  *
121  * Returns non-zero if the page was successfully invalidated.
122  */
123 static int
124 invalidate_complete_page(struct address_space *mapping, struct page *page)
125 {
126 	int ret;
127 
128 	if (page->mapping != mapping)
129 		return 0;
130 
131 	if (page_has_private(page) && !try_to_release_page(page, 0))
132 		return 0;
133 
134 	ret = remove_mapping(mapping, page);
135 
136 	return ret;
137 }
138 
139 int truncate_inode_page(struct address_space *mapping, struct page *page)
140 {
141 	if (page_mapped(page)) {
142 		unmap_mapping_range(mapping,
143 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
144 				   PAGE_CACHE_SIZE, 0);
145 	}
146 	return truncate_complete_page(mapping, page);
147 }
148 
149 /*
150  * Used to get rid of pages on hardware memory corruption.
151  */
152 int generic_error_remove_page(struct address_space *mapping, struct page *page)
153 {
154 	if (!mapping)
155 		return -EINVAL;
156 	/*
157 	 * Only punch for normal data pages for now.
158 	 * Handling other types like directories would need more auditing.
159 	 */
160 	if (!S_ISREG(mapping->host->i_mode))
161 		return -EIO;
162 	return truncate_inode_page(mapping, page);
163 }
164 EXPORT_SYMBOL(generic_error_remove_page);
165 
166 /*
167  * Safely invalidate one page from its pagecache mapping.
168  * It only drops clean, unused pages. The page must be locked.
169  *
170  * Returns 1 if the page is successfully invalidated, otherwise 0.
171  */
172 int invalidate_inode_page(struct page *page)
173 {
174 	struct address_space *mapping = page_mapping(page);
175 	if (!mapping)
176 		return 0;
177 	if (PageDirty(page) || PageWriteback(page))
178 		return 0;
179 	if (page_mapped(page))
180 		return 0;
181 	return invalidate_complete_page(mapping, page);
182 }
183 
184 /**
185  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
186  * @mapping: mapping to truncate
187  * @lstart: offset from which to truncate
188  * @lend: offset to which to truncate
189  *
190  * Truncate the page cache, removing the pages that are between
191  * specified offsets (and zeroing out partial page
192  * (if lstart is not page aligned)).
193  *
194  * Truncate takes two passes - the first pass is nonblocking.  It will not
195  * block on page locks and it will not block on writeback.  The second pass
196  * will wait.  This is to prevent as much IO as possible in the affected region.
197  * The first pass will remove most pages, so the search cost of the second pass
198  * is low.
199  *
200  * We pass down the cache-hot hint to the page freeing code.  Even if the
201  * mapping is large, it is probably the case that the final pages are the most
202  * recently touched, and freeing happens in ascending file offset order.
203  */
204 void truncate_inode_pages_range(struct address_space *mapping,
205 				loff_t lstart, loff_t lend)
206 {
207 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
208 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
209 	struct pagevec pvec;
210 	pgoff_t index;
211 	pgoff_t end;
212 	int i;
213 
214 	cleancache_invalidate_inode(mapping);
215 	if (mapping->nrpages == 0)
216 		return;
217 
218 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
219 	end = (lend >> PAGE_CACHE_SHIFT);
220 
221 	pagevec_init(&pvec, 0);
222 	index = start;
223 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
224 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
225 		mem_cgroup_uncharge_start();
226 		for (i = 0; i < pagevec_count(&pvec); i++) {
227 			struct page *page = pvec.pages[i];
228 
229 			/* We rely upon deletion not changing page->index */
230 			index = page->index;
231 			if (index > end)
232 				break;
233 
234 			if (!trylock_page(page))
235 				continue;
236 			WARN_ON(page->index != index);
237 			if (PageWriteback(page)) {
238 				unlock_page(page);
239 				continue;
240 			}
241 			truncate_inode_page(mapping, page);
242 			unlock_page(page);
243 		}
244 		pagevec_release(&pvec);
245 		mem_cgroup_uncharge_end();
246 		cond_resched();
247 		index++;
248 	}
249 
250 	if (partial) {
251 		struct page *page = find_lock_page(mapping, start - 1);
252 		if (page) {
253 			wait_on_page_writeback(page);
254 			truncate_partial_page(page, partial);
255 			unlock_page(page);
256 			page_cache_release(page);
257 		}
258 	}
259 
260 	index = start;
261 	for ( ; ; ) {
262 		cond_resched();
263 		if (!pagevec_lookup(&pvec, mapping, index,
264 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
265 			if (index == start)
266 				break;
267 			index = start;
268 			continue;
269 		}
270 		if (index == start && pvec.pages[0]->index > end) {
271 			pagevec_release(&pvec);
272 			break;
273 		}
274 		mem_cgroup_uncharge_start();
275 		for (i = 0; i < pagevec_count(&pvec); i++) {
276 			struct page *page = pvec.pages[i];
277 
278 			/* We rely upon deletion not changing page->index */
279 			index = page->index;
280 			if (index > end)
281 				break;
282 
283 			lock_page(page);
284 			WARN_ON(page->index != index);
285 			wait_on_page_writeback(page);
286 			truncate_inode_page(mapping, page);
287 			unlock_page(page);
288 		}
289 		pagevec_release(&pvec);
290 		mem_cgroup_uncharge_end();
291 		index++;
292 	}
293 	cleancache_invalidate_inode(mapping);
294 }
295 EXPORT_SYMBOL(truncate_inode_pages_range);
296 
297 /**
298  * truncate_inode_pages - truncate *all* the pages from an offset
299  * @mapping: mapping to truncate
300  * @lstart: offset from which to truncate
301  *
302  * Called under (and serialised by) inode->i_mutex.
303  *
304  * Note: When this function returns, there can be a page in the process of
305  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
306  * mapping->nrpages can be non-zero when this function returns even after
307  * truncation of the whole mapping.
308  */
309 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
310 {
311 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
312 }
313 EXPORT_SYMBOL(truncate_inode_pages);
314 
315 /**
316  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
317  * @mapping: the address_space which holds the pages to invalidate
318  * @start: the offset 'from' which to invalidate
319  * @end: the offset 'to' which to invalidate (inclusive)
320  *
321  * This function only removes the unlocked pages, if you want to
322  * remove all the pages of one inode, you must call truncate_inode_pages.
323  *
324  * invalidate_mapping_pages() will not block on IO activity. It will not
325  * invalidate pages which are dirty, locked, under writeback or mapped into
326  * pagetables.
327  */
328 unsigned long invalidate_mapping_pages(struct address_space *mapping,
329 		pgoff_t start, pgoff_t end)
330 {
331 	struct pagevec pvec;
332 	pgoff_t index = start;
333 	unsigned long ret;
334 	unsigned long count = 0;
335 	int i;
336 
337 	/*
338 	 * Note: this function may get called on a shmem/tmpfs mapping:
339 	 * pagevec_lookup() might then return 0 prematurely (because it
340 	 * got a gangful of swap entries); but it's hardly worth worrying
341 	 * about - it can rarely have anything to free from such a mapping
342 	 * (most pages are dirty), and already skips over any difficulties.
343 	 */
344 
345 	pagevec_init(&pvec, 0);
346 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
347 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
348 		mem_cgroup_uncharge_start();
349 		for (i = 0; i < pagevec_count(&pvec); i++) {
350 			struct page *page = pvec.pages[i];
351 
352 			/* We rely upon deletion not changing page->index */
353 			index = page->index;
354 			if (index > end)
355 				break;
356 
357 			if (!trylock_page(page))
358 				continue;
359 			WARN_ON(page->index != index);
360 			ret = invalidate_inode_page(page);
361 			unlock_page(page);
362 			/*
363 			 * Invalidation is a hint that the page is no longer
364 			 * of interest and try to speed up its reclaim.
365 			 */
366 			if (!ret)
367 				deactivate_page(page);
368 			count += ret;
369 		}
370 		pagevec_release(&pvec);
371 		mem_cgroup_uncharge_end();
372 		cond_resched();
373 		index++;
374 	}
375 	return count;
376 }
377 EXPORT_SYMBOL(invalidate_mapping_pages);
378 
379 /*
380  * This is like invalidate_complete_page(), except it ignores the page's
381  * refcount.  We do this because invalidate_inode_pages2() needs stronger
382  * invalidation guarantees, and cannot afford to leave pages behind because
383  * shrink_page_list() has a temp ref on them, or because they're transiently
384  * sitting in the lru_cache_add() pagevecs.
385  */
386 static int
387 invalidate_complete_page2(struct address_space *mapping, struct page *page)
388 {
389 	if (page->mapping != mapping)
390 		return 0;
391 
392 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
393 		return 0;
394 
395 	spin_lock_irq(&mapping->tree_lock);
396 	if (PageDirty(page))
397 		goto failed;
398 
399 	BUG_ON(page_has_private(page));
400 	__delete_from_page_cache(page);
401 	spin_unlock_irq(&mapping->tree_lock);
402 	mem_cgroup_uncharge_cache_page(page);
403 
404 	if (mapping->a_ops->freepage)
405 		mapping->a_ops->freepage(page);
406 
407 	page_cache_release(page);	/* pagecache ref */
408 	return 1;
409 failed:
410 	spin_unlock_irq(&mapping->tree_lock);
411 	return 0;
412 }
413 
414 static int do_launder_page(struct address_space *mapping, struct page *page)
415 {
416 	if (!PageDirty(page))
417 		return 0;
418 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
419 		return 0;
420 	return mapping->a_ops->launder_page(page);
421 }
422 
423 /**
424  * invalidate_inode_pages2_range - remove range of pages from an address_space
425  * @mapping: the address_space
426  * @start: the page offset 'from' which to invalidate
427  * @end: the page offset 'to' which to invalidate (inclusive)
428  *
429  * Any pages which are found to be mapped into pagetables are unmapped prior to
430  * invalidation.
431  *
432  * Returns -EBUSY if any pages could not be invalidated.
433  */
434 int invalidate_inode_pages2_range(struct address_space *mapping,
435 				  pgoff_t start, pgoff_t end)
436 {
437 	struct pagevec pvec;
438 	pgoff_t index;
439 	int i;
440 	int ret = 0;
441 	int ret2 = 0;
442 	int did_range_unmap = 0;
443 
444 	cleancache_invalidate_inode(mapping);
445 	pagevec_init(&pvec, 0);
446 	index = start;
447 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
448 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
449 		mem_cgroup_uncharge_start();
450 		for (i = 0; i < pagevec_count(&pvec); i++) {
451 			struct page *page = pvec.pages[i];
452 
453 			/* We rely upon deletion not changing page->index */
454 			index = page->index;
455 			if (index > end)
456 				break;
457 
458 			lock_page(page);
459 			WARN_ON(page->index != index);
460 			if (page->mapping != mapping) {
461 				unlock_page(page);
462 				continue;
463 			}
464 			wait_on_page_writeback(page);
465 			if (page_mapped(page)) {
466 				if (!did_range_unmap) {
467 					/*
468 					 * Zap the rest of the file in one hit.
469 					 */
470 					unmap_mapping_range(mapping,
471 					   (loff_t)index << PAGE_CACHE_SHIFT,
472 					   (loff_t)(1 + end - index)
473 							 << PAGE_CACHE_SHIFT,
474 					    0);
475 					did_range_unmap = 1;
476 				} else {
477 					/*
478 					 * Just zap this page
479 					 */
480 					unmap_mapping_range(mapping,
481 					   (loff_t)index << PAGE_CACHE_SHIFT,
482 					   PAGE_CACHE_SIZE, 0);
483 				}
484 			}
485 			BUG_ON(page_mapped(page));
486 			ret2 = do_launder_page(mapping, page);
487 			if (ret2 == 0) {
488 				if (!invalidate_complete_page2(mapping, page))
489 					ret2 = -EBUSY;
490 			}
491 			if (ret2 < 0)
492 				ret = ret2;
493 			unlock_page(page);
494 		}
495 		pagevec_release(&pvec);
496 		mem_cgroup_uncharge_end();
497 		cond_resched();
498 		index++;
499 	}
500 	cleancache_invalidate_inode(mapping);
501 	return ret;
502 }
503 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
504 
505 /**
506  * invalidate_inode_pages2 - remove all pages from an address_space
507  * @mapping: the address_space
508  *
509  * Any pages which are found to be mapped into pagetables are unmapped prior to
510  * invalidation.
511  *
512  * Returns -EBUSY if any pages could not be invalidated.
513  */
514 int invalidate_inode_pages2(struct address_space *mapping)
515 {
516 	return invalidate_inode_pages2_range(mapping, 0, -1);
517 }
518 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
519 
520 /**
521  * truncate_pagecache - unmap and remove pagecache that has been truncated
522  * @inode: inode
523  * @oldsize: old file size
524  * @newsize: new file size
525  *
526  * inode's new i_size must already be written before truncate_pagecache
527  * is called.
528  *
529  * This function should typically be called before the filesystem
530  * releases resources associated with the freed range (eg. deallocates
531  * blocks). This way, pagecache will always stay logically coherent
532  * with on-disk format, and the filesystem would not have to deal with
533  * situations such as writepage being called for a page that has already
534  * had its underlying blocks deallocated.
535  */
536 void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
537 {
538 	struct address_space *mapping = inode->i_mapping;
539 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
540 
541 	/*
542 	 * unmap_mapping_range is called twice, first simply for
543 	 * efficiency so that truncate_inode_pages does fewer
544 	 * single-page unmaps.  However after this first call, and
545 	 * before truncate_inode_pages finishes, it is possible for
546 	 * private pages to be COWed, which remain after
547 	 * truncate_inode_pages finishes, hence the second
548 	 * unmap_mapping_range call must be made for correctness.
549 	 */
550 	unmap_mapping_range(mapping, holebegin, 0, 1);
551 	truncate_inode_pages(mapping, newsize);
552 	unmap_mapping_range(mapping, holebegin, 0, 1);
553 }
554 EXPORT_SYMBOL(truncate_pagecache);
555 
556 /**
557  * truncate_setsize - update inode and pagecache for a new file size
558  * @inode: inode
559  * @newsize: new file size
560  *
561  * truncate_setsize updates i_size and performs pagecache truncation (if
562  * necessary) to @newsize. It will be typically be called from the filesystem's
563  * setattr function when ATTR_SIZE is passed in.
564  *
565  * Must be called with inode_mutex held and before all filesystem specific
566  * block truncation has been performed.
567  */
568 void truncate_setsize(struct inode *inode, loff_t newsize)
569 {
570 	loff_t oldsize;
571 
572 	oldsize = inode->i_size;
573 	i_size_write(inode, newsize);
574 
575 	truncate_pagecache(inode, oldsize, newsize);
576 }
577 EXPORT_SYMBOL(truncate_setsize);
578 
579 /**
580  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
581  * @inode: inode
582  * @lstart: offset of beginning of hole
583  * @lend: offset of last byte of hole
584  *
585  * This function should typically be called before the filesystem
586  * releases resources associated with the freed range (eg. deallocates
587  * blocks). This way, pagecache will always stay logically coherent
588  * with on-disk format, and the filesystem would not have to deal with
589  * situations such as writepage being called for a page that has already
590  * had its underlying blocks deallocated.
591  */
592 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
593 {
594 	struct address_space *mapping = inode->i_mapping;
595 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
596 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
597 	/*
598 	 * This rounding is currently just for example: unmap_mapping_range
599 	 * expands its hole outwards, whereas we want it to contract the hole
600 	 * inwards.  However, existing callers of truncate_pagecache_range are
601 	 * doing their own page rounding first; and truncate_inode_pages_range
602 	 * currently BUGs if lend is not pagealigned-1 (it handles partial
603 	 * page at start of hole, but not partial page at end of hole).  Note
604 	 * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
605 	 */
606 
607 	/*
608 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
609 	 * once (before truncating pagecache), and without "even_cows" flag:
610 	 * hole-punching should not remove private COWed pages from the hole.
611 	 */
612 	if ((u64)unmap_end > (u64)unmap_start)
613 		unmap_mapping_range(mapping, unmap_start,
614 				    1 + unmap_end - unmap_start, 0);
615 	truncate_inode_pages_range(mapping, lstart, lend);
616 }
617 EXPORT_SYMBOL(truncate_pagecache_range);
618