xref: /linux/mm/truncate.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25 
26 static void clear_exceptional_entry(struct address_space *mapping,
27 				    pgoff_t index, void *entry)
28 {
29 	struct radix_tree_node *node;
30 	void **slot;
31 
32 	/* Handled by shmem itself */
33 	if (shmem_mapping(mapping))
34 		return;
35 
36 	spin_lock_irq(&mapping->tree_lock);
37 	/*
38 	 * Regular page slots are stabilized by the page lock even
39 	 * without the tree itself locked.  These unlocked entries
40 	 * need verification under the tree lock.
41 	 */
42 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
43 		goto unlock;
44 	if (*slot != entry)
45 		goto unlock;
46 	radix_tree_replace_slot(slot, NULL);
47 	mapping->nrshadows--;
48 	if (!node)
49 		goto unlock;
50 	workingset_node_shadows_dec(node);
51 	/*
52 	 * Don't track node without shadow entries.
53 	 *
54 	 * Avoid acquiring the list_lru lock if already untracked.
55 	 * The list_empty() test is safe as node->private_list is
56 	 * protected by mapping->tree_lock.
57 	 */
58 	if (!workingset_node_shadows(node) &&
59 	    !list_empty(&node->private_list))
60 		list_lru_del(&workingset_shadow_nodes, &node->private_list);
61 	__radix_tree_delete_node(&mapping->page_tree, node);
62 unlock:
63 	spin_unlock_irq(&mapping->tree_lock);
64 }
65 
66 /**
67  * do_invalidatepage - invalidate part or all of a page
68  * @page: the page which is affected
69  * @offset: start of the range to invalidate
70  * @length: length of the range to invalidate
71  *
72  * do_invalidatepage() is called when all or part of the page has become
73  * invalidated by a truncate operation.
74  *
75  * do_invalidatepage() does not have to release all buffers, but it must
76  * ensure that no dirty buffer is left outside @offset and that no I/O
77  * is underway against any of the blocks which are outside the truncation
78  * point.  Because the caller is about to free (and possibly reuse) those
79  * blocks on-disk.
80  */
81 void do_invalidatepage(struct page *page, unsigned int offset,
82 		       unsigned int length)
83 {
84 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
85 
86 	invalidatepage = page->mapping->a_ops->invalidatepage;
87 #ifdef CONFIG_BLOCK
88 	if (!invalidatepage)
89 		invalidatepage = block_invalidatepage;
90 #endif
91 	if (invalidatepage)
92 		(*invalidatepage)(page, offset, length);
93 }
94 
95 /*
96  * If truncate cannot remove the fs-private metadata from the page, the page
97  * becomes orphaned.  It will be left on the LRU and may even be mapped into
98  * user pagetables if we're racing with filemap_fault().
99  *
100  * We need to bale out if page->mapping is no longer equal to the original
101  * mapping.  This happens a) when the VM reclaimed the page while we waited on
102  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
103  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
104  */
105 static int
106 truncate_complete_page(struct address_space *mapping, struct page *page)
107 {
108 	if (page->mapping != mapping)
109 		return -EIO;
110 
111 	if (page_has_private(page))
112 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
113 
114 	/*
115 	 * Some filesystems seem to re-dirty the page even after
116 	 * the VM has canceled the dirty bit (eg ext3 journaling).
117 	 * Hence dirty accounting check is placed after invalidation.
118 	 */
119 	if (TestClearPageDirty(page))
120 		account_page_cleaned(page, mapping);
121 
122 	ClearPageMappedToDisk(page);
123 	delete_from_page_cache(page);
124 	return 0;
125 }
126 
127 /*
128  * This is for invalidate_mapping_pages().  That function can be called at
129  * any time, and is not supposed to throw away dirty pages.  But pages can
130  * be marked dirty at any time too, so use remove_mapping which safely
131  * discards clean, unused pages.
132  *
133  * Returns non-zero if the page was successfully invalidated.
134  */
135 static int
136 invalidate_complete_page(struct address_space *mapping, struct page *page)
137 {
138 	int ret;
139 
140 	if (page->mapping != mapping)
141 		return 0;
142 
143 	if (page_has_private(page) && !try_to_release_page(page, 0))
144 		return 0;
145 
146 	ret = remove_mapping(mapping, page);
147 
148 	return ret;
149 }
150 
151 int truncate_inode_page(struct address_space *mapping, struct page *page)
152 {
153 	if (page_mapped(page)) {
154 		unmap_mapping_range(mapping,
155 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
156 				   PAGE_CACHE_SIZE, 0);
157 	}
158 	return truncate_complete_page(mapping, page);
159 }
160 
161 /*
162  * Used to get rid of pages on hardware memory corruption.
163  */
164 int generic_error_remove_page(struct address_space *mapping, struct page *page)
165 {
166 	if (!mapping)
167 		return -EINVAL;
168 	/*
169 	 * Only punch for normal data pages for now.
170 	 * Handling other types like directories would need more auditing.
171 	 */
172 	if (!S_ISREG(mapping->host->i_mode))
173 		return -EIO;
174 	return truncate_inode_page(mapping, page);
175 }
176 EXPORT_SYMBOL(generic_error_remove_page);
177 
178 /*
179  * Safely invalidate one page from its pagecache mapping.
180  * It only drops clean, unused pages. The page must be locked.
181  *
182  * Returns 1 if the page is successfully invalidated, otherwise 0.
183  */
184 int invalidate_inode_page(struct page *page)
185 {
186 	struct address_space *mapping = page_mapping(page);
187 	if (!mapping)
188 		return 0;
189 	if (PageDirty(page) || PageWriteback(page))
190 		return 0;
191 	if (page_mapped(page))
192 		return 0;
193 	return invalidate_complete_page(mapping, page);
194 }
195 
196 /**
197  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
198  * @mapping: mapping to truncate
199  * @lstart: offset from which to truncate
200  * @lend: offset to which to truncate (inclusive)
201  *
202  * Truncate the page cache, removing the pages that are between
203  * specified offsets (and zeroing out partial pages
204  * if lstart or lend + 1 is not page aligned).
205  *
206  * Truncate takes two passes - the first pass is nonblocking.  It will not
207  * block on page locks and it will not block on writeback.  The second pass
208  * will wait.  This is to prevent as much IO as possible in the affected region.
209  * The first pass will remove most pages, so the search cost of the second pass
210  * is low.
211  *
212  * We pass down the cache-hot hint to the page freeing code.  Even if the
213  * mapping is large, it is probably the case that the final pages are the most
214  * recently touched, and freeing happens in ascending file offset order.
215  *
216  * Note that since ->invalidatepage() accepts range to invalidate
217  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
218  * page aligned properly.
219  */
220 void truncate_inode_pages_range(struct address_space *mapping,
221 				loff_t lstart, loff_t lend)
222 {
223 	pgoff_t		start;		/* inclusive */
224 	pgoff_t		end;		/* exclusive */
225 	unsigned int	partial_start;	/* inclusive */
226 	unsigned int	partial_end;	/* exclusive */
227 	struct pagevec	pvec;
228 	pgoff_t		indices[PAGEVEC_SIZE];
229 	pgoff_t		index;
230 	int		i;
231 
232 	cleancache_invalidate_inode(mapping);
233 	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
234 		return;
235 
236 	/* Offsets within partial pages */
237 	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
238 	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
239 
240 	/*
241 	 * 'start' and 'end' always covers the range of pages to be fully
242 	 * truncated. Partial pages are covered with 'partial_start' at the
243 	 * start of the range and 'partial_end' at the end of the range.
244 	 * Note that 'end' is exclusive while 'lend' is inclusive.
245 	 */
246 	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
247 	if (lend == -1)
248 		/*
249 		 * lend == -1 indicates end-of-file so we have to set 'end'
250 		 * to the highest possible pgoff_t and since the type is
251 		 * unsigned we're using -1.
252 		 */
253 		end = -1;
254 	else
255 		end = (lend + 1) >> PAGE_CACHE_SHIFT;
256 
257 	pagevec_init(&pvec, 0);
258 	index = start;
259 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
260 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
261 			indices)) {
262 		for (i = 0; i < pagevec_count(&pvec); i++) {
263 			struct page *page = pvec.pages[i];
264 
265 			/* We rely upon deletion not changing page->index */
266 			index = indices[i];
267 			if (index >= end)
268 				break;
269 
270 			if (radix_tree_exceptional_entry(page)) {
271 				clear_exceptional_entry(mapping, index, page);
272 				continue;
273 			}
274 
275 			if (!trylock_page(page))
276 				continue;
277 			WARN_ON(page->index != index);
278 			if (PageWriteback(page)) {
279 				unlock_page(page);
280 				continue;
281 			}
282 			truncate_inode_page(mapping, page);
283 			unlock_page(page);
284 		}
285 		pagevec_remove_exceptionals(&pvec);
286 		pagevec_release(&pvec);
287 		cond_resched();
288 		index++;
289 	}
290 
291 	if (partial_start) {
292 		struct page *page = find_lock_page(mapping, start - 1);
293 		if (page) {
294 			unsigned int top = PAGE_CACHE_SIZE;
295 			if (start > end) {
296 				/* Truncation within a single page */
297 				top = partial_end;
298 				partial_end = 0;
299 			}
300 			wait_on_page_writeback(page);
301 			zero_user_segment(page, partial_start, top);
302 			cleancache_invalidate_page(mapping, page);
303 			if (page_has_private(page))
304 				do_invalidatepage(page, partial_start,
305 						  top - partial_start);
306 			unlock_page(page);
307 			page_cache_release(page);
308 		}
309 	}
310 	if (partial_end) {
311 		struct page *page = find_lock_page(mapping, end);
312 		if (page) {
313 			wait_on_page_writeback(page);
314 			zero_user_segment(page, 0, partial_end);
315 			cleancache_invalidate_page(mapping, page);
316 			if (page_has_private(page))
317 				do_invalidatepage(page, 0,
318 						  partial_end);
319 			unlock_page(page);
320 			page_cache_release(page);
321 		}
322 	}
323 	/*
324 	 * If the truncation happened within a single page no pages
325 	 * will be released, just zeroed, so we can bail out now.
326 	 */
327 	if (start >= end)
328 		return;
329 
330 	index = start;
331 	for ( ; ; ) {
332 		cond_resched();
333 		if (!pagevec_lookup_entries(&pvec, mapping, index,
334 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
335 			/* If all gone from start onwards, we're done */
336 			if (index == start)
337 				break;
338 			/* Otherwise restart to make sure all gone */
339 			index = start;
340 			continue;
341 		}
342 		if (index == start && indices[0] >= end) {
343 			/* All gone out of hole to be punched, we're done */
344 			pagevec_remove_exceptionals(&pvec);
345 			pagevec_release(&pvec);
346 			break;
347 		}
348 		for (i = 0; i < pagevec_count(&pvec); i++) {
349 			struct page *page = pvec.pages[i];
350 
351 			/* We rely upon deletion not changing page->index */
352 			index = indices[i];
353 			if (index >= end) {
354 				/* Restart punch to make sure all gone */
355 				index = start - 1;
356 				break;
357 			}
358 
359 			if (radix_tree_exceptional_entry(page)) {
360 				clear_exceptional_entry(mapping, index, page);
361 				continue;
362 			}
363 
364 			lock_page(page);
365 			WARN_ON(page->index != index);
366 			wait_on_page_writeback(page);
367 			truncate_inode_page(mapping, page);
368 			unlock_page(page);
369 		}
370 		pagevec_remove_exceptionals(&pvec);
371 		pagevec_release(&pvec);
372 		index++;
373 	}
374 	cleancache_invalidate_inode(mapping);
375 }
376 EXPORT_SYMBOL(truncate_inode_pages_range);
377 
378 /**
379  * truncate_inode_pages - truncate *all* the pages from an offset
380  * @mapping: mapping to truncate
381  * @lstart: offset from which to truncate
382  *
383  * Called under (and serialised by) inode->i_mutex.
384  *
385  * Note: When this function returns, there can be a page in the process of
386  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
387  * mapping->nrpages can be non-zero when this function returns even after
388  * truncation of the whole mapping.
389  */
390 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
391 {
392 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
393 }
394 EXPORT_SYMBOL(truncate_inode_pages);
395 
396 /**
397  * truncate_inode_pages_final - truncate *all* pages before inode dies
398  * @mapping: mapping to truncate
399  *
400  * Called under (and serialized by) inode->i_mutex.
401  *
402  * Filesystems have to use this in the .evict_inode path to inform the
403  * VM that this is the final truncate and the inode is going away.
404  */
405 void truncate_inode_pages_final(struct address_space *mapping)
406 {
407 	unsigned long nrshadows;
408 	unsigned long nrpages;
409 
410 	/*
411 	 * Page reclaim can not participate in regular inode lifetime
412 	 * management (can't call iput()) and thus can race with the
413 	 * inode teardown.  Tell it when the address space is exiting,
414 	 * so that it does not install eviction information after the
415 	 * final truncate has begun.
416 	 */
417 	mapping_set_exiting(mapping);
418 
419 	/*
420 	 * When reclaim installs eviction entries, it increases
421 	 * nrshadows first, then decreases nrpages.  Make sure we see
422 	 * this in the right order or we might miss an entry.
423 	 */
424 	nrpages = mapping->nrpages;
425 	smp_rmb();
426 	nrshadows = mapping->nrshadows;
427 
428 	if (nrpages || nrshadows) {
429 		/*
430 		 * As truncation uses a lockless tree lookup, cycle
431 		 * the tree lock to make sure any ongoing tree
432 		 * modification that does not see AS_EXITING is
433 		 * completed before starting the final truncate.
434 		 */
435 		spin_lock_irq(&mapping->tree_lock);
436 		spin_unlock_irq(&mapping->tree_lock);
437 
438 		truncate_inode_pages(mapping, 0);
439 	}
440 }
441 EXPORT_SYMBOL(truncate_inode_pages_final);
442 
443 /**
444  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
445  * @mapping: the address_space which holds the pages to invalidate
446  * @start: the offset 'from' which to invalidate
447  * @end: the offset 'to' which to invalidate (inclusive)
448  *
449  * This function only removes the unlocked pages, if you want to
450  * remove all the pages of one inode, you must call truncate_inode_pages.
451  *
452  * invalidate_mapping_pages() will not block on IO activity. It will not
453  * invalidate pages which are dirty, locked, under writeback or mapped into
454  * pagetables.
455  */
456 unsigned long invalidate_mapping_pages(struct address_space *mapping,
457 		pgoff_t start, pgoff_t end)
458 {
459 	pgoff_t indices[PAGEVEC_SIZE];
460 	struct pagevec pvec;
461 	pgoff_t index = start;
462 	unsigned long ret;
463 	unsigned long count = 0;
464 	int i;
465 
466 	pagevec_init(&pvec, 0);
467 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
468 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
469 			indices)) {
470 		for (i = 0; i < pagevec_count(&pvec); i++) {
471 			struct page *page = pvec.pages[i];
472 
473 			/* We rely upon deletion not changing page->index */
474 			index = indices[i];
475 			if (index > end)
476 				break;
477 
478 			if (radix_tree_exceptional_entry(page)) {
479 				clear_exceptional_entry(mapping, index, page);
480 				continue;
481 			}
482 
483 			if (!trylock_page(page))
484 				continue;
485 			WARN_ON(page->index != index);
486 			ret = invalidate_inode_page(page);
487 			unlock_page(page);
488 			/*
489 			 * Invalidation is a hint that the page is no longer
490 			 * of interest and try to speed up its reclaim.
491 			 */
492 			if (!ret)
493 				deactivate_file_page(page);
494 			count += ret;
495 		}
496 		pagevec_remove_exceptionals(&pvec);
497 		pagevec_release(&pvec);
498 		cond_resched();
499 		index++;
500 	}
501 	return count;
502 }
503 EXPORT_SYMBOL(invalidate_mapping_pages);
504 
505 /*
506  * This is like invalidate_complete_page(), except it ignores the page's
507  * refcount.  We do this because invalidate_inode_pages2() needs stronger
508  * invalidation guarantees, and cannot afford to leave pages behind because
509  * shrink_page_list() has a temp ref on them, or because they're transiently
510  * sitting in the lru_cache_add() pagevecs.
511  */
512 static int
513 invalidate_complete_page2(struct address_space *mapping, struct page *page)
514 {
515 	if (page->mapping != mapping)
516 		return 0;
517 
518 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
519 		return 0;
520 
521 	spin_lock_irq(&mapping->tree_lock);
522 	if (PageDirty(page))
523 		goto failed;
524 
525 	BUG_ON(page_has_private(page));
526 	__delete_from_page_cache(page, NULL);
527 	spin_unlock_irq(&mapping->tree_lock);
528 
529 	if (mapping->a_ops->freepage)
530 		mapping->a_ops->freepage(page);
531 
532 	page_cache_release(page);	/* pagecache ref */
533 	return 1;
534 failed:
535 	spin_unlock_irq(&mapping->tree_lock);
536 	return 0;
537 }
538 
539 static int do_launder_page(struct address_space *mapping, struct page *page)
540 {
541 	if (!PageDirty(page))
542 		return 0;
543 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
544 		return 0;
545 	return mapping->a_ops->launder_page(page);
546 }
547 
548 /**
549  * invalidate_inode_pages2_range - remove range of pages from an address_space
550  * @mapping: the address_space
551  * @start: the page offset 'from' which to invalidate
552  * @end: the page offset 'to' which to invalidate (inclusive)
553  *
554  * Any pages which are found to be mapped into pagetables are unmapped prior to
555  * invalidation.
556  *
557  * Returns -EBUSY if any pages could not be invalidated.
558  */
559 int invalidate_inode_pages2_range(struct address_space *mapping,
560 				  pgoff_t start, pgoff_t end)
561 {
562 	pgoff_t indices[PAGEVEC_SIZE];
563 	struct pagevec pvec;
564 	pgoff_t index;
565 	int i;
566 	int ret = 0;
567 	int ret2 = 0;
568 	int did_range_unmap = 0;
569 
570 	cleancache_invalidate_inode(mapping);
571 	pagevec_init(&pvec, 0);
572 	index = start;
573 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
574 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
575 			indices)) {
576 		for (i = 0; i < pagevec_count(&pvec); i++) {
577 			struct page *page = pvec.pages[i];
578 
579 			/* We rely upon deletion not changing page->index */
580 			index = indices[i];
581 			if (index > end)
582 				break;
583 
584 			if (radix_tree_exceptional_entry(page)) {
585 				clear_exceptional_entry(mapping, index, page);
586 				continue;
587 			}
588 
589 			lock_page(page);
590 			WARN_ON(page->index != index);
591 			if (page->mapping != mapping) {
592 				unlock_page(page);
593 				continue;
594 			}
595 			wait_on_page_writeback(page);
596 			if (page_mapped(page)) {
597 				if (!did_range_unmap) {
598 					/*
599 					 * Zap the rest of the file in one hit.
600 					 */
601 					unmap_mapping_range(mapping,
602 					   (loff_t)index << PAGE_CACHE_SHIFT,
603 					   (loff_t)(1 + end - index)
604 							 << PAGE_CACHE_SHIFT,
605 					    0);
606 					did_range_unmap = 1;
607 				} else {
608 					/*
609 					 * Just zap this page
610 					 */
611 					unmap_mapping_range(mapping,
612 					   (loff_t)index << PAGE_CACHE_SHIFT,
613 					   PAGE_CACHE_SIZE, 0);
614 				}
615 			}
616 			BUG_ON(page_mapped(page));
617 			ret2 = do_launder_page(mapping, page);
618 			if (ret2 == 0) {
619 				if (!invalidate_complete_page2(mapping, page))
620 					ret2 = -EBUSY;
621 			}
622 			if (ret2 < 0)
623 				ret = ret2;
624 			unlock_page(page);
625 		}
626 		pagevec_remove_exceptionals(&pvec);
627 		pagevec_release(&pvec);
628 		cond_resched();
629 		index++;
630 	}
631 	cleancache_invalidate_inode(mapping);
632 	return ret;
633 }
634 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
635 
636 /**
637  * invalidate_inode_pages2 - remove all pages from an address_space
638  * @mapping: the address_space
639  *
640  * Any pages which are found to be mapped into pagetables are unmapped prior to
641  * invalidation.
642  *
643  * Returns -EBUSY if any pages could not be invalidated.
644  */
645 int invalidate_inode_pages2(struct address_space *mapping)
646 {
647 	return invalidate_inode_pages2_range(mapping, 0, -1);
648 }
649 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
650 
651 /**
652  * truncate_pagecache - unmap and remove pagecache that has been truncated
653  * @inode: inode
654  * @newsize: new file size
655  *
656  * inode's new i_size must already be written before truncate_pagecache
657  * is called.
658  *
659  * This function should typically be called before the filesystem
660  * releases resources associated with the freed range (eg. deallocates
661  * blocks). This way, pagecache will always stay logically coherent
662  * with on-disk format, and the filesystem would not have to deal with
663  * situations such as writepage being called for a page that has already
664  * had its underlying blocks deallocated.
665  */
666 void truncate_pagecache(struct inode *inode, loff_t newsize)
667 {
668 	struct address_space *mapping = inode->i_mapping;
669 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
670 
671 	/*
672 	 * unmap_mapping_range is called twice, first simply for
673 	 * efficiency so that truncate_inode_pages does fewer
674 	 * single-page unmaps.  However after this first call, and
675 	 * before truncate_inode_pages finishes, it is possible for
676 	 * private pages to be COWed, which remain after
677 	 * truncate_inode_pages finishes, hence the second
678 	 * unmap_mapping_range call must be made for correctness.
679 	 */
680 	unmap_mapping_range(mapping, holebegin, 0, 1);
681 	truncate_inode_pages(mapping, newsize);
682 	unmap_mapping_range(mapping, holebegin, 0, 1);
683 }
684 EXPORT_SYMBOL(truncate_pagecache);
685 
686 /**
687  * truncate_setsize - update inode and pagecache for a new file size
688  * @inode: inode
689  * @newsize: new file size
690  *
691  * truncate_setsize updates i_size and performs pagecache truncation (if
692  * necessary) to @newsize. It will be typically be called from the filesystem's
693  * setattr function when ATTR_SIZE is passed in.
694  *
695  * Must be called with a lock serializing truncates and writes (generally
696  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
697  * specific block truncation has been performed.
698  */
699 void truncate_setsize(struct inode *inode, loff_t newsize)
700 {
701 	loff_t oldsize = inode->i_size;
702 
703 	i_size_write(inode, newsize);
704 	if (newsize > oldsize)
705 		pagecache_isize_extended(inode, oldsize, newsize);
706 	truncate_pagecache(inode, newsize);
707 }
708 EXPORT_SYMBOL(truncate_setsize);
709 
710 /**
711  * pagecache_isize_extended - update pagecache after extension of i_size
712  * @inode:	inode for which i_size was extended
713  * @from:	original inode size
714  * @to:		new inode size
715  *
716  * Handle extension of inode size either caused by extending truncate or by
717  * write starting after current i_size. We mark the page straddling current
718  * i_size RO so that page_mkwrite() is called on the nearest write access to
719  * the page.  This way filesystem can be sure that page_mkwrite() is called on
720  * the page before user writes to the page via mmap after the i_size has been
721  * changed.
722  *
723  * The function must be called after i_size is updated so that page fault
724  * coming after we unlock the page will already see the new i_size.
725  * The function must be called while we still hold i_mutex - this not only
726  * makes sure i_size is stable but also that userspace cannot observe new
727  * i_size value before we are prepared to store mmap writes at new inode size.
728  */
729 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
730 {
731 	int bsize = 1 << inode->i_blkbits;
732 	loff_t rounded_from;
733 	struct page *page;
734 	pgoff_t index;
735 
736 	WARN_ON(to > inode->i_size);
737 
738 	if (from >= to || bsize == PAGE_CACHE_SIZE)
739 		return;
740 	/* Page straddling @from will not have any hole block created? */
741 	rounded_from = round_up(from, bsize);
742 	if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
743 		return;
744 
745 	index = from >> PAGE_CACHE_SHIFT;
746 	page = find_lock_page(inode->i_mapping, index);
747 	/* Page not cached? Nothing to do */
748 	if (!page)
749 		return;
750 	/*
751 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
752 	 * is needed.
753 	 */
754 	if (page_mkclean(page))
755 		set_page_dirty(page);
756 	unlock_page(page);
757 	page_cache_release(page);
758 }
759 EXPORT_SYMBOL(pagecache_isize_extended);
760 
761 /**
762  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
763  * @inode: inode
764  * @lstart: offset of beginning of hole
765  * @lend: offset of last byte of hole
766  *
767  * This function should typically be called before the filesystem
768  * releases resources associated with the freed range (eg. deallocates
769  * blocks). This way, pagecache will always stay logically coherent
770  * with on-disk format, and the filesystem would not have to deal with
771  * situations such as writepage being called for a page that has already
772  * had its underlying blocks deallocated.
773  */
774 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
775 {
776 	struct address_space *mapping = inode->i_mapping;
777 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
778 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
779 	/*
780 	 * This rounding is currently just for example: unmap_mapping_range
781 	 * expands its hole outwards, whereas we want it to contract the hole
782 	 * inwards.  However, existing callers of truncate_pagecache_range are
783 	 * doing their own page rounding first.  Note that unmap_mapping_range
784 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
785 	 */
786 
787 	/*
788 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
789 	 * once (before truncating pagecache), and without "even_cows" flag:
790 	 * hole-punching should not remove private COWed pages from the hole.
791 	 */
792 	if ((u64)unmap_end > (u64)unmap_start)
793 		unmap_mapping_range(mapping, unmap_start,
794 				    1 + unmap_end - unmap_start, 0);
795 	truncate_inode_pages_range(mapping, lstart, lend);
796 }
797 EXPORT_SYMBOL(truncate_pagecache_range);
798