1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/export.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include <linux/cleancache.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 static void clear_exceptional_entry(struct address_space *mapping, 27 pgoff_t index, void *entry) 28 { 29 struct radix_tree_node *node; 30 void **slot; 31 32 /* Handled by shmem itself */ 33 if (shmem_mapping(mapping)) 34 return; 35 36 spin_lock_irq(&mapping->tree_lock); 37 /* 38 * Regular page slots are stabilized by the page lock even 39 * without the tree itself locked. These unlocked entries 40 * need verification under the tree lock. 41 */ 42 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 43 goto unlock; 44 if (*slot != entry) 45 goto unlock; 46 radix_tree_replace_slot(slot, NULL); 47 mapping->nrshadows--; 48 if (!node) 49 goto unlock; 50 workingset_node_shadows_dec(node); 51 /* 52 * Don't track node without shadow entries. 53 * 54 * Avoid acquiring the list_lru lock if already untracked. 55 * The list_empty() test is safe as node->private_list is 56 * protected by mapping->tree_lock. 57 */ 58 if (!workingset_node_shadows(node) && 59 !list_empty(&node->private_list)) 60 list_lru_del(&workingset_shadow_nodes, &node->private_list); 61 __radix_tree_delete_node(&mapping->page_tree, node); 62 unlock: 63 spin_unlock_irq(&mapping->tree_lock); 64 } 65 66 /** 67 * do_invalidatepage - invalidate part or all of a page 68 * @page: the page which is affected 69 * @offset: start of the range to invalidate 70 * @length: length of the range to invalidate 71 * 72 * do_invalidatepage() is called when all or part of the page has become 73 * invalidated by a truncate operation. 74 * 75 * do_invalidatepage() does not have to release all buffers, but it must 76 * ensure that no dirty buffer is left outside @offset and that no I/O 77 * is underway against any of the blocks which are outside the truncation 78 * point. Because the caller is about to free (and possibly reuse) those 79 * blocks on-disk. 80 */ 81 void do_invalidatepage(struct page *page, unsigned int offset, 82 unsigned int length) 83 { 84 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 85 86 invalidatepage = page->mapping->a_ops->invalidatepage; 87 #ifdef CONFIG_BLOCK 88 if (!invalidatepage) 89 invalidatepage = block_invalidatepage; 90 #endif 91 if (invalidatepage) 92 (*invalidatepage)(page, offset, length); 93 } 94 95 /* 96 * If truncate cannot remove the fs-private metadata from the page, the page 97 * becomes orphaned. It will be left on the LRU and may even be mapped into 98 * user pagetables if we're racing with filemap_fault(). 99 * 100 * We need to bale out if page->mapping is no longer equal to the original 101 * mapping. This happens a) when the VM reclaimed the page while we waited on 102 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 103 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 104 */ 105 static int 106 truncate_complete_page(struct address_space *mapping, struct page *page) 107 { 108 if (page->mapping != mapping) 109 return -EIO; 110 111 if (page_has_private(page)) 112 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 113 114 /* 115 * Some filesystems seem to re-dirty the page even after 116 * the VM has canceled the dirty bit (eg ext3 journaling). 117 * Hence dirty accounting check is placed after invalidation. 118 */ 119 if (TestClearPageDirty(page)) 120 account_page_cleaned(page, mapping); 121 122 ClearPageMappedToDisk(page); 123 delete_from_page_cache(page); 124 return 0; 125 } 126 127 /* 128 * This is for invalidate_mapping_pages(). That function can be called at 129 * any time, and is not supposed to throw away dirty pages. But pages can 130 * be marked dirty at any time too, so use remove_mapping which safely 131 * discards clean, unused pages. 132 * 133 * Returns non-zero if the page was successfully invalidated. 134 */ 135 static int 136 invalidate_complete_page(struct address_space *mapping, struct page *page) 137 { 138 int ret; 139 140 if (page->mapping != mapping) 141 return 0; 142 143 if (page_has_private(page) && !try_to_release_page(page, 0)) 144 return 0; 145 146 ret = remove_mapping(mapping, page); 147 148 return ret; 149 } 150 151 int truncate_inode_page(struct address_space *mapping, struct page *page) 152 { 153 if (page_mapped(page)) { 154 unmap_mapping_range(mapping, 155 (loff_t)page->index << PAGE_CACHE_SHIFT, 156 PAGE_CACHE_SIZE, 0); 157 } 158 return truncate_complete_page(mapping, page); 159 } 160 161 /* 162 * Used to get rid of pages on hardware memory corruption. 163 */ 164 int generic_error_remove_page(struct address_space *mapping, struct page *page) 165 { 166 if (!mapping) 167 return -EINVAL; 168 /* 169 * Only punch for normal data pages for now. 170 * Handling other types like directories would need more auditing. 171 */ 172 if (!S_ISREG(mapping->host->i_mode)) 173 return -EIO; 174 return truncate_inode_page(mapping, page); 175 } 176 EXPORT_SYMBOL(generic_error_remove_page); 177 178 /* 179 * Safely invalidate one page from its pagecache mapping. 180 * It only drops clean, unused pages. The page must be locked. 181 * 182 * Returns 1 if the page is successfully invalidated, otherwise 0. 183 */ 184 int invalidate_inode_page(struct page *page) 185 { 186 struct address_space *mapping = page_mapping(page); 187 if (!mapping) 188 return 0; 189 if (PageDirty(page) || PageWriteback(page)) 190 return 0; 191 if (page_mapped(page)) 192 return 0; 193 return invalidate_complete_page(mapping, page); 194 } 195 196 /** 197 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 198 * @mapping: mapping to truncate 199 * @lstart: offset from which to truncate 200 * @lend: offset to which to truncate (inclusive) 201 * 202 * Truncate the page cache, removing the pages that are between 203 * specified offsets (and zeroing out partial pages 204 * if lstart or lend + 1 is not page aligned). 205 * 206 * Truncate takes two passes - the first pass is nonblocking. It will not 207 * block on page locks and it will not block on writeback. The second pass 208 * will wait. This is to prevent as much IO as possible in the affected region. 209 * The first pass will remove most pages, so the search cost of the second pass 210 * is low. 211 * 212 * We pass down the cache-hot hint to the page freeing code. Even if the 213 * mapping is large, it is probably the case that the final pages are the most 214 * recently touched, and freeing happens in ascending file offset order. 215 * 216 * Note that since ->invalidatepage() accepts range to invalidate 217 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 218 * page aligned properly. 219 */ 220 void truncate_inode_pages_range(struct address_space *mapping, 221 loff_t lstart, loff_t lend) 222 { 223 pgoff_t start; /* inclusive */ 224 pgoff_t end; /* exclusive */ 225 unsigned int partial_start; /* inclusive */ 226 unsigned int partial_end; /* exclusive */ 227 struct pagevec pvec; 228 pgoff_t indices[PAGEVEC_SIZE]; 229 pgoff_t index; 230 int i; 231 232 cleancache_invalidate_inode(mapping); 233 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 234 return; 235 236 /* Offsets within partial pages */ 237 partial_start = lstart & (PAGE_CACHE_SIZE - 1); 238 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 239 240 /* 241 * 'start' and 'end' always covers the range of pages to be fully 242 * truncated. Partial pages are covered with 'partial_start' at the 243 * start of the range and 'partial_end' at the end of the range. 244 * Note that 'end' is exclusive while 'lend' is inclusive. 245 */ 246 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 247 if (lend == -1) 248 /* 249 * lend == -1 indicates end-of-file so we have to set 'end' 250 * to the highest possible pgoff_t and since the type is 251 * unsigned we're using -1. 252 */ 253 end = -1; 254 else 255 end = (lend + 1) >> PAGE_CACHE_SHIFT; 256 257 pagevec_init(&pvec, 0); 258 index = start; 259 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 260 min(end - index, (pgoff_t)PAGEVEC_SIZE), 261 indices)) { 262 for (i = 0; i < pagevec_count(&pvec); i++) { 263 struct page *page = pvec.pages[i]; 264 265 /* We rely upon deletion not changing page->index */ 266 index = indices[i]; 267 if (index >= end) 268 break; 269 270 if (radix_tree_exceptional_entry(page)) { 271 clear_exceptional_entry(mapping, index, page); 272 continue; 273 } 274 275 if (!trylock_page(page)) 276 continue; 277 WARN_ON(page->index != index); 278 if (PageWriteback(page)) { 279 unlock_page(page); 280 continue; 281 } 282 truncate_inode_page(mapping, page); 283 unlock_page(page); 284 } 285 pagevec_remove_exceptionals(&pvec); 286 pagevec_release(&pvec); 287 cond_resched(); 288 index++; 289 } 290 291 if (partial_start) { 292 struct page *page = find_lock_page(mapping, start - 1); 293 if (page) { 294 unsigned int top = PAGE_CACHE_SIZE; 295 if (start > end) { 296 /* Truncation within a single page */ 297 top = partial_end; 298 partial_end = 0; 299 } 300 wait_on_page_writeback(page); 301 zero_user_segment(page, partial_start, top); 302 cleancache_invalidate_page(mapping, page); 303 if (page_has_private(page)) 304 do_invalidatepage(page, partial_start, 305 top - partial_start); 306 unlock_page(page); 307 page_cache_release(page); 308 } 309 } 310 if (partial_end) { 311 struct page *page = find_lock_page(mapping, end); 312 if (page) { 313 wait_on_page_writeback(page); 314 zero_user_segment(page, 0, partial_end); 315 cleancache_invalidate_page(mapping, page); 316 if (page_has_private(page)) 317 do_invalidatepage(page, 0, 318 partial_end); 319 unlock_page(page); 320 page_cache_release(page); 321 } 322 } 323 /* 324 * If the truncation happened within a single page no pages 325 * will be released, just zeroed, so we can bail out now. 326 */ 327 if (start >= end) 328 return; 329 330 index = start; 331 for ( ; ; ) { 332 cond_resched(); 333 if (!pagevec_lookup_entries(&pvec, mapping, index, 334 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 335 /* If all gone from start onwards, we're done */ 336 if (index == start) 337 break; 338 /* Otherwise restart to make sure all gone */ 339 index = start; 340 continue; 341 } 342 if (index == start && indices[0] >= end) { 343 /* All gone out of hole to be punched, we're done */ 344 pagevec_remove_exceptionals(&pvec); 345 pagevec_release(&pvec); 346 break; 347 } 348 for (i = 0; i < pagevec_count(&pvec); i++) { 349 struct page *page = pvec.pages[i]; 350 351 /* We rely upon deletion not changing page->index */ 352 index = indices[i]; 353 if (index >= end) { 354 /* Restart punch to make sure all gone */ 355 index = start - 1; 356 break; 357 } 358 359 if (radix_tree_exceptional_entry(page)) { 360 clear_exceptional_entry(mapping, index, page); 361 continue; 362 } 363 364 lock_page(page); 365 WARN_ON(page->index != index); 366 wait_on_page_writeback(page); 367 truncate_inode_page(mapping, page); 368 unlock_page(page); 369 } 370 pagevec_remove_exceptionals(&pvec); 371 pagevec_release(&pvec); 372 index++; 373 } 374 cleancache_invalidate_inode(mapping); 375 } 376 EXPORT_SYMBOL(truncate_inode_pages_range); 377 378 /** 379 * truncate_inode_pages - truncate *all* the pages from an offset 380 * @mapping: mapping to truncate 381 * @lstart: offset from which to truncate 382 * 383 * Called under (and serialised by) inode->i_mutex. 384 * 385 * Note: When this function returns, there can be a page in the process of 386 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 387 * mapping->nrpages can be non-zero when this function returns even after 388 * truncation of the whole mapping. 389 */ 390 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 391 { 392 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 393 } 394 EXPORT_SYMBOL(truncate_inode_pages); 395 396 /** 397 * truncate_inode_pages_final - truncate *all* pages before inode dies 398 * @mapping: mapping to truncate 399 * 400 * Called under (and serialized by) inode->i_mutex. 401 * 402 * Filesystems have to use this in the .evict_inode path to inform the 403 * VM that this is the final truncate and the inode is going away. 404 */ 405 void truncate_inode_pages_final(struct address_space *mapping) 406 { 407 unsigned long nrshadows; 408 unsigned long nrpages; 409 410 /* 411 * Page reclaim can not participate in regular inode lifetime 412 * management (can't call iput()) and thus can race with the 413 * inode teardown. Tell it when the address space is exiting, 414 * so that it does not install eviction information after the 415 * final truncate has begun. 416 */ 417 mapping_set_exiting(mapping); 418 419 /* 420 * When reclaim installs eviction entries, it increases 421 * nrshadows first, then decreases nrpages. Make sure we see 422 * this in the right order or we might miss an entry. 423 */ 424 nrpages = mapping->nrpages; 425 smp_rmb(); 426 nrshadows = mapping->nrshadows; 427 428 if (nrpages || nrshadows) { 429 /* 430 * As truncation uses a lockless tree lookup, cycle 431 * the tree lock to make sure any ongoing tree 432 * modification that does not see AS_EXITING is 433 * completed before starting the final truncate. 434 */ 435 spin_lock_irq(&mapping->tree_lock); 436 spin_unlock_irq(&mapping->tree_lock); 437 438 truncate_inode_pages(mapping, 0); 439 } 440 } 441 EXPORT_SYMBOL(truncate_inode_pages_final); 442 443 /** 444 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 445 * @mapping: the address_space which holds the pages to invalidate 446 * @start: the offset 'from' which to invalidate 447 * @end: the offset 'to' which to invalidate (inclusive) 448 * 449 * This function only removes the unlocked pages, if you want to 450 * remove all the pages of one inode, you must call truncate_inode_pages. 451 * 452 * invalidate_mapping_pages() will not block on IO activity. It will not 453 * invalidate pages which are dirty, locked, under writeback or mapped into 454 * pagetables. 455 */ 456 unsigned long invalidate_mapping_pages(struct address_space *mapping, 457 pgoff_t start, pgoff_t end) 458 { 459 pgoff_t indices[PAGEVEC_SIZE]; 460 struct pagevec pvec; 461 pgoff_t index = start; 462 unsigned long ret; 463 unsigned long count = 0; 464 int i; 465 466 pagevec_init(&pvec, 0); 467 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 468 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 469 indices)) { 470 for (i = 0; i < pagevec_count(&pvec); i++) { 471 struct page *page = pvec.pages[i]; 472 473 /* We rely upon deletion not changing page->index */ 474 index = indices[i]; 475 if (index > end) 476 break; 477 478 if (radix_tree_exceptional_entry(page)) { 479 clear_exceptional_entry(mapping, index, page); 480 continue; 481 } 482 483 if (!trylock_page(page)) 484 continue; 485 WARN_ON(page->index != index); 486 ret = invalidate_inode_page(page); 487 unlock_page(page); 488 /* 489 * Invalidation is a hint that the page is no longer 490 * of interest and try to speed up its reclaim. 491 */ 492 if (!ret) 493 deactivate_file_page(page); 494 count += ret; 495 } 496 pagevec_remove_exceptionals(&pvec); 497 pagevec_release(&pvec); 498 cond_resched(); 499 index++; 500 } 501 return count; 502 } 503 EXPORT_SYMBOL(invalidate_mapping_pages); 504 505 /* 506 * This is like invalidate_complete_page(), except it ignores the page's 507 * refcount. We do this because invalidate_inode_pages2() needs stronger 508 * invalidation guarantees, and cannot afford to leave pages behind because 509 * shrink_page_list() has a temp ref on them, or because they're transiently 510 * sitting in the lru_cache_add() pagevecs. 511 */ 512 static int 513 invalidate_complete_page2(struct address_space *mapping, struct page *page) 514 { 515 if (page->mapping != mapping) 516 return 0; 517 518 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 519 return 0; 520 521 spin_lock_irq(&mapping->tree_lock); 522 if (PageDirty(page)) 523 goto failed; 524 525 BUG_ON(page_has_private(page)); 526 __delete_from_page_cache(page, NULL); 527 spin_unlock_irq(&mapping->tree_lock); 528 529 if (mapping->a_ops->freepage) 530 mapping->a_ops->freepage(page); 531 532 page_cache_release(page); /* pagecache ref */ 533 return 1; 534 failed: 535 spin_unlock_irq(&mapping->tree_lock); 536 return 0; 537 } 538 539 static int do_launder_page(struct address_space *mapping, struct page *page) 540 { 541 if (!PageDirty(page)) 542 return 0; 543 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 544 return 0; 545 return mapping->a_ops->launder_page(page); 546 } 547 548 /** 549 * invalidate_inode_pages2_range - remove range of pages from an address_space 550 * @mapping: the address_space 551 * @start: the page offset 'from' which to invalidate 552 * @end: the page offset 'to' which to invalidate (inclusive) 553 * 554 * Any pages which are found to be mapped into pagetables are unmapped prior to 555 * invalidation. 556 * 557 * Returns -EBUSY if any pages could not be invalidated. 558 */ 559 int invalidate_inode_pages2_range(struct address_space *mapping, 560 pgoff_t start, pgoff_t end) 561 { 562 pgoff_t indices[PAGEVEC_SIZE]; 563 struct pagevec pvec; 564 pgoff_t index; 565 int i; 566 int ret = 0; 567 int ret2 = 0; 568 int did_range_unmap = 0; 569 570 cleancache_invalidate_inode(mapping); 571 pagevec_init(&pvec, 0); 572 index = start; 573 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 574 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 575 indices)) { 576 for (i = 0; i < pagevec_count(&pvec); i++) { 577 struct page *page = pvec.pages[i]; 578 579 /* We rely upon deletion not changing page->index */ 580 index = indices[i]; 581 if (index > end) 582 break; 583 584 if (radix_tree_exceptional_entry(page)) { 585 clear_exceptional_entry(mapping, index, page); 586 continue; 587 } 588 589 lock_page(page); 590 WARN_ON(page->index != index); 591 if (page->mapping != mapping) { 592 unlock_page(page); 593 continue; 594 } 595 wait_on_page_writeback(page); 596 if (page_mapped(page)) { 597 if (!did_range_unmap) { 598 /* 599 * Zap the rest of the file in one hit. 600 */ 601 unmap_mapping_range(mapping, 602 (loff_t)index << PAGE_CACHE_SHIFT, 603 (loff_t)(1 + end - index) 604 << PAGE_CACHE_SHIFT, 605 0); 606 did_range_unmap = 1; 607 } else { 608 /* 609 * Just zap this page 610 */ 611 unmap_mapping_range(mapping, 612 (loff_t)index << PAGE_CACHE_SHIFT, 613 PAGE_CACHE_SIZE, 0); 614 } 615 } 616 BUG_ON(page_mapped(page)); 617 ret2 = do_launder_page(mapping, page); 618 if (ret2 == 0) { 619 if (!invalidate_complete_page2(mapping, page)) 620 ret2 = -EBUSY; 621 } 622 if (ret2 < 0) 623 ret = ret2; 624 unlock_page(page); 625 } 626 pagevec_remove_exceptionals(&pvec); 627 pagevec_release(&pvec); 628 cond_resched(); 629 index++; 630 } 631 cleancache_invalidate_inode(mapping); 632 return ret; 633 } 634 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 635 636 /** 637 * invalidate_inode_pages2 - remove all pages from an address_space 638 * @mapping: the address_space 639 * 640 * Any pages which are found to be mapped into pagetables are unmapped prior to 641 * invalidation. 642 * 643 * Returns -EBUSY if any pages could not be invalidated. 644 */ 645 int invalidate_inode_pages2(struct address_space *mapping) 646 { 647 return invalidate_inode_pages2_range(mapping, 0, -1); 648 } 649 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 650 651 /** 652 * truncate_pagecache - unmap and remove pagecache that has been truncated 653 * @inode: inode 654 * @newsize: new file size 655 * 656 * inode's new i_size must already be written before truncate_pagecache 657 * is called. 658 * 659 * This function should typically be called before the filesystem 660 * releases resources associated with the freed range (eg. deallocates 661 * blocks). This way, pagecache will always stay logically coherent 662 * with on-disk format, and the filesystem would not have to deal with 663 * situations such as writepage being called for a page that has already 664 * had its underlying blocks deallocated. 665 */ 666 void truncate_pagecache(struct inode *inode, loff_t newsize) 667 { 668 struct address_space *mapping = inode->i_mapping; 669 loff_t holebegin = round_up(newsize, PAGE_SIZE); 670 671 /* 672 * unmap_mapping_range is called twice, first simply for 673 * efficiency so that truncate_inode_pages does fewer 674 * single-page unmaps. However after this first call, and 675 * before truncate_inode_pages finishes, it is possible for 676 * private pages to be COWed, which remain after 677 * truncate_inode_pages finishes, hence the second 678 * unmap_mapping_range call must be made for correctness. 679 */ 680 unmap_mapping_range(mapping, holebegin, 0, 1); 681 truncate_inode_pages(mapping, newsize); 682 unmap_mapping_range(mapping, holebegin, 0, 1); 683 } 684 EXPORT_SYMBOL(truncate_pagecache); 685 686 /** 687 * truncate_setsize - update inode and pagecache for a new file size 688 * @inode: inode 689 * @newsize: new file size 690 * 691 * truncate_setsize updates i_size and performs pagecache truncation (if 692 * necessary) to @newsize. It will be typically be called from the filesystem's 693 * setattr function when ATTR_SIZE is passed in. 694 * 695 * Must be called with a lock serializing truncates and writes (generally 696 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 697 * specific block truncation has been performed. 698 */ 699 void truncate_setsize(struct inode *inode, loff_t newsize) 700 { 701 loff_t oldsize = inode->i_size; 702 703 i_size_write(inode, newsize); 704 if (newsize > oldsize) 705 pagecache_isize_extended(inode, oldsize, newsize); 706 truncate_pagecache(inode, newsize); 707 } 708 EXPORT_SYMBOL(truncate_setsize); 709 710 /** 711 * pagecache_isize_extended - update pagecache after extension of i_size 712 * @inode: inode for which i_size was extended 713 * @from: original inode size 714 * @to: new inode size 715 * 716 * Handle extension of inode size either caused by extending truncate or by 717 * write starting after current i_size. We mark the page straddling current 718 * i_size RO so that page_mkwrite() is called on the nearest write access to 719 * the page. This way filesystem can be sure that page_mkwrite() is called on 720 * the page before user writes to the page via mmap after the i_size has been 721 * changed. 722 * 723 * The function must be called after i_size is updated so that page fault 724 * coming after we unlock the page will already see the new i_size. 725 * The function must be called while we still hold i_mutex - this not only 726 * makes sure i_size is stable but also that userspace cannot observe new 727 * i_size value before we are prepared to store mmap writes at new inode size. 728 */ 729 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 730 { 731 int bsize = 1 << inode->i_blkbits; 732 loff_t rounded_from; 733 struct page *page; 734 pgoff_t index; 735 736 WARN_ON(to > inode->i_size); 737 738 if (from >= to || bsize == PAGE_CACHE_SIZE) 739 return; 740 /* Page straddling @from will not have any hole block created? */ 741 rounded_from = round_up(from, bsize); 742 if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1))) 743 return; 744 745 index = from >> PAGE_CACHE_SHIFT; 746 page = find_lock_page(inode->i_mapping, index); 747 /* Page not cached? Nothing to do */ 748 if (!page) 749 return; 750 /* 751 * See clear_page_dirty_for_io() for details why set_page_dirty() 752 * is needed. 753 */ 754 if (page_mkclean(page)) 755 set_page_dirty(page); 756 unlock_page(page); 757 page_cache_release(page); 758 } 759 EXPORT_SYMBOL(pagecache_isize_extended); 760 761 /** 762 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 763 * @inode: inode 764 * @lstart: offset of beginning of hole 765 * @lend: offset of last byte of hole 766 * 767 * This function should typically be called before the filesystem 768 * releases resources associated with the freed range (eg. deallocates 769 * blocks). This way, pagecache will always stay logically coherent 770 * with on-disk format, and the filesystem would not have to deal with 771 * situations such as writepage being called for a page that has already 772 * had its underlying blocks deallocated. 773 */ 774 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 775 { 776 struct address_space *mapping = inode->i_mapping; 777 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 778 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 779 /* 780 * This rounding is currently just for example: unmap_mapping_range 781 * expands its hole outwards, whereas we want it to contract the hole 782 * inwards. However, existing callers of truncate_pagecache_range are 783 * doing their own page rounding first. Note that unmap_mapping_range 784 * allows holelen 0 for all, and we allow lend -1 for end of file. 785 */ 786 787 /* 788 * Unlike in truncate_pagecache, unmap_mapping_range is called only 789 * once (before truncating pagecache), and without "even_cows" flag: 790 * hole-punching should not remove private COWed pages from the hole. 791 */ 792 if ((u64)unmap_end > (u64)unmap_start) 793 unmap_mapping_range(mapping, unmap_start, 794 1 + unmap_end - unmap_start, 0); 795 truncate_inode_pages_range(mapping, lstart, lend); 796 } 797 EXPORT_SYMBOL(truncate_pagecache_range); 798