1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/cleancache.h> 24 #include <linux/rmap.h> 25 #include "internal.h" 26 27 static void clear_exceptional_entry(struct address_space *mapping, 28 pgoff_t index, void *entry) 29 { 30 struct radix_tree_node *node; 31 void **slot; 32 33 /* Handled by shmem itself */ 34 if (shmem_mapping(mapping)) 35 return; 36 37 if (dax_mapping(mapping)) { 38 dax_delete_mapping_entry(mapping, index); 39 return; 40 } 41 spin_lock_irq(&mapping->tree_lock); 42 /* 43 * Regular page slots are stabilized by the page lock even 44 * without the tree itself locked. These unlocked entries 45 * need verification under the tree lock. 46 */ 47 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 48 goto unlock; 49 if (*slot != entry) 50 goto unlock; 51 __radix_tree_replace(&mapping->page_tree, node, slot, NULL, 52 workingset_update_node, mapping); 53 mapping->nrexceptional--; 54 unlock: 55 spin_unlock_irq(&mapping->tree_lock); 56 } 57 58 /** 59 * do_invalidatepage - invalidate part or all of a page 60 * @page: the page which is affected 61 * @offset: start of the range to invalidate 62 * @length: length of the range to invalidate 63 * 64 * do_invalidatepage() is called when all or part of the page has become 65 * invalidated by a truncate operation. 66 * 67 * do_invalidatepage() does not have to release all buffers, but it must 68 * ensure that no dirty buffer is left outside @offset and that no I/O 69 * is underway against any of the blocks which are outside the truncation 70 * point. Because the caller is about to free (and possibly reuse) those 71 * blocks on-disk. 72 */ 73 void do_invalidatepage(struct page *page, unsigned int offset, 74 unsigned int length) 75 { 76 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 77 78 invalidatepage = page->mapping->a_ops->invalidatepage; 79 #ifdef CONFIG_BLOCK 80 if (!invalidatepage) 81 invalidatepage = block_invalidatepage; 82 #endif 83 if (invalidatepage) 84 (*invalidatepage)(page, offset, length); 85 } 86 87 /* 88 * If truncate cannot remove the fs-private metadata from the page, the page 89 * becomes orphaned. It will be left on the LRU and may even be mapped into 90 * user pagetables if we're racing with filemap_fault(). 91 * 92 * We need to bale out if page->mapping is no longer equal to the original 93 * mapping. This happens a) when the VM reclaimed the page while we waited on 94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 96 */ 97 static int 98 truncate_complete_page(struct address_space *mapping, struct page *page) 99 { 100 if (page->mapping != mapping) 101 return -EIO; 102 103 if (page_has_private(page)) 104 do_invalidatepage(page, 0, PAGE_SIZE); 105 106 /* 107 * Some filesystems seem to re-dirty the page even after 108 * the VM has canceled the dirty bit (eg ext3 journaling). 109 * Hence dirty accounting check is placed after invalidation. 110 */ 111 cancel_dirty_page(page); 112 ClearPageMappedToDisk(page); 113 delete_from_page_cache(page); 114 return 0; 115 } 116 117 /* 118 * This is for invalidate_mapping_pages(). That function can be called at 119 * any time, and is not supposed to throw away dirty pages. But pages can 120 * be marked dirty at any time too, so use remove_mapping which safely 121 * discards clean, unused pages. 122 * 123 * Returns non-zero if the page was successfully invalidated. 124 */ 125 static int 126 invalidate_complete_page(struct address_space *mapping, struct page *page) 127 { 128 int ret; 129 130 if (page->mapping != mapping) 131 return 0; 132 133 if (page_has_private(page) && !try_to_release_page(page, 0)) 134 return 0; 135 136 ret = remove_mapping(mapping, page); 137 138 return ret; 139 } 140 141 int truncate_inode_page(struct address_space *mapping, struct page *page) 142 { 143 loff_t holelen; 144 VM_BUG_ON_PAGE(PageTail(page), page); 145 146 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE; 147 if (page_mapped(page)) { 148 unmap_mapping_range(mapping, 149 (loff_t)page->index << PAGE_SHIFT, 150 holelen, 0); 151 } 152 return truncate_complete_page(mapping, page); 153 } 154 155 /* 156 * Used to get rid of pages on hardware memory corruption. 157 */ 158 int generic_error_remove_page(struct address_space *mapping, struct page *page) 159 { 160 if (!mapping) 161 return -EINVAL; 162 /* 163 * Only punch for normal data pages for now. 164 * Handling other types like directories would need more auditing. 165 */ 166 if (!S_ISREG(mapping->host->i_mode)) 167 return -EIO; 168 return truncate_inode_page(mapping, page); 169 } 170 EXPORT_SYMBOL(generic_error_remove_page); 171 172 /* 173 * Safely invalidate one page from its pagecache mapping. 174 * It only drops clean, unused pages. The page must be locked. 175 * 176 * Returns 1 if the page is successfully invalidated, otherwise 0. 177 */ 178 int invalidate_inode_page(struct page *page) 179 { 180 struct address_space *mapping = page_mapping(page); 181 if (!mapping) 182 return 0; 183 if (PageDirty(page) || PageWriteback(page)) 184 return 0; 185 if (page_mapped(page)) 186 return 0; 187 return invalidate_complete_page(mapping, page); 188 } 189 190 /** 191 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 192 * @mapping: mapping to truncate 193 * @lstart: offset from which to truncate 194 * @lend: offset to which to truncate (inclusive) 195 * 196 * Truncate the page cache, removing the pages that are between 197 * specified offsets (and zeroing out partial pages 198 * if lstart or lend + 1 is not page aligned). 199 * 200 * Truncate takes two passes - the first pass is nonblocking. It will not 201 * block on page locks and it will not block on writeback. The second pass 202 * will wait. This is to prevent as much IO as possible in the affected region. 203 * The first pass will remove most pages, so the search cost of the second pass 204 * is low. 205 * 206 * We pass down the cache-hot hint to the page freeing code. Even if the 207 * mapping is large, it is probably the case that the final pages are the most 208 * recently touched, and freeing happens in ascending file offset order. 209 * 210 * Note that since ->invalidatepage() accepts range to invalidate 211 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 212 * page aligned properly. 213 */ 214 void truncate_inode_pages_range(struct address_space *mapping, 215 loff_t lstart, loff_t lend) 216 { 217 pgoff_t start; /* inclusive */ 218 pgoff_t end; /* exclusive */ 219 unsigned int partial_start; /* inclusive */ 220 unsigned int partial_end; /* exclusive */ 221 struct pagevec pvec; 222 pgoff_t indices[PAGEVEC_SIZE]; 223 pgoff_t index; 224 int i; 225 226 cleancache_invalidate_inode(mapping); 227 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 228 return; 229 230 /* Offsets within partial pages */ 231 partial_start = lstart & (PAGE_SIZE - 1); 232 partial_end = (lend + 1) & (PAGE_SIZE - 1); 233 234 /* 235 * 'start' and 'end' always covers the range of pages to be fully 236 * truncated. Partial pages are covered with 'partial_start' at the 237 * start of the range and 'partial_end' at the end of the range. 238 * Note that 'end' is exclusive while 'lend' is inclusive. 239 */ 240 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 241 if (lend == -1) 242 /* 243 * lend == -1 indicates end-of-file so we have to set 'end' 244 * to the highest possible pgoff_t and since the type is 245 * unsigned we're using -1. 246 */ 247 end = -1; 248 else 249 end = (lend + 1) >> PAGE_SHIFT; 250 251 pagevec_init(&pvec, 0); 252 index = start; 253 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 254 min(end - index, (pgoff_t)PAGEVEC_SIZE), 255 indices)) { 256 for (i = 0; i < pagevec_count(&pvec); i++) { 257 struct page *page = pvec.pages[i]; 258 259 /* We rely upon deletion not changing page->index */ 260 index = indices[i]; 261 if (index >= end) 262 break; 263 264 if (radix_tree_exceptional_entry(page)) { 265 clear_exceptional_entry(mapping, index, page); 266 continue; 267 } 268 269 if (!trylock_page(page)) 270 continue; 271 WARN_ON(page_to_index(page) != index); 272 if (PageWriteback(page)) { 273 unlock_page(page); 274 continue; 275 } 276 truncate_inode_page(mapping, page); 277 unlock_page(page); 278 } 279 pagevec_remove_exceptionals(&pvec); 280 pagevec_release(&pvec); 281 cond_resched(); 282 index++; 283 } 284 285 if (partial_start) { 286 struct page *page = find_lock_page(mapping, start - 1); 287 if (page) { 288 unsigned int top = PAGE_SIZE; 289 if (start > end) { 290 /* Truncation within a single page */ 291 top = partial_end; 292 partial_end = 0; 293 } 294 wait_on_page_writeback(page); 295 zero_user_segment(page, partial_start, top); 296 cleancache_invalidate_page(mapping, page); 297 if (page_has_private(page)) 298 do_invalidatepage(page, partial_start, 299 top - partial_start); 300 unlock_page(page); 301 put_page(page); 302 } 303 } 304 if (partial_end) { 305 struct page *page = find_lock_page(mapping, end); 306 if (page) { 307 wait_on_page_writeback(page); 308 zero_user_segment(page, 0, partial_end); 309 cleancache_invalidate_page(mapping, page); 310 if (page_has_private(page)) 311 do_invalidatepage(page, 0, 312 partial_end); 313 unlock_page(page); 314 put_page(page); 315 } 316 } 317 /* 318 * If the truncation happened within a single page no pages 319 * will be released, just zeroed, so we can bail out now. 320 */ 321 if (start >= end) 322 return; 323 324 index = start; 325 for ( ; ; ) { 326 cond_resched(); 327 if (!pagevec_lookup_entries(&pvec, mapping, index, 328 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 329 /* If all gone from start onwards, we're done */ 330 if (index == start) 331 break; 332 /* Otherwise restart to make sure all gone */ 333 index = start; 334 continue; 335 } 336 if (index == start && indices[0] >= end) { 337 /* All gone out of hole to be punched, we're done */ 338 pagevec_remove_exceptionals(&pvec); 339 pagevec_release(&pvec); 340 break; 341 } 342 for (i = 0; i < pagevec_count(&pvec); i++) { 343 struct page *page = pvec.pages[i]; 344 345 /* We rely upon deletion not changing page->index */ 346 index = indices[i]; 347 if (index >= end) { 348 /* Restart punch to make sure all gone */ 349 index = start - 1; 350 break; 351 } 352 353 if (radix_tree_exceptional_entry(page)) { 354 clear_exceptional_entry(mapping, index, page); 355 continue; 356 } 357 358 lock_page(page); 359 WARN_ON(page_to_index(page) != index); 360 wait_on_page_writeback(page); 361 truncate_inode_page(mapping, page); 362 unlock_page(page); 363 } 364 pagevec_remove_exceptionals(&pvec); 365 pagevec_release(&pvec); 366 index++; 367 } 368 cleancache_invalidate_inode(mapping); 369 } 370 EXPORT_SYMBOL(truncate_inode_pages_range); 371 372 /** 373 * truncate_inode_pages - truncate *all* the pages from an offset 374 * @mapping: mapping to truncate 375 * @lstart: offset from which to truncate 376 * 377 * Called under (and serialised by) inode->i_mutex. 378 * 379 * Note: When this function returns, there can be a page in the process of 380 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 381 * mapping->nrpages can be non-zero when this function returns even after 382 * truncation of the whole mapping. 383 */ 384 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 385 { 386 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 387 } 388 EXPORT_SYMBOL(truncate_inode_pages); 389 390 /** 391 * truncate_inode_pages_final - truncate *all* pages before inode dies 392 * @mapping: mapping to truncate 393 * 394 * Called under (and serialized by) inode->i_mutex. 395 * 396 * Filesystems have to use this in the .evict_inode path to inform the 397 * VM that this is the final truncate and the inode is going away. 398 */ 399 void truncate_inode_pages_final(struct address_space *mapping) 400 { 401 unsigned long nrexceptional; 402 unsigned long nrpages; 403 404 /* 405 * Page reclaim can not participate in regular inode lifetime 406 * management (can't call iput()) and thus can race with the 407 * inode teardown. Tell it when the address space is exiting, 408 * so that it does not install eviction information after the 409 * final truncate has begun. 410 */ 411 mapping_set_exiting(mapping); 412 413 /* 414 * When reclaim installs eviction entries, it increases 415 * nrexceptional first, then decreases nrpages. Make sure we see 416 * this in the right order or we might miss an entry. 417 */ 418 nrpages = mapping->nrpages; 419 smp_rmb(); 420 nrexceptional = mapping->nrexceptional; 421 422 if (nrpages || nrexceptional) { 423 /* 424 * As truncation uses a lockless tree lookup, cycle 425 * the tree lock to make sure any ongoing tree 426 * modification that does not see AS_EXITING is 427 * completed before starting the final truncate. 428 */ 429 spin_lock_irq(&mapping->tree_lock); 430 spin_unlock_irq(&mapping->tree_lock); 431 432 truncate_inode_pages(mapping, 0); 433 } 434 } 435 EXPORT_SYMBOL(truncate_inode_pages_final); 436 437 /** 438 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 439 * @mapping: the address_space which holds the pages to invalidate 440 * @start: the offset 'from' which to invalidate 441 * @end: the offset 'to' which to invalidate (inclusive) 442 * 443 * This function only removes the unlocked pages, if you want to 444 * remove all the pages of one inode, you must call truncate_inode_pages. 445 * 446 * invalidate_mapping_pages() will not block on IO activity. It will not 447 * invalidate pages which are dirty, locked, under writeback or mapped into 448 * pagetables. 449 */ 450 unsigned long invalidate_mapping_pages(struct address_space *mapping, 451 pgoff_t start, pgoff_t end) 452 { 453 pgoff_t indices[PAGEVEC_SIZE]; 454 struct pagevec pvec; 455 pgoff_t index = start; 456 unsigned long ret; 457 unsigned long count = 0; 458 int i; 459 460 pagevec_init(&pvec, 0); 461 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 462 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 463 indices)) { 464 for (i = 0; i < pagevec_count(&pvec); i++) { 465 struct page *page = pvec.pages[i]; 466 467 /* We rely upon deletion not changing page->index */ 468 index = indices[i]; 469 if (index > end) 470 break; 471 472 if (radix_tree_exceptional_entry(page)) { 473 clear_exceptional_entry(mapping, index, page); 474 continue; 475 } 476 477 if (!trylock_page(page)) 478 continue; 479 480 WARN_ON(page_to_index(page) != index); 481 482 /* Middle of THP: skip */ 483 if (PageTransTail(page)) { 484 unlock_page(page); 485 continue; 486 } else if (PageTransHuge(page)) { 487 index += HPAGE_PMD_NR - 1; 488 i += HPAGE_PMD_NR - 1; 489 /* 'end' is in the middle of THP */ 490 if (index == round_down(end, HPAGE_PMD_NR)) 491 continue; 492 } 493 494 ret = invalidate_inode_page(page); 495 unlock_page(page); 496 /* 497 * Invalidation is a hint that the page is no longer 498 * of interest and try to speed up its reclaim. 499 */ 500 if (!ret) 501 deactivate_file_page(page); 502 count += ret; 503 } 504 pagevec_remove_exceptionals(&pvec); 505 pagevec_release(&pvec); 506 cond_resched(); 507 index++; 508 } 509 return count; 510 } 511 EXPORT_SYMBOL(invalidate_mapping_pages); 512 513 /* 514 * This is like invalidate_complete_page(), except it ignores the page's 515 * refcount. We do this because invalidate_inode_pages2() needs stronger 516 * invalidation guarantees, and cannot afford to leave pages behind because 517 * shrink_page_list() has a temp ref on them, or because they're transiently 518 * sitting in the lru_cache_add() pagevecs. 519 */ 520 static int 521 invalidate_complete_page2(struct address_space *mapping, struct page *page) 522 { 523 unsigned long flags; 524 525 if (page->mapping != mapping) 526 return 0; 527 528 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 529 return 0; 530 531 spin_lock_irqsave(&mapping->tree_lock, flags); 532 if (PageDirty(page)) 533 goto failed; 534 535 BUG_ON(page_has_private(page)); 536 __delete_from_page_cache(page, NULL); 537 spin_unlock_irqrestore(&mapping->tree_lock, flags); 538 539 if (mapping->a_ops->freepage) 540 mapping->a_ops->freepage(page); 541 542 put_page(page); /* pagecache ref */ 543 return 1; 544 failed: 545 spin_unlock_irqrestore(&mapping->tree_lock, flags); 546 return 0; 547 } 548 549 static int do_launder_page(struct address_space *mapping, struct page *page) 550 { 551 if (!PageDirty(page)) 552 return 0; 553 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 554 return 0; 555 return mapping->a_ops->launder_page(page); 556 } 557 558 /** 559 * invalidate_inode_pages2_range - remove range of pages from an address_space 560 * @mapping: the address_space 561 * @start: the page offset 'from' which to invalidate 562 * @end: the page offset 'to' which to invalidate (inclusive) 563 * 564 * Any pages which are found to be mapped into pagetables are unmapped prior to 565 * invalidation. 566 * 567 * Returns -EBUSY if any pages could not be invalidated. 568 */ 569 int invalidate_inode_pages2_range(struct address_space *mapping, 570 pgoff_t start, pgoff_t end) 571 { 572 pgoff_t indices[PAGEVEC_SIZE]; 573 struct pagevec pvec; 574 pgoff_t index; 575 int i; 576 int ret = 0; 577 int ret2 = 0; 578 int did_range_unmap = 0; 579 580 cleancache_invalidate_inode(mapping); 581 pagevec_init(&pvec, 0); 582 index = start; 583 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 584 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 585 indices)) { 586 for (i = 0; i < pagevec_count(&pvec); i++) { 587 struct page *page = pvec.pages[i]; 588 589 /* We rely upon deletion not changing page->index */ 590 index = indices[i]; 591 if (index > end) 592 break; 593 594 if (radix_tree_exceptional_entry(page)) { 595 clear_exceptional_entry(mapping, index, page); 596 continue; 597 } 598 599 lock_page(page); 600 WARN_ON(page_to_index(page) != index); 601 if (page->mapping != mapping) { 602 unlock_page(page); 603 continue; 604 } 605 wait_on_page_writeback(page); 606 if (page_mapped(page)) { 607 if (!did_range_unmap) { 608 /* 609 * Zap the rest of the file in one hit. 610 */ 611 unmap_mapping_range(mapping, 612 (loff_t)index << PAGE_SHIFT, 613 (loff_t)(1 + end - index) 614 << PAGE_SHIFT, 615 0); 616 did_range_unmap = 1; 617 } else { 618 /* 619 * Just zap this page 620 */ 621 unmap_mapping_range(mapping, 622 (loff_t)index << PAGE_SHIFT, 623 PAGE_SIZE, 0); 624 } 625 } 626 BUG_ON(page_mapped(page)); 627 ret2 = do_launder_page(mapping, page); 628 if (ret2 == 0) { 629 if (!invalidate_complete_page2(mapping, page)) 630 ret2 = -EBUSY; 631 } 632 if (ret2 < 0) 633 ret = ret2; 634 unlock_page(page); 635 } 636 pagevec_remove_exceptionals(&pvec); 637 pagevec_release(&pvec); 638 cond_resched(); 639 index++; 640 } 641 cleancache_invalidate_inode(mapping); 642 return ret; 643 } 644 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 645 646 /** 647 * invalidate_inode_pages2 - remove all pages from an address_space 648 * @mapping: the address_space 649 * 650 * Any pages which are found to be mapped into pagetables are unmapped prior to 651 * invalidation. 652 * 653 * Returns -EBUSY if any pages could not be invalidated. 654 */ 655 int invalidate_inode_pages2(struct address_space *mapping) 656 { 657 return invalidate_inode_pages2_range(mapping, 0, -1); 658 } 659 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 660 661 /** 662 * truncate_pagecache - unmap and remove pagecache that has been truncated 663 * @inode: inode 664 * @newsize: new file size 665 * 666 * inode's new i_size must already be written before truncate_pagecache 667 * is called. 668 * 669 * This function should typically be called before the filesystem 670 * releases resources associated with the freed range (eg. deallocates 671 * blocks). This way, pagecache will always stay logically coherent 672 * with on-disk format, and the filesystem would not have to deal with 673 * situations such as writepage being called for a page that has already 674 * had its underlying blocks deallocated. 675 */ 676 void truncate_pagecache(struct inode *inode, loff_t newsize) 677 { 678 struct address_space *mapping = inode->i_mapping; 679 loff_t holebegin = round_up(newsize, PAGE_SIZE); 680 681 /* 682 * unmap_mapping_range is called twice, first simply for 683 * efficiency so that truncate_inode_pages does fewer 684 * single-page unmaps. However after this first call, and 685 * before truncate_inode_pages finishes, it is possible for 686 * private pages to be COWed, which remain after 687 * truncate_inode_pages finishes, hence the second 688 * unmap_mapping_range call must be made for correctness. 689 */ 690 unmap_mapping_range(mapping, holebegin, 0, 1); 691 truncate_inode_pages(mapping, newsize); 692 unmap_mapping_range(mapping, holebegin, 0, 1); 693 } 694 EXPORT_SYMBOL(truncate_pagecache); 695 696 /** 697 * truncate_setsize - update inode and pagecache for a new file size 698 * @inode: inode 699 * @newsize: new file size 700 * 701 * truncate_setsize updates i_size and performs pagecache truncation (if 702 * necessary) to @newsize. It will be typically be called from the filesystem's 703 * setattr function when ATTR_SIZE is passed in. 704 * 705 * Must be called with a lock serializing truncates and writes (generally 706 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 707 * specific block truncation has been performed. 708 */ 709 void truncate_setsize(struct inode *inode, loff_t newsize) 710 { 711 loff_t oldsize = inode->i_size; 712 713 i_size_write(inode, newsize); 714 if (newsize > oldsize) 715 pagecache_isize_extended(inode, oldsize, newsize); 716 truncate_pagecache(inode, newsize); 717 } 718 EXPORT_SYMBOL(truncate_setsize); 719 720 /** 721 * pagecache_isize_extended - update pagecache after extension of i_size 722 * @inode: inode for which i_size was extended 723 * @from: original inode size 724 * @to: new inode size 725 * 726 * Handle extension of inode size either caused by extending truncate or by 727 * write starting after current i_size. We mark the page straddling current 728 * i_size RO so that page_mkwrite() is called on the nearest write access to 729 * the page. This way filesystem can be sure that page_mkwrite() is called on 730 * the page before user writes to the page via mmap after the i_size has been 731 * changed. 732 * 733 * The function must be called after i_size is updated so that page fault 734 * coming after we unlock the page will already see the new i_size. 735 * The function must be called while we still hold i_mutex - this not only 736 * makes sure i_size is stable but also that userspace cannot observe new 737 * i_size value before we are prepared to store mmap writes at new inode size. 738 */ 739 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 740 { 741 int bsize = 1 << inode->i_blkbits; 742 loff_t rounded_from; 743 struct page *page; 744 pgoff_t index; 745 746 WARN_ON(to > inode->i_size); 747 748 if (from >= to || bsize == PAGE_SIZE) 749 return; 750 /* Page straddling @from will not have any hole block created? */ 751 rounded_from = round_up(from, bsize); 752 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 753 return; 754 755 index = from >> PAGE_SHIFT; 756 page = find_lock_page(inode->i_mapping, index); 757 /* Page not cached? Nothing to do */ 758 if (!page) 759 return; 760 /* 761 * See clear_page_dirty_for_io() for details why set_page_dirty() 762 * is needed. 763 */ 764 if (page_mkclean(page)) 765 set_page_dirty(page); 766 unlock_page(page); 767 put_page(page); 768 } 769 EXPORT_SYMBOL(pagecache_isize_extended); 770 771 /** 772 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 773 * @inode: inode 774 * @lstart: offset of beginning of hole 775 * @lend: offset of last byte of hole 776 * 777 * This function should typically be called before the filesystem 778 * releases resources associated with the freed range (eg. deallocates 779 * blocks). This way, pagecache will always stay logically coherent 780 * with on-disk format, and the filesystem would not have to deal with 781 * situations such as writepage being called for a page that has already 782 * had its underlying blocks deallocated. 783 */ 784 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 785 { 786 struct address_space *mapping = inode->i_mapping; 787 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 788 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 789 /* 790 * This rounding is currently just for example: unmap_mapping_range 791 * expands its hole outwards, whereas we want it to contract the hole 792 * inwards. However, existing callers of truncate_pagecache_range are 793 * doing their own page rounding first. Note that unmap_mapping_range 794 * allows holelen 0 for all, and we allow lend -1 for end of file. 795 */ 796 797 /* 798 * Unlike in truncate_pagecache, unmap_mapping_range is called only 799 * once (before truncating pagecache), and without "even_cows" flag: 800 * hole-punching should not remove private COWed pages from the hole. 801 */ 802 if ((u64)unmap_end > (u64)unmap_start) 803 unmap_mapping_range(mapping, unmap_start, 804 1 + unmap_end - unmap_start, 0); 805 truncate_inode_pages_range(mapping, lstart, lend); 806 } 807 EXPORT_SYMBOL(truncate_pagecache_range); 808