xref: /linux/mm/truncate.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26 
27 static void clear_exceptional_entry(struct address_space *mapping,
28 				    pgoff_t index, void *entry)
29 {
30 	struct radix_tree_node *node;
31 	void **slot;
32 
33 	/* Handled by shmem itself */
34 	if (shmem_mapping(mapping))
35 		return;
36 
37 	if (dax_mapping(mapping)) {
38 		dax_delete_mapping_entry(mapping, index);
39 		return;
40 	}
41 	spin_lock_irq(&mapping->tree_lock);
42 	/*
43 	 * Regular page slots are stabilized by the page lock even
44 	 * without the tree itself locked.  These unlocked entries
45 	 * need verification under the tree lock.
46 	 */
47 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
48 		goto unlock;
49 	if (*slot != entry)
50 		goto unlock;
51 	__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
52 			     workingset_update_node, mapping);
53 	mapping->nrexceptional--;
54 unlock:
55 	spin_unlock_irq(&mapping->tree_lock);
56 }
57 
58 /**
59  * do_invalidatepage - invalidate part or all of a page
60  * @page: the page which is affected
61  * @offset: start of the range to invalidate
62  * @length: length of the range to invalidate
63  *
64  * do_invalidatepage() is called when all or part of the page has become
65  * invalidated by a truncate operation.
66  *
67  * do_invalidatepage() does not have to release all buffers, but it must
68  * ensure that no dirty buffer is left outside @offset and that no I/O
69  * is underway against any of the blocks which are outside the truncation
70  * point.  Because the caller is about to free (and possibly reuse) those
71  * blocks on-disk.
72  */
73 void do_invalidatepage(struct page *page, unsigned int offset,
74 		       unsigned int length)
75 {
76 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
77 
78 	invalidatepage = page->mapping->a_ops->invalidatepage;
79 #ifdef CONFIG_BLOCK
80 	if (!invalidatepage)
81 		invalidatepage = block_invalidatepage;
82 #endif
83 	if (invalidatepage)
84 		(*invalidatepage)(page, offset, length);
85 }
86 
87 /*
88  * If truncate cannot remove the fs-private metadata from the page, the page
89  * becomes orphaned.  It will be left on the LRU and may even be mapped into
90  * user pagetables if we're racing with filemap_fault().
91  *
92  * We need to bale out if page->mapping is no longer equal to the original
93  * mapping.  This happens a) when the VM reclaimed the page while we waited on
94  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
96  */
97 static int
98 truncate_complete_page(struct address_space *mapping, struct page *page)
99 {
100 	if (page->mapping != mapping)
101 		return -EIO;
102 
103 	if (page_has_private(page))
104 		do_invalidatepage(page, 0, PAGE_SIZE);
105 
106 	/*
107 	 * Some filesystems seem to re-dirty the page even after
108 	 * the VM has canceled the dirty bit (eg ext3 journaling).
109 	 * Hence dirty accounting check is placed after invalidation.
110 	 */
111 	cancel_dirty_page(page);
112 	ClearPageMappedToDisk(page);
113 	delete_from_page_cache(page);
114 	return 0;
115 }
116 
117 /*
118  * This is for invalidate_mapping_pages().  That function can be called at
119  * any time, and is not supposed to throw away dirty pages.  But pages can
120  * be marked dirty at any time too, so use remove_mapping which safely
121  * discards clean, unused pages.
122  *
123  * Returns non-zero if the page was successfully invalidated.
124  */
125 static int
126 invalidate_complete_page(struct address_space *mapping, struct page *page)
127 {
128 	int ret;
129 
130 	if (page->mapping != mapping)
131 		return 0;
132 
133 	if (page_has_private(page) && !try_to_release_page(page, 0))
134 		return 0;
135 
136 	ret = remove_mapping(mapping, page);
137 
138 	return ret;
139 }
140 
141 int truncate_inode_page(struct address_space *mapping, struct page *page)
142 {
143 	loff_t holelen;
144 	VM_BUG_ON_PAGE(PageTail(page), page);
145 
146 	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
147 	if (page_mapped(page)) {
148 		unmap_mapping_range(mapping,
149 				   (loff_t)page->index << PAGE_SHIFT,
150 				   holelen, 0);
151 	}
152 	return truncate_complete_page(mapping, page);
153 }
154 
155 /*
156  * Used to get rid of pages on hardware memory corruption.
157  */
158 int generic_error_remove_page(struct address_space *mapping, struct page *page)
159 {
160 	if (!mapping)
161 		return -EINVAL;
162 	/*
163 	 * Only punch for normal data pages for now.
164 	 * Handling other types like directories would need more auditing.
165 	 */
166 	if (!S_ISREG(mapping->host->i_mode))
167 		return -EIO;
168 	return truncate_inode_page(mapping, page);
169 }
170 EXPORT_SYMBOL(generic_error_remove_page);
171 
172 /*
173  * Safely invalidate one page from its pagecache mapping.
174  * It only drops clean, unused pages. The page must be locked.
175  *
176  * Returns 1 if the page is successfully invalidated, otherwise 0.
177  */
178 int invalidate_inode_page(struct page *page)
179 {
180 	struct address_space *mapping = page_mapping(page);
181 	if (!mapping)
182 		return 0;
183 	if (PageDirty(page) || PageWriteback(page))
184 		return 0;
185 	if (page_mapped(page))
186 		return 0;
187 	return invalidate_complete_page(mapping, page);
188 }
189 
190 /**
191  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
192  * @mapping: mapping to truncate
193  * @lstart: offset from which to truncate
194  * @lend: offset to which to truncate (inclusive)
195  *
196  * Truncate the page cache, removing the pages that are between
197  * specified offsets (and zeroing out partial pages
198  * if lstart or lend + 1 is not page aligned).
199  *
200  * Truncate takes two passes - the first pass is nonblocking.  It will not
201  * block on page locks and it will not block on writeback.  The second pass
202  * will wait.  This is to prevent as much IO as possible in the affected region.
203  * The first pass will remove most pages, so the search cost of the second pass
204  * is low.
205  *
206  * We pass down the cache-hot hint to the page freeing code.  Even if the
207  * mapping is large, it is probably the case that the final pages are the most
208  * recently touched, and freeing happens in ascending file offset order.
209  *
210  * Note that since ->invalidatepage() accepts range to invalidate
211  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
212  * page aligned properly.
213  */
214 void truncate_inode_pages_range(struct address_space *mapping,
215 				loff_t lstart, loff_t lend)
216 {
217 	pgoff_t		start;		/* inclusive */
218 	pgoff_t		end;		/* exclusive */
219 	unsigned int	partial_start;	/* inclusive */
220 	unsigned int	partial_end;	/* exclusive */
221 	struct pagevec	pvec;
222 	pgoff_t		indices[PAGEVEC_SIZE];
223 	pgoff_t		index;
224 	int		i;
225 
226 	cleancache_invalidate_inode(mapping);
227 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
228 		return;
229 
230 	/* Offsets within partial pages */
231 	partial_start = lstart & (PAGE_SIZE - 1);
232 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
233 
234 	/*
235 	 * 'start' and 'end' always covers the range of pages to be fully
236 	 * truncated. Partial pages are covered with 'partial_start' at the
237 	 * start of the range and 'partial_end' at the end of the range.
238 	 * Note that 'end' is exclusive while 'lend' is inclusive.
239 	 */
240 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
241 	if (lend == -1)
242 		/*
243 		 * lend == -1 indicates end-of-file so we have to set 'end'
244 		 * to the highest possible pgoff_t and since the type is
245 		 * unsigned we're using -1.
246 		 */
247 		end = -1;
248 	else
249 		end = (lend + 1) >> PAGE_SHIFT;
250 
251 	pagevec_init(&pvec, 0);
252 	index = start;
253 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
254 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
255 			indices)) {
256 		for (i = 0; i < pagevec_count(&pvec); i++) {
257 			struct page *page = pvec.pages[i];
258 
259 			/* We rely upon deletion not changing page->index */
260 			index = indices[i];
261 			if (index >= end)
262 				break;
263 
264 			if (radix_tree_exceptional_entry(page)) {
265 				clear_exceptional_entry(mapping, index, page);
266 				continue;
267 			}
268 
269 			if (!trylock_page(page))
270 				continue;
271 			WARN_ON(page_to_index(page) != index);
272 			if (PageWriteback(page)) {
273 				unlock_page(page);
274 				continue;
275 			}
276 			truncate_inode_page(mapping, page);
277 			unlock_page(page);
278 		}
279 		pagevec_remove_exceptionals(&pvec);
280 		pagevec_release(&pvec);
281 		cond_resched();
282 		index++;
283 	}
284 
285 	if (partial_start) {
286 		struct page *page = find_lock_page(mapping, start - 1);
287 		if (page) {
288 			unsigned int top = PAGE_SIZE;
289 			if (start > end) {
290 				/* Truncation within a single page */
291 				top = partial_end;
292 				partial_end = 0;
293 			}
294 			wait_on_page_writeback(page);
295 			zero_user_segment(page, partial_start, top);
296 			cleancache_invalidate_page(mapping, page);
297 			if (page_has_private(page))
298 				do_invalidatepage(page, partial_start,
299 						  top - partial_start);
300 			unlock_page(page);
301 			put_page(page);
302 		}
303 	}
304 	if (partial_end) {
305 		struct page *page = find_lock_page(mapping, end);
306 		if (page) {
307 			wait_on_page_writeback(page);
308 			zero_user_segment(page, 0, partial_end);
309 			cleancache_invalidate_page(mapping, page);
310 			if (page_has_private(page))
311 				do_invalidatepage(page, 0,
312 						  partial_end);
313 			unlock_page(page);
314 			put_page(page);
315 		}
316 	}
317 	/*
318 	 * If the truncation happened within a single page no pages
319 	 * will be released, just zeroed, so we can bail out now.
320 	 */
321 	if (start >= end)
322 		return;
323 
324 	index = start;
325 	for ( ; ; ) {
326 		cond_resched();
327 		if (!pagevec_lookup_entries(&pvec, mapping, index,
328 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
329 			/* If all gone from start onwards, we're done */
330 			if (index == start)
331 				break;
332 			/* Otherwise restart to make sure all gone */
333 			index = start;
334 			continue;
335 		}
336 		if (index == start && indices[0] >= end) {
337 			/* All gone out of hole to be punched, we're done */
338 			pagevec_remove_exceptionals(&pvec);
339 			pagevec_release(&pvec);
340 			break;
341 		}
342 		for (i = 0; i < pagevec_count(&pvec); i++) {
343 			struct page *page = pvec.pages[i];
344 
345 			/* We rely upon deletion not changing page->index */
346 			index = indices[i];
347 			if (index >= end) {
348 				/* Restart punch to make sure all gone */
349 				index = start - 1;
350 				break;
351 			}
352 
353 			if (radix_tree_exceptional_entry(page)) {
354 				clear_exceptional_entry(mapping, index, page);
355 				continue;
356 			}
357 
358 			lock_page(page);
359 			WARN_ON(page_to_index(page) != index);
360 			wait_on_page_writeback(page);
361 			truncate_inode_page(mapping, page);
362 			unlock_page(page);
363 		}
364 		pagevec_remove_exceptionals(&pvec);
365 		pagevec_release(&pvec);
366 		index++;
367 	}
368 	cleancache_invalidate_inode(mapping);
369 }
370 EXPORT_SYMBOL(truncate_inode_pages_range);
371 
372 /**
373  * truncate_inode_pages - truncate *all* the pages from an offset
374  * @mapping: mapping to truncate
375  * @lstart: offset from which to truncate
376  *
377  * Called under (and serialised by) inode->i_mutex.
378  *
379  * Note: When this function returns, there can be a page in the process of
380  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
381  * mapping->nrpages can be non-zero when this function returns even after
382  * truncation of the whole mapping.
383  */
384 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
385 {
386 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
387 }
388 EXPORT_SYMBOL(truncate_inode_pages);
389 
390 /**
391  * truncate_inode_pages_final - truncate *all* pages before inode dies
392  * @mapping: mapping to truncate
393  *
394  * Called under (and serialized by) inode->i_mutex.
395  *
396  * Filesystems have to use this in the .evict_inode path to inform the
397  * VM that this is the final truncate and the inode is going away.
398  */
399 void truncate_inode_pages_final(struct address_space *mapping)
400 {
401 	unsigned long nrexceptional;
402 	unsigned long nrpages;
403 
404 	/*
405 	 * Page reclaim can not participate in regular inode lifetime
406 	 * management (can't call iput()) and thus can race with the
407 	 * inode teardown.  Tell it when the address space is exiting,
408 	 * so that it does not install eviction information after the
409 	 * final truncate has begun.
410 	 */
411 	mapping_set_exiting(mapping);
412 
413 	/*
414 	 * When reclaim installs eviction entries, it increases
415 	 * nrexceptional first, then decreases nrpages.  Make sure we see
416 	 * this in the right order or we might miss an entry.
417 	 */
418 	nrpages = mapping->nrpages;
419 	smp_rmb();
420 	nrexceptional = mapping->nrexceptional;
421 
422 	if (nrpages || nrexceptional) {
423 		/*
424 		 * As truncation uses a lockless tree lookup, cycle
425 		 * the tree lock to make sure any ongoing tree
426 		 * modification that does not see AS_EXITING is
427 		 * completed before starting the final truncate.
428 		 */
429 		spin_lock_irq(&mapping->tree_lock);
430 		spin_unlock_irq(&mapping->tree_lock);
431 
432 		truncate_inode_pages(mapping, 0);
433 	}
434 }
435 EXPORT_SYMBOL(truncate_inode_pages_final);
436 
437 /**
438  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
439  * @mapping: the address_space which holds the pages to invalidate
440  * @start: the offset 'from' which to invalidate
441  * @end: the offset 'to' which to invalidate (inclusive)
442  *
443  * This function only removes the unlocked pages, if you want to
444  * remove all the pages of one inode, you must call truncate_inode_pages.
445  *
446  * invalidate_mapping_pages() will not block on IO activity. It will not
447  * invalidate pages which are dirty, locked, under writeback or mapped into
448  * pagetables.
449  */
450 unsigned long invalidate_mapping_pages(struct address_space *mapping,
451 		pgoff_t start, pgoff_t end)
452 {
453 	pgoff_t indices[PAGEVEC_SIZE];
454 	struct pagevec pvec;
455 	pgoff_t index = start;
456 	unsigned long ret;
457 	unsigned long count = 0;
458 	int i;
459 
460 	pagevec_init(&pvec, 0);
461 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
462 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
463 			indices)) {
464 		for (i = 0; i < pagevec_count(&pvec); i++) {
465 			struct page *page = pvec.pages[i];
466 
467 			/* We rely upon deletion not changing page->index */
468 			index = indices[i];
469 			if (index > end)
470 				break;
471 
472 			if (radix_tree_exceptional_entry(page)) {
473 				clear_exceptional_entry(mapping, index, page);
474 				continue;
475 			}
476 
477 			if (!trylock_page(page))
478 				continue;
479 
480 			WARN_ON(page_to_index(page) != index);
481 
482 			/* Middle of THP: skip */
483 			if (PageTransTail(page)) {
484 				unlock_page(page);
485 				continue;
486 			} else if (PageTransHuge(page)) {
487 				index += HPAGE_PMD_NR - 1;
488 				i += HPAGE_PMD_NR - 1;
489 				/* 'end' is in the middle of THP */
490 				if (index ==  round_down(end, HPAGE_PMD_NR))
491 					continue;
492 			}
493 
494 			ret = invalidate_inode_page(page);
495 			unlock_page(page);
496 			/*
497 			 * Invalidation is a hint that the page is no longer
498 			 * of interest and try to speed up its reclaim.
499 			 */
500 			if (!ret)
501 				deactivate_file_page(page);
502 			count += ret;
503 		}
504 		pagevec_remove_exceptionals(&pvec);
505 		pagevec_release(&pvec);
506 		cond_resched();
507 		index++;
508 	}
509 	return count;
510 }
511 EXPORT_SYMBOL(invalidate_mapping_pages);
512 
513 /*
514  * This is like invalidate_complete_page(), except it ignores the page's
515  * refcount.  We do this because invalidate_inode_pages2() needs stronger
516  * invalidation guarantees, and cannot afford to leave pages behind because
517  * shrink_page_list() has a temp ref on them, or because they're transiently
518  * sitting in the lru_cache_add() pagevecs.
519  */
520 static int
521 invalidate_complete_page2(struct address_space *mapping, struct page *page)
522 {
523 	unsigned long flags;
524 
525 	if (page->mapping != mapping)
526 		return 0;
527 
528 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
529 		return 0;
530 
531 	spin_lock_irqsave(&mapping->tree_lock, flags);
532 	if (PageDirty(page))
533 		goto failed;
534 
535 	BUG_ON(page_has_private(page));
536 	__delete_from_page_cache(page, NULL);
537 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
538 
539 	if (mapping->a_ops->freepage)
540 		mapping->a_ops->freepage(page);
541 
542 	put_page(page);	/* pagecache ref */
543 	return 1;
544 failed:
545 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
546 	return 0;
547 }
548 
549 static int do_launder_page(struct address_space *mapping, struct page *page)
550 {
551 	if (!PageDirty(page))
552 		return 0;
553 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
554 		return 0;
555 	return mapping->a_ops->launder_page(page);
556 }
557 
558 /**
559  * invalidate_inode_pages2_range - remove range of pages from an address_space
560  * @mapping: the address_space
561  * @start: the page offset 'from' which to invalidate
562  * @end: the page offset 'to' which to invalidate (inclusive)
563  *
564  * Any pages which are found to be mapped into pagetables are unmapped prior to
565  * invalidation.
566  *
567  * Returns -EBUSY if any pages could not be invalidated.
568  */
569 int invalidate_inode_pages2_range(struct address_space *mapping,
570 				  pgoff_t start, pgoff_t end)
571 {
572 	pgoff_t indices[PAGEVEC_SIZE];
573 	struct pagevec pvec;
574 	pgoff_t index;
575 	int i;
576 	int ret = 0;
577 	int ret2 = 0;
578 	int did_range_unmap = 0;
579 
580 	cleancache_invalidate_inode(mapping);
581 	pagevec_init(&pvec, 0);
582 	index = start;
583 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
584 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
585 			indices)) {
586 		for (i = 0; i < pagevec_count(&pvec); i++) {
587 			struct page *page = pvec.pages[i];
588 
589 			/* We rely upon deletion not changing page->index */
590 			index = indices[i];
591 			if (index > end)
592 				break;
593 
594 			if (radix_tree_exceptional_entry(page)) {
595 				clear_exceptional_entry(mapping, index, page);
596 				continue;
597 			}
598 
599 			lock_page(page);
600 			WARN_ON(page_to_index(page) != index);
601 			if (page->mapping != mapping) {
602 				unlock_page(page);
603 				continue;
604 			}
605 			wait_on_page_writeback(page);
606 			if (page_mapped(page)) {
607 				if (!did_range_unmap) {
608 					/*
609 					 * Zap the rest of the file in one hit.
610 					 */
611 					unmap_mapping_range(mapping,
612 					   (loff_t)index << PAGE_SHIFT,
613 					   (loff_t)(1 + end - index)
614 							 << PAGE_SHIFT,
615 							 0);
616 					did_range_unmap = 1;
617 				} else {
618 					/*
619 					 * Just zap this page
620 					 */
621 					unmap_mapping_range(mapping,
622 					   (loff_t)index << PAGE_SHIFT,
623 					   PAGE_SIZE, 0);
624 				}
625 			}
626 			BUG_ON(page_mapped(page));
627 			ret2 = do_launder_page(mapping, page);
628 			if (ret2 == 0) {
629 				if (!invalidate_complete_page2(mapping, page))
630 					ret2 = -EBUSY;
631 			}
632 			if (ret2 < 0)
633 				ret = ret2;
634 			unlock_page(page);
635 		}
636 		pagevec_remove_exceptionals(&pvec);
637 		pagevec_release(&pvec);
638 		cond_resched();
639 		index++;
640 	}
641 	cleancache_invalidate_inode(mapping);
642 	return ret;
643 }
644 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
645 
646 /**
647  * invalidate_inode_pages2 - remove all pages from an address_space
648  * @mapping: the address_space
649  *
650  * Any pages which are found to be mapped into pagetables are unmapped prior to
651  * invalidation.
652  *
653  * Returns -EBUSY if any pages could not be invalidated.
654  */
655 int invalidate_inode_pages2(struct address_space *mapping)
656 {
657 	return invalidate_inode_pages2_range(mapping, 0, -1);
658 }
659 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
660 
661 /**
662  * truncate_pagecache - unmap and remove pagecache that has been truncated
663  * @inode: inode
664  * @newsize: new file size
665  *
666  * inode's new i_size must already be written before truncate_pagecache
667  * is called.
668  *
669  * This function should typically be called before the filesystem
670  * releases resources associated with the freed range (eg. deallocates
671  * blocks). This way, pagecache will always stay logically coherent
672  * with on-disk format, and the filesystem would not have to deal with
673  * situations such as writepage being called for a page that has already
674  * had its underlying blocks deallocated.
675  */
676 void truncate_pagecache(struct inode *inode, loff_t newsize)
677 {
678 	struct address_space *mapping = inode->i_mapping;
679 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
680 
681 	/*
682 	 * unmap_mapping_range is called twice, first simply for
683 	 * efficiency so that truncate_inode_pages does fewer
684 	 * single-page unmaps.  However after this first call, and
685 	 * before truncate_inode_pages finishes, it is possible for
686 	 * private pages to be COWed, which remain after
687 	 * truncate_inode_pages finishes, hence the second
688 	 * unmap_mapping_range call must be made for correctness.
689 	 */
690 	unmap_mapping_range(mapping, holebegin, 0, 1);
691 	truncate_inode_pages(mapping, newsize);
692 	unmap_mapping_range(mapping, holebegin, 0, 1);
693 }
694 EXPORT_SYMBOL(truncate_pagecache);
695 
696 /**
697  * truncate_setsize - update inode and pagecache for a new file size
698  * @inode: inode
699  * @newsize: new file size
700  *
701  * truncate_setsize updates i_size and performs pagecache truncation (if
702  * necessary) to @newsize. It will be typically be called from the filesystem's
703  * setattr function when ATTR_SIZE is passed in.
704  *
705  * Must be called with a lock serializing truncates and writes (generally
706  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
707  * specific block truncation has been performed.
708  */
709 void truncate_setsize(struct inode *inode, loff_t newsize)
710 {
711 	loff_t oldsize = inode->i_size;
712 
713 	i_size_write(inode, newsize);
714 	if (newsize > oldsize)
715 		pagecache_isize_extended(inode, oldsize, newsize);
716 	truncate_pagecache(inode, newsize);
717 }
718 EXPORT_SYMBOL(truncate_setsize);
719 
720 /**
721  * pagecache_isize_extended - update pagecache after extension of i_size
722  * @inode:	inode for which i_size was extended
723  * @from:	original inode size
724  * @to:		new inode size
725  *
726  * Handle extension of inode size either caused by extending truncate or by
727  * write starting after current i_size. We mark the page straddling current
728  * i_size RO so that page_mkwrite() is called on the nearest write access to
729  * the page.  This way filesystem can be sure that page_mkwrite() is called on
730  * the page before user writes to the page via mmap after the i_size has been
731  * changed.
732  *
733  * The function must be called after i_size is updated so that page fault
734  * coming after we unlock the page will already see the new i_size.
735  * The function must be called while we still hold i_mutex - this not only
736  * makes sure i_size is stable but also that userspace cannot observe new
737  * i_size value before we are prepared to store mmap writes at new inode size.
738  */
739 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
740 {
741 	int bsize = 1 << inode->i_blkbits;
742 	loff_t rounded_from;
743 	struct page *page;
744 	pgoff_t index;
745 
746 	WARN_ON(to > inode->i_size);
747 
748 	if (from >= to || bsize == PAGE_SIZE)
749 		return;
750 	/* Page straddling @from will not have any hole block created? */
751 	rounded_from = round_up(from, bsize);
752 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
753 		return;
754 
755 	index = from >> PAGE_SHIFT;
756 	page = find_lock_page(inode->i_mapping, index);
757 	/* Page not cached? Nothing to do */
758 	if (!page)
759 		return;
760 	/*
761 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
762 	 * is needed.
763 	 */
764 	if (page_mkclean(page))
765 		set_page_dirty(page);
766 	unlock_page(page);
767 	put_page(page);
768 }
769 EXPORT_SYMBOL(pagecache_isize_extended);
770 
771 /**
772  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
773  * @inode: inode
774  * @lstart: offset of beginning of hole
775  * @lend: offset of last byte of hole
776  *
777  * This function should typically be called before the filesystem
778  * releases resources associated with the freed range (eg. deallocates
779  * blocks). This way, pagecache will always stay logically coherent
780  * with on-disk format, and the filesystem would not have to deal with
781  * situations such as writepage being called for a page that has already
782  * had its underlying blocks deallocated.
783  */
784 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
785 {
786 	struct address_space *mapping = inode->i_mapping;
787 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
788 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
789 	/*
790 	 * This rounding is currently just for example: unmap_mapping_range
791 	 * expands its hole outwards, whereas we want it to contract the hole
792 	 * inwards.  However, existing callers of truncate_pagecache_range are
793 	 * doing their own page rounding first.  Note that unmap_mapping_range
794 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
795 	 */
796 
797 	/*
798 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
799 	 * once (before truncating pagecache), and without "even_cows" flag:
800 	 * hole-punching should not remove private COWed pages from the hole.
801 	 */
802 	if ((u64)unmap_end > (u64)unmap_start)
803 		unmap_mapping_range(mapping, unmap_start,
804 				    1 + unmap_end - unmap_start, 0);
805 	truncate_inode_pages_range(mapping, lstart, lend);
806 }
807 EXPORT_SYMBOL(truncate_pagecache_range);
808