xref: /linux/mm/truncate.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25 
26 static void clear_shadow_entries(struct address_space *mapping,
27 				 unsigned long start, unsigned long max)
28 {
29 	XA_STATE(xas, &mapping->i_pages, start);
30 	struct folio *folio;
31 
32 	/* Handled by shmem itself, or for DAX we do nothing. */
33 	if (shmem_mapping(mapping) || dax_mapping(mapping))
34 		return;
35 
36 	xas_set_update(&xas, workingset_update_node);
37 
38 	spin_lock(&mapping->host->i_lock);
39 	xas_lock_irq(&xas);
40 
41 	/* Clear all shadow entries from start to max */
42 	xas_for_each(&xas, folio, max) {
43 		if (xa_is_value(folio))
44 			xas_store(&xas, NULL);
45 	}
46 
47 	xas_unlock_irq(&xas);
48 	if (mapping_shrinkable(mapping))
49 		inode_add_lru(mapping->host);
50 	spin_unlock(&mapping->host->i_lock);
51 }
52 
53 /*
54  * Unconditionally remove exceptional entries. Usually called from truncate
55  * path. Note that the folio_batch may be altered by this function by removing
56  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
57  * Please note that indices[] has entries in ascending order as guaranteed by
58  * either find_get_entries() or find_lock_entries().
59  */
60 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
61 				struct folio_batch *fbatch, pgoff_t *indices)
62 {
63 	XA_STATE(xas, &mapping->i_pages, indices[0]);
64 	int nr = folio_batch_count(fbatch);
65 	struct folio *folio;
66 	int i, j;
67 
68 	/* Handled by shmem itself */
69 	if (shmem_mapping(mapping))
70 		return;
71 
72 	for (j = 0; j < nr; j++)
73 		if (xa_is_value(fbatch->folios[j]))
74 			break;
75 
76 	if (j == nr)
77 		return;
78 
79 	if (dax_mapping(mapping)) {
80 		for (i = j; i < nr; i++) {
81 			if (xa_is_value(fbatch->folios[i]))
82 				dax_delete_mapping_entry(mapping, indices[i]);
83 		}
84 		goto out;
85 	}
86 
87 	xas_set(&xas, indices[j]);
88 	xas_set_update(&xas, workingset_update_node);
89 
90 	spin_lock(&mapping->host->i_lock);
91 	xas_lock_irq(&xas);
92 
93 	xas_for_each(&xas, folio, indices[nr-1]) {
94 		if (xa_is_value(folio))
95 			xas_store(&xas, NULL);
96 	}
97 
98 	xas_unlock_irq(&xas);
99 	if (mapping_shrinkable(mapping))
100 		inode_add_lru(mapping->host);
101 	spin_unlock(&mapping->host->i_lock);
102 out:
103 	folio_batch_remove_exceptionals(fbatch);
104 }
105 
106 /**
107  * folio_invalidate - Invalidate part or all of a folio.
108  * @folio: The folio which is affected.
109  * @offset: start of the range to invalidate
110  * @length: length of the range to invalidate
111  *
112  * folio_invalidate() is called when all or part of the folio has become
113  * invalidated by a truncate operation.
114  *
115  * folio_invalidate() does not have to release all buffers, but it must
116  * ensure that no dirty buffer is left outside @offset and that no I/O
117  * is underway against any of the blocks which are outside the truncation
118  * point.  Because the caller is about to free (and possibly reuse) those
119  * blocks on-disk.
120  */
121 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
122 {
123 	const struct address_space_operations *aops = folio->mapping->a_ops;
124 
125 	if (aops->invalidate_folio)
126 		aops->invalidate_folio(folio, offset, length);
127 }
128 EXPORT_SYMBOL_GPL(folio_invalidate);
129 
130 /*
131  * If truncate cannot remove the fs-private metadata from the page, the page
132  * becomes orphaned.  It will be left on the LRU and may even be mapped into
133  * user pagetables if we're racing with filemap_fault().
134  *
135  * We need to bail out if page->mapping is no longer equal to the original
136  * mapping.  This happens a) when the VM reclaimed the page while we waited on
137  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
138  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
139  */
140 static void truncate_cleanup_folio(struct folio *folio)
141 {
142 	if (folio_mapped(folio))
143 		unmap_mapping_folio(folio);
144 
145 	if (folio_needs_release(folio))
146 		folio_invalidate(folio, 0, folio_size(folio));
147 
148 	/*
149 	 * Some filesystems seem to re-dirty the page even after
150 	 * the VM has canceled the dirty bit (eg ext3 journaling).
151 	 * Hence dirty accounting check is placed after invalidation.
152 	 */
153 	folio_cancel_dirty(folio);
154 }
155 
156 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
157 {
158 	if (folio->mapping != mapping)
159 		return -EIO;
160 
161 	truncate_cleanup_folio(folio);
162 	filemap_remove_folio(folio);
163 	return 0;
164 }
165 
166 /*
167  * Handle partial folios.  The folio may be entirely within the
168  * range if a split has raced with us.  If not, we zero the part of the
169  * folio that's within the [start, end] range, and then split the folio if
170  * it's large.  split_page_range() will discard pages which now lie beyond
171  * i_size, and we rely on the caller to discard pages which lie within a
172  * newly created hole.
173  *
174  * Returns false if splitting failed so the caller can avoid
175  * discarding the entire folio which is stubbornly unsplit.
176  */
177 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
178 {
179 	loff_t pos = folio_pos(folio);
180 	unsigned int offset, length;
181 
182 	if (pos < start)
183 		offset = start - pos;
184 	else
185 		offset = 0;
186 	length = folio_size(folio);
187 	if (pos + length <= (u64)end)
188 		length = length - offset;
189 	else
190 		length = end + 1 - pos - offset;
191 
192 	folio_wait_writeback(folio);
193 	if (length == folio_size(folio)) {
194 		truncate_inode_folio(folio->mapping, folio);
195 		return true;
196 	}
197 
198 	/*
199 	 * We may be zeroing pages we're about to discard, but it avoids
200 	 * doing a complex calculation here, and then doing the zeroing
201 	 * anyway if the page split fails.
202 	 */
203 	if (!mapping_inaccessible(folio->mapping))
204 		folio_zero_range(folio, offset, length);
205 
206 	if (folio_needs_release(folio))
207 		folio_invalidate(folio, offset, length);
208 	if (!folio_test_large(folio))
209 		return true;
210 	if (split_folio(folio) == 0)
211 		return true;
212 	if (folio_test_dirty(folio))
213 		return false;
214 	truncate_inode_folio(folio->mapping, folio);
215 	return true;
216 }
217 
218 /*
219  * Used to get rid of pages on hardware memory corruption.
220  */
221 int generic_error_remove_folio(struct address_space *mapping,
222 		struct folio *folio)
223 {
224 	if (!mapping)
225 		return -EINVAL;
226 	/*
227 	 * Only punch for normal data pages for now.
228 	 * Handling other types like directories would need more auditing.
229 	 */
230 	if (!S_ISREG(mapping->host->i_mode))
231 		return -EIO;
232 	return truncate_inode_folio(mapping, folio);
233 }
234 EXPORT_SYMBOL(generic_error_remove_folio);
235 
236 /**
237  * mapping_evict_folio() - Remove an unused folio from the page-cache.
238  * @mapping: The mapping this folio belongs to.
239  * @folio: The folio to remove.
240  *
241  * Safely remove one folio from the page cache.
242  * It only drops clean, unused folios.
243  *
244  * Context: Folio must be locked.
245  * Return: The number of pages successfully removed.
246  */
247 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
248 {
249 	/* The page may have been truncated before it was locked */
250 	if (!mapping)
251 		return 0;
252 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
253 		return 0;
254 	/* The refcount will be elevated if any page in the folio is mapped */
255 	if (folio_ref_count(folio) >
256 			folio_nr_pages(folio) + folio_has_private(folio) + 1)
257 		return 0;
258 	if (!filemap_release_folio(folio, 0))
259 		return 0;
260 
261 	return remove_mapping(mapping, folio);
262 }
263 
264 /**
265  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
266  * @mapping: mapping to truncate
267  * @lstart: offset from which to truncate
268  * @lend: offset to which to truncate (inclusive)
269  *
270  * Truncate the page cache, removing the pages that are between
271  * specified offsets (and zeroing out partial pages
272  * if lstart or lend + 1 is not page aligned).
273  *
274  * Truncate takes two passes - the first pass is nonblocking.  It will not
275  * block on page locks and it will not block on writeback.  The second pass
276  * will wait.  This is to prevent as much IO as possible in the affected region.
277  * The first pass will remove most pages, so the search cost of the second pass
278  * is low.
279  *
280  * We pass down the cache-hot hint to the page freeing code.  Even if the
281  * mapping is large, it is probably the case that the final pages are the most
282  * recently touched, and freeing happens in ascending file offset order.
283  *
284  * Note that since ->invalidate_folio() accepts range to invalidate
285  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
286  * page aligned properly.
287  */
288 void truncate_inode_pages_range(struct address_space *mapping,
289 				loff_t lstart, loff_t lend)
290 {
291 	pgoff_t		start;		/* inclusive */
292 	pgoff_t		end;		/* exclusive */
293 	struct folio_batch fbatch;
294 	pgoff_t		indices[PAGEVEC_SIZE];
295 	pgoff_t		index;
296 	int		i;
297 	struct folio	*folio;
298 	bool		same_folio;
299 
300 	if (mapping_empty(mapping))
301 		return;
302 
303 	/*
304 	 * 'start' and 'end' always covers the range of pages to be fully
305 	 * truncated. Partial pages are covered with 'partial_start' at the
306 	 * start of the range and 'partial_end' at the end of the range.
307 	 * Note that 'end' is exclusive while 'lend' is inclusive.
308 	 */
309 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
310 	if (lend == -1)
311 		/*
312 		 * lend == -1 indicates end-of-file so we have to set 'end'
313 		 * to the highest possible pgoff_t and since the type is
314 		 * unsigned we're using -1.
315 		 */
316 		end = -1;
317 	else
318 		end = (lend + 1) >> PAGE_SHIFT;
319 
320 	folio_batch_init(&fbatch);
321 	index = start;
322 	while (index < end && find_lock_entries(mapping, &index, end - 1,
323 			&fbatch, indices)) {
324 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
325 		for (i = 0; i < folio_batch_count(&fbatch); i++)
326 			truncate_cleanup_folio(fbatch.folios[i]);
327 		delete_from_page_cache_batch(mapping, &fbatch);
328 		for (i = 0; i < folio_batch_count(&fbatch); i++)
329 			folio_unlock(fbatch.folios[i]);
330 		folio_batch_release(&fbatch);
331 		cond_resched();
332 	}
333 
334 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
335 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
336 	if (!IS_ERR(folio)) {
337 		same_folio = lend < folio_pos(folio) + folio_size(folio);
338 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
339 			start = folio_next_index(folio);
340 			if (same_folio)
341 				end = folio->index;
342 		}
343 		folio_unlock(folio);
344 		folio_put(folio);
345 		folio = NULL;
346 	}
347 
348 	if (!same_folio) {
349 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
350 						FGP_LOCK, 0);
351 		if (!IS_ERR(folio)) {
352 			if (!truncate_inode_partial_folio(folio, lstart, lend))
353 				end = folio->index;
354 			folio_unlock(folio);
355 			folio_put(folio);
356 		}
357 	}
358 
359 	index = start;
360 	while (index < end) {
361 		cond_resched();
362 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
363 				indices)) {
364 			/* If all gone from start onwards, we're done */
365 			if (index == start)
366 				break;
367 			/* Otherwise restart to make sure all gone */
368 			index = start;
369 			continue;
370 		}
371 
372 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
373 			struct folio *folio = fbatch.folios[i];
374 
375 			/* We rely upon deletion not changing page->index */
376 
377 			if (xa_is_value(folio))
378 				continue;
379 
380 			folio_lock(folio);
381 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
382 			folio_wait_writeback(folio);
383 			truncate_inode_folio(mapping, folio);
384 			folio_unlock(folio);
385 		}
386 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
387 		folio_batch_release(&fbatch);
388 	}
389 }
390 EXPORT_SYMBOL(truncate_inode_pages_range);
391 
392 /**
393  * truncate_inode_pages - truncate *all* the pages from an offset
394  * @mapping: mapping to truncate
395  * @lstart: offset from which to truncate
396  *
397  * Called under (and serialised by) inode->i_rwsem and
398  * mapping->invalidate_lock.
399  *
400  * Note: When this function returns, there can be a page in the process of
401  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
402  * mapping->nrpages can be non-zero when this function returns even after
403  * truncation of the whole mapping.
404  */
405 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
406 {
407 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
408 }
409 EXPORT_SYMBOL(truncate_inode_pages);
410 
411 /**
412  * truncate_inode_pages_final - truncate *all* pages before inode dies
413  * @mapping: mapping to truncate
414  *
415  * Called under (and serialized by) inode->i_rwsem.
416  *
417  * Filesystems have to use this in the .evict_inode path to inform the
418  * VM that this is the final truncate and the inode is going away.
419  */
420 void truncate_inode_pages_final(struct address_space *mapping)
421 {
422 	/*
423 	 * Page reclaim can not participate in regular inode lifetime
424 	 * management (can't call iput()) and thus can race with the
425 	 * inode teardown.  Tell it when the address space is exiting,
426 	 * so that it does not install eviction information after the
427 	 * final truncate has begun.
428 	 */
429 	mapping_set_exiting(mapping);
430 
431 	if (!mapping_empty(mapping)) {
432 		/*
433 		 * As truncation uses a lockless tree lookup, cycle
434 		 * the tree lock to make sure any ongoing tree
435 		 * modification that does not see AS_EXITING is
436 		 * completed before starting the final truncate.
437 		 */
438 		xa_lock_irq(&mapping->i_pages);
439 		xa_unlock_irq(&mapping->i_pages);
440 	}
441 
442 	truncate_inode_pages(mapping, 0);
443 }
444 EXPORT_SYMBOL(truncate_inode_pages_final);
445 
446 /**
447  * mapping_try_invalidate - Invalidate all the evictable folios of one inode
448  * @mapping: the address_space which holds the folios to invalidate
449  * @start: the offset 'from' which to invalidate
450  * @end: the offset 'to' which to invalidate (inclusive)
451  * @nr_failed: How many folio invalidations failed
452  *
453  * This function is similar to invalidate_mapping_pages(), except that it
454  * returns the number of folios which could not be evicted in @nr_failed.
455  */
456 unsigned long mapping_try_invalidate(struct address_space *mapping,
457 		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
458 {
459 	pgoff_t indices[PAGEVEC_SIZE];
460 	struct folio_batch fbatch;
461 	pgoff_t index = start;
462 	unsigned long ret;
463 	unsigned long count = 0;
464 	int i;
465 
466 	folio_batch_init(&fbatch);
467 	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
468 		bool xa_has_values = false;
469 		int nr = folio_batch_count(&fbatch);
470 
471 		for (i = 0; i < nr; i++) {
472 			struct folio *folio = fbatch.folios[i];
473 
474 			/* We rely upon deletion not changing folio->index */
475 
476 			if (xa_is_value(folio)) {
477 				xa_has_values = true;
478 				count++;
479 				continue;
480 			}
481 
482 			ret = mapping_evict_folio(mapping, folio);
483 			folio_unlock(folio);
484 			/*
485 			 * Invalidation is a hint that the folio is no longer
486 			 * of interest and try to speed up its reclaim.
487 			 */
488 			if (!ret) {
489 				deactivate_file_folio(folio);
490 				/* Likely in the lru cache of a remote CPU */
491 				if (nr_failed)
492 					(*nr_failed)++;
493 			}
494 			count += ret;
495 		}
496 
497 		if (xa_has_values)
498 			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
499 
500 		folio_batch_remove_exceptionals(&fbatch);
501 		folio_batch_release(&fbatch);
502 		cond_resched();
503 	}
504 	return count;
505 }
506 
507 /**
508  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
509  * @mapping: the address_space which holds the cache to invalidate
510  * @start: the offset 'from' which to invalidate
511  * @end: the offset 'to' which to invalidate (inclusive)
512  *
513  * This function removes pages that are clean, unmapped and unlocked,
514  * as well as shadow entries. It will not block on IO activity.
515  *
516  * If you want to remove all the pages of one inode, regardless of
517  * their use and writeback state, use truncate_inode_pages().
518  *
519  * Return: The number of indices that had their contents invalidated
520  */
521 unsigned long invalidate_mapping_pages(struct address_space *mapping,
522 		pgoff_t start, pgoff_t end)
523 {
524 	return mapping_try_invalidate(mapping, start, end, NULL);
525 }
526 EXPORT_SYMBOL(invalidate_mapping_pages);
527 
528 /*
529  * This is like mapping_evict_folio(), except it ignores the folio's
530  * refcount.  We do this because invalidate_inode_pages2() needs stronger
531  * invalidation guarantees, and cannot afford to leave folios behind because
532  * shrink_folio_list() has a temp ref on them, or because they're transiently
533  * sitting in the folio_add_lru() caches.
534  */
535 static int invalidate_complete_folio2(struct address_space *mapping,
536 					struct folio *folio)
537 {
538 	if (folio->mapping != mapping)
539 		return 0;
540 
541 	if (!filemap_release_folio(folio, GFP_KERNEL))
542 		return 0;
543 
544 	spin_lock(&mapping->host->i_lock);
545 	xa_lock_irq(&mapping->i_pages);
546 	if (folio_test_dirty(folio))
547 		goto failed;
548 
549 	BUG_ON(folio_has_private(folio));
550 	__filemap_remove_folio(folio, NULL);
551 	xa_unlock_irq(&mapping->i_pages);
552 	if (mapping_shrinkable(mapping))
553 		inode_add_lru(mapping->host);
554 	spin_unlock(&mapping->host->i_lock);
555 
556 	filemap_free_folio(mapping, folio);
557 	return 1;
558 failed:
559 	xa_unlock_irq(&mapping->i_pages);
560 	spin_unlock(&mapping->host->i_lock);
561 	return 0;
562 }
563 
564 static int folio_launder(struct address_space *mapping, struct folio *folio)
565 {
566 	if (!folio_test_dirty(folio))
567 		return 0;
568 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
569 		return 0;
570 	return mapping->a_ops->launder_folio(folio);
571 }
572 
573 /**
574  * invalidate_inode_pages2_range - remove range of pages from an address_space
575  * @mapping: the address_space
576  * @start: the page offset 'from' which to invalidate
577  * @end: the page offset 'to' which to invalidate (inclusive)
578  *
579  * Any pages which are found to be mapped into pagetables are unmapped prior to
580  * invalidation.
581  *
582  * Return: -EBUSY if any pages could not be invalidated.
583  */
584 int invalidate_inode_pages2_range(struct address_space *mapping,
585 				  pgoff_t start, pgoff_t end)
586 {
587 	pgoff_t indices[PAGEVEC_SIZE];
588 	struct folio_batch fbatch;
589 	pgoff_t index;
590 	int i;
591 	int ret = 0;
592 	int ret2 = 0;
593 	int did_range_unmap = 0;
594 
595 	if (mapping_empty(mapping))
596 		return 0;
597 
598 	folio_batch_init(&fbatch);
599 	index = start;
600 	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
601 		bool xa_has_values = false;
602 		int nr = folio_batch_count(&fbatch);
603 
604 		for (i = 0; i < nr; i++) {
605 			struct folio *folio = fbatch.folios[i];
606 
607 			/* We rely upon deletion not changing folio->index */
608 
609 			if (xa_is_value(folio)) {
610 				xa_has_values = true;
611 				if (dax_mapping(mapping) &&
612 				    !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
613 					ret = -EBUSY;
614 				continue;
615 			}
616 
617 			if (!did_range_unmap && folio_mapped(folio)) {
618 				/*
619 				 * If folio is mapped, before taking its lock,
620 				 * zap the rest of the file in one hit.
621 				 */
622 				unmap_mapping_pages(mapping, indices[i],
623 						(1 + end - indices[i]), false);
624 				did_range_unmap = 1;
625 			}
626 
627 			folio_lock(folio);
628 			if (unlikely(folio->mapping != mapping)) {
629 				folio_unlock(folio);
630 				continue;
631 			}
632 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
633 			folio_wait_writeback(folio);
634 
635 			if (folio_mapped(folio))
636 				unmap_mapping_folio(folio);
637 			BUG_ON(folio_mapped(folio));
638 
639 			ret2 = folio_launder(mapping, folio);
640 			if (ret2 == 0) {
641 				if (!invalidate_complete_folio2(mapping, folio))
642 					ret2 = -EBUSY;
643 			}
644 			if (ret2 < 0)
645 				ret = ret2;
646 			folio_unlock(folio);
647 		}
648 
649 		if (xa_has_values)
650 			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
651 
652 		folio_batch_remove_exceptionals(&fbatch);
653 		folio_batch_release(&fbatch);
654 		cond_resched();
655 	}
656 	/*
657 	 * For DAX we invalidate page tables after invalidating page cache.  We
658 	 * could invalidate page tables while invalidating each entry however
659 	 * that would be expensive. And doing range unmapping before doesn't
660 	 * work as we have no cheap way to find whether page cache entry didn't
661 	 * get remapped later.
662 	 */
663 	if (dax_mapping(mapping)) {
664 		unmap_mapping_pages(mapping, start, end - start + 1, false);
665 	}
666 	return ret;
667 }
668 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
669 
670 /**
671  * invalidate_inode_pages2 - remove all pages from an address_space
672  * @mapping: the address_space
673  *
674  * Any pages which are found to be mapped into pagetables are unmapped prior to
675  * invalidation.
676  *
677  * Return: -EBUSY if any pages could not be invalidated.
678  */
679 int invalidate_inode_pages2(struct address_space *mapping)
680 {
681 	return invalidate_inode_pages2_range(mapping, 0, -1);
682 }
683 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
684 
685 /**
686  * truncate_pagecache - unmap and remove pagecache that has been truncated
687  * @inode: inode
688  * @newsize: new file size
689  *
690  * inode's new i_size must already be written before truncate_pagecache
691  * is called.
692  *
693  * This function should typically be called before the filesystem
694  * releases resources associated with the freed range (eg. deallocates
695  * blocks). This way, pagecache will always stay logically coherent
696  * with on-disk format, and the filesystem would not have to deal with
697  * situations such as writepage being called for a page that has already
698  * had its underlying blocks deallocated.
699  */
700 void truncate_pagecache(struct inode *inode, loff_t newsize)
701 {
702 	struct address_space *mapping = inode->i_mapping;
703 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
704 
705 	/*
706 	 * unmap_mapping_range is called twice, first simply for
707 	 * efficiency so that truncate_inode_pages does fewer
708 	 * single-page unmaps.  However after this first call, and
709 	 * before truncate_inode_pages finishes, it is possible for
710 	 * private pages to be COWed, which remain after
711 	 * truncate_inode_pages finishes, hence the second
712 	 * unmap_mapping_range call must be made for correctness.
713 	 */
714 	unmap_mapping_range(mapping, holebegin, 0, 1);
715 	truncate_inode_pages(mapping, newsize);
716 	unmap_mapping_range(mapping, holebegin, 0, 1);
717 }
718 EXPORT_SYMBOL(truncate_pagecache);
719 
720 /**
721  * truncate_setsize - update inode and pagecache for a new file size
722  * @inode: inode
723  * @newsize: new file size
724  *
725  * truncate_setsize updates i_size and performs pagecache truncation (if
726  * necessary) to @newsize. It will be typically be called from the filesystem's
727  * setattr function when ATTR_SIZE is passed in.
728  *
729  * Must be called with a lock serializing truncates and writes (generally
730  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
731  * specific block truncation has been performed.
732  */
733 void truncate_setsize(struct inode *inode, loff_t newsize)
734 {
735 	loff_t oldsize = inode->i_size;
736 
737 	i_size_write(inode, newsize);
738 	if (newsize > oldsize)
739 		pagecache_isize_extended(inode, oldsize, newsize);
740 	truncate_pagecache(inode, newsize);
741 }
742 EXPORT_SYMBOL(truncate_setsize);
743 
744 /**
745  * pagecache_isize_extended - update pagecache after extension of i_size
746  * @inode:	inode for which i_size was extended
747  * @from:	original inode size
748  * @to:		new inode size
749  *
750  * Handle extension of inode size either caused by extending truncate or
751  * by write starting after current i_size.  We mark the page straddling
752  * current i_size RO so that page_mkwrite() is called on the first
753  * write access to the page.  The filesystem will update its per-block
754  * information before user writes to the page via mmap after the i_size
755  * has been changed.
756  *
757  * The function must be called after i_size is updated so that page fault
758  * coming after we unlock the folio will already see the new i_size.
759  * The function must be called while we still hold i_rwsem - this not only
760  * makes sure i_size is stable but also that userspace cannot observe new
761  * i_size value before we are prepared to store mmap writes at new inode size.
762  */
763 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
764 {
765 	int bsize = i_blocksize(inode);
766 	loff_t rounded_from;
767 	struct folio *folio;
768 
769 	WARN_ON(to > inode->i_size);
770 
771 	if (from >= to || bsize >= PAGE_SIZE)
772 		return;
773 	/* Page straddling @from will not have any hole block created? */
774 	rounded_from = round_up(from, bsize);
775 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
776 		return;
777 
778 	folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
779 	/* Folio not cached? Nothing to do */
780 	if (IS_ERR(folio))
781 		return;
782 	/*
783 	 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
784 	 * is needed.
785 	 */
786 	if (folio_mkclean(folio))
787 		folio_mark_dirty(folio);
788 
789 	/*
790 	 * The post-eof range of the folio must be zeroed before it is exposed
791 	 * to the file. Writeback normally does this, but since i_size has been
792 	 * increased we handle it here.
793 	 */
794 	if (folio_test_dirty(folio)) {
795 		unsigned int offset, end;
796 
797 		offset = from - folio_pos(folio);
798 		end = min_t(unsigned int, to - folio_pos(folio),
799 			    folio_size(folio));
800 		folio_zero_segment(folio, offset, end);
801 	}
802 
803 	folio_unlock(folio);
804 	folio_put(folio);
805 }
806 EXPORT_SYMBOL(pagecache_isize_extended);
807 
808 /**
809  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
810  * @inode: inode
811  * @lstart: offset of beginning of hole
812  * @lend: offset of last byte of hole
813  *
814  * This function should typically be called before the filesystem
815  * releases resources associated with the freed range (eg. deallocates
816  * blocks). This way, pagecache will always stay logically coherent
817  * with on-disk format, and the filesystem would not have to deal with
818  * situations such as writepage being called for a page that has already
819  * had its underlying blocks deallocated.
820  */
821 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
822 {
823 	struct address_space *mapping = inode->i_mapping;
824 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
825 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
826 	/*
827 	 * This rounding is currently just for example: unmap_mapping_range
828 	 * expands its hole outwards, whereas we want it to contract the hole
829 	 * inwards.  However, existing callers of truncate_pagecache_range are
830 	 * doing their own page rounding first.  Note that unmap_mapping_range
831 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
832 	 */
833 
834 	/*
835 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
836 	 * once (before truncating pagecache), and without "even_cows" flag:
837 	 * hole-punching should not remove private COWed pages from the hole.
838 	 */
839 	if ((u64)unmap_end > (u64)unmap_start)
840 		unmap_mapping_range(mapping, unmap_start,
841 				    1 + unmap_end - unmap_start, 0);
842 	truncate_inode_pages_range(mapping, lstart, lend);
843 }
844 EXPORT_SYMBOL(truncate_pagecache_range);
845