1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 static void clear_shadow_entries(struct address_space *mapping, 27 unsigned long start, unsigned long max) 28 { 29 XA_STATE(xas, &mapping->i_pages, start); 30 struct folio *folio; 31 32 /* Handled by shmem itself, or for DAX we do nothing. */ 33 if (shmem_mapping(mapping) || dax_mapping(mapping)) 34 return; 35 36 xas_set_update(&xas, workingset_update_node); 37 38 spin_lock(&mapping->host->i_lock); 39 xas_lock_irq(&xas); 40 41 /* Clear all shadow entries from start to max */ 42 xas_for_each(&xas, folio, max) { 43 if (xa_is_value(folio)) 44 xas_store(&xas, NULL); 45 } 46 47 xas_unlock_irq(&xas); 48 if (mapping_shrinkable(mapping)) 49 inode_add_lru(mapping->host); 50 spin_unlock(&mapping->host->i_lock); 51 } 52 53 /* 54 * Unconditionally remove exceptional entries. Usually called from truncate 55 * path. Note that the folio_batch may be altered by this function by removing 56 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 57 * Please note that indices[] has entries in ascending order as guaranteed by 58 * either find_get_entries() or find_lock_entries(). 59 */ 60 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 61 struct folio_batch *fbatch, pgoff_t *indices) 62 { 63 XA_STATE(xas, &mapping->i_pages, indices[0]); 64 int nr = folio_batch_count(fbatch); 65 struct folio *folio; 66 int i, j; 67 68 /* Handled by shmem itself */ 69 if (shmem_mapping(mapping)) 70 return; 71 72 for (j = 0; j < nr; j++) 73 if (xa_is_value(fbatch->folios[j])) 74 break; 75 76 if (j == nr) 77 return; 78 79 if (dax_mapping(mapping)) { 80 for (i = j; i < nr; i++) { 81 if (xa_is_value(fbatch->folios[i])) 82 dax_delete_mapping_entry(mapping, indices[i]); 83 } 84 goto out; 85 } 86 87 xas_set(&xas, indices[j]); 88 xas_set_update(&xas, workingset_update_node); 89 90 spin_lock(&mapping->host->i_lock); 91 xas_lock_irq(&xas); 92 93 xas_for_each(&xas, folio, indices[nr-1]) { 94 if (xa_is_value(folio)) 95 xas_store(&xas, NULL); 96 } 97 98 xas_unlock_irq(&xas); 99 if (mapping_shrinkable(mapping)) 100 inode_add_lru(mapping->host); 101 spin_unlock(&mapping->host->i_lock); 102 out: 103 folio_batch_remove_exceptionals(fbatch); 104 } 105 106 /** 107 * folio_invalidate - Invalidate part or all of a folio. 108 * @folio: The folio which is affected. 109 * @offset: start of the range to invalidate 110 * @length: length of the range to invalidate 111 * 112 * folio_invalidate() is called when all or part of the folio has become 113 * invalidated by a truncate operation. 114 * 115 * folio_invalidate() does not have to release all buffers, but it must 116 * ensure that no dirty buffer is left outside @offset and that no I/O 117 * is underway against any of the blocks which are outside the truncation 118 * point. Because the caller is about to free (and possibly reuse) those 119 * blocks on-disk. 120 */ 121 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 122 { 123 const struct address_space_operations *aops = folio->mapping->a_ops; 124 125 if (aops->invalidate_folio) 126 aops->invalidate_folio(folio, offset, length); 127 } 128 EXPORT_SYMBOL_GPL(folio_invalidate); 129 130 /* 131 * If truncate cannot remove the fs-private metadata from the page, the page 132 * becomes orphaned. It will be left on the LRU and may even be mapped into 133 * user pagetables if we're racing with filemap_fault(). 134 * 135 * We need to bail out if page->mapping is no longer equal to the original 136 * mapping. This happens a) when the VM reclaimed the page while we waited on 137 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 138 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 139 */ 140 static void truncate_cleanup_folio(struct folio *folio) 141 { 142 if (folio_mapped(folio)) 143 unmap_mapping_folio(folio); 144 145 if (folio_needs_release(folio)) 146 folio_invalidate(folio, 0, folio_size(folio)); 147 148 /* 149 * Some filesystems seem to re-dirty the page even after 150 * the VM has canceled the dirty bit (eg ext3 journaling). 151 * Hence dirty accounting check is placed after invalidation. 152 */ 153 folio_cancel_dirty(folio); 154 } 155 156 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 157 { 158 if (folio->mapping != mapping) 159 return -EIO; 160 161 truncate_cleanup_folio(folio); 162 filemap_remove_folio(folio); 163 return 0; 164 } 165 166 /* 167 * Handle partial folios. The folio may be entirely within the 168 * range if a split has raced with us. If not, we zero the part of the 169 * folio that's within the [start, end] range, and then split the folio if 170 * it's large. split_page_range() will discard pages which now lie beyond 171 * i_size, and we rely on the caller to discard pages which lie within a 172 * newly created hole. 173 * 174 * Returns false if splitting failed so the caller can avoid 175 * discarding the entire folio which is stubbornly unsplit. 176 */ 177 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 178 { 179 loff_t pos = folio_pos(folio); 180 unsigned int offset, length; 181 182 if (pos < start) 183 offset = start - pos; 184 else 185 offset = 0; 186 length = folio_size(folio); 187 if (pos + length <= (u64)end) 188 length = length - offset; 189 else 190 length = end + 1 - pos - offset; 191 192 folio_wait_writeback(folio); 193 if (length == folio_size(folio)) { 194 truncate_inode_folio(folio->mapping, folio); 195 return true; 196 } 197 198 /* 199 * We may be zeroing pages we're about to discard, but it avoids 200 * doing a complex calculation here, and then doing the zeroing 201 * anyway if the page split fails. 202 */ 203 if (!mapping_inaccessible(folio->mapping)) 204 folio_zero_range(folio, offset, length); 205 206 if (folio_needs_release(folio)) 207 folio_invalidate(folio, offset, length); 208 if (!folio_test_large(folio)) 209 return true; 210 if (split_folio(folio) == 0) 211 return true; 212 if (folio_test_dirty(folio)) 213 return false; 214 truncate_inode_folio(folio->mapping, folio); 215 return true; 216 } 217 218 /* 219 * Used to get rid of pages on hardware memory corruption. 220 */ 221 int generic_error_remove_folio(struct address_space *mapping, 222 struct folio *folio) 223 { 224 if (!mapping) 225 return -EINVAL; 226 /* 227 * Only punch for normal data pages for now. 228 * Handling other types like directories would need more auditing. 229 */ 230 if (!S_ISREG(mapping->host->i_mode)) 231 return -EIO; 232 return truncate_inode_folio(mapping, folio); 233 } 234 EXPORT_SYMBOL(generic_error_remove_folio); 235 236 /** 237 * mapping_evict_folio() - Remove an unused folio from the page-cache. 238 * @mapping: The mapping this folio belongs to. 239 * @folio: The folio to remove. 240 * 241 * Safely remove one folio from the page cache. 242 * It only drops clean, unused folios. 243 * 244 * Context: Folio must be locked. 245 * Return: The number of pages successfully removed. 246 */ 247 long mapping_evict_folio(struct address_space *mapping, struct folio *folio) 248 { 249 /* The page may have been truncated before it was locked */ 250 if (!mapping) 251 return 0; 252 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 253 return 0; 254 /* The refcount will be elevated if any page in the folio is mapped */ 255 if (folio_ref_count(folio) > 256 folio_nr_pages(folio) + folio_has_private(folio) + 1) 257 return 0; 258 if (!filemap_release_folio(folio, 0)) 259 return 0; 260 261 return remove_mapping(mapping, folio); 262 } 263 264 /** 265 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 266 * @mapping: mapping to truncate 267 * @lstart: offset from which to truncate 268 * @lend: offset to which to truncate (inclusive) 269 * 270 * Truncate the page cache, removing the pages that are between 271 * specified offsets (and zeroing out partial pages 272 * if lstart or lend + 1 is not page aligned). 273 * 274 * Truncate takes two passes - the first pass is nonblocking. It will not 275 * block on page locks and it will not block on writeback. The second pass 276 * will wait. This is to prevent as much IO as possible in the affected region. 277 * The first pass will remove most pages, so the search cost of the second pass 278 * is low. 279 * 280 * We pass down the cache-hot hint to the page freeing code. Even if the 281 * mapping is large, it is probably the case that the final pages are the most 282 * recently touched, and freeing happens in ascending file offset order. 283 * 284 * Note that since ->invalidate_folio() accepts range to invalidate 285 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 286 * page aligned properly. 287 */ 288 void truncate_inode_pages_range(struct address_space *mapping, 289 loff_t lstart, loff_t lend) 290 { 291 pgoff_t start; /* inclusive */ 292 pgoff_t end; /* exclusive */ 293 struct folio_batch fbatch; 294 pgoff_t indices[PAGEVEC_SIZE]; 295 pgoff_t index; 296 int i; 297 struct folio *folio; 298 bool same_folio; 299 300 if (mapping_empty(mapping)) 301 return; 302 303 /* 304 * 'start' and 'end' always covers the range of pages to be fully 305 * truncated. Partial pages are covered with 'partial_start' at the 306 * start of the range and 'partial_end' at the end of the range. 307 * Note that 'end' is exclusive while 'lend' is inclusive. 308 */ 309 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 310 if (lend == -1) 311 /* 312 * lend == -1 indicates end-of-file so we have to set 'end' 313 * to the highest possible pgoff_t and since the type is 314 * unsigned we're using -1. 315 */ 316 end = -1; 317 else 318 end = (lend + 1) >> PAGE_SHIFT; 319 320 folio_batch_init(&fbatch); 321 index = start; 322 while (index < end && find_lock_entries(mapping, &index, end - 1, 323 &fbatch, indices)) { 324 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 325 for (i = 0; i < folio_batch_count(&fbatch); i++) 326 truncate_cleanup_folio(fbatch.folios[i]); 327 delete_from_page_cache_batch(mapping, &fbatch); 328 for (i = 0; i < folio_batch_count(&fbatch); i++) 329 folio_unlock(fbatch.folios[i]); 330 folio_batch_release(&fbatch); 331 cond_resched(); 332 } 333 334 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 335 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 336 if (!IS_ERR(folio)) { 337 same_folio = lend < folio_pos(folio) + folio_size(folio); 338 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 339 start = folio_next_index(folio); 340 if (same_folio) 341 end = folio->index; 342 } 343 folio_unlock(folio); 344 folio_put(folio); 345 folio = NULL; 346 } 347 348 if (!same_folio) { 349 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 350 FGP_LOCK, 0); 351 if (!IS_ERR(folio)) { 352 if (!truncate_inode_partial_folio(folio, lstart, lend)) 353 end = folio->index; 354 folio_unlock(folio); 355 folio_put(folio); 356 } 357 } 358 359 index = start; 360 while (index < end) { 361 cond_resched(); 362 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 363 indices)) { 364 /* If all gone from start onwards, we're done */ 365 if (index == start) 366 break; 367 /* Otherwise restart to make sure all gone */ 368 index = start; 369 continue; 370 } 371 372 for (i = 0; i < folio_batch_count(&fbatch); i++) { 373 struct folio *folio = fbatch.folios[i]; 374 375 /* We rely upon deletion not changing page->index */ 376 377 if (xa_is_value(folio)) 378 continue; 379 380 folio_lock(folio); 381 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 382 folio_wait_writeback(folio); 383 truncate_inode_folio(mapping, folio); 384 folio_unlock(folio); 385 } 386 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 387 folio_batch_release(&fbatch); 388 } 389 } 390 EXPORT_SYMBOL(truncate_inode_pages_range); 391 392 /** 393 * truncate_inode_pages - truncate *all* the pages from an offset 394 * @mapping: mapping to truncate 395 * @lstart: offset from which to truncate 396 * 397 * Called under (and serialised by) inode->i_rwsem and 398 * mapping->invalidate_lock. 399 * 400 * Note: When this function returns, there can be a page in the process of 401 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 402 * mapping->nrpages can be non-zero when this function returns even after 403 * truncation of the whole mapping. 404 */ 405 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 406 { 407 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 408 } 409 EXPORT_SYMBOL(truncate_inode_pages); 410 411 /** 412 * truncate_inode_pages_final - truncate *all* pages before inode dies 413 * @mapping: mapping to truncate 414 * 415 * Called under (and serialized by) inode->i_rwsem. 416 * 417 * Filesystems have to use this in the .evict_inode path to inform the 418 * VM that this is the final truncate and the inode is going away. 419 */ 420 void truncate_inode_pages_final(struct address_space *mapping) 421 { 422 /* 423 * Page reclaim can not participate in regular inode lifetime 424 * management (can't call iput()) and thus can race with the 425 * inode teardown. Tell it when the address space is exiting, 426 * so that it does not install eviction information after the 427 * final truncate has begun. 428 */ 429 mapping_set_exiting(mapping); 430 431 if (!mapping_empty(mapping)) { 432 /* 433 * As truncation uses a lockless tree lookup, cycle 434 * the tree lock to make sure any ongoing tree 435 * modification that does not see AS_EXITING is 436 * completed before starting the final truncate. 437 */ 438 xa_lock_irq(&mapping->i_pages); 439 xa_unlock_irq(&mapping->i_pages); 440 } 441 442 truncate_inode_pages(mapping, 0); 443 } 444 EXPORT_SYMBOL(truncate_inode_pages_final); 445 446 /** 447 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 448 * @mapping: the address_space which holds the folios to invalidate 449 * @start: the offset 'from' which to invalidate 450 * @end: the offset 'to' which to invalidate (inclusive) 451 * @nr_failed: How many folio invalidations failed 452 * 453 * This function is similar to invalidate_mapping_pages(), except that it 454 * returns the number of folios which could not be evicted in @nr_failed. 455 */ 456 unsigned long mapping_try_invalidate(struct address_space *mapping, 457 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 458 { 459 pgoff_t indices[PAGEVEC_SIZE]; 460 struct folio_batch fbatch; 461 pgoff_t index = start; 462 unsigned long ret; 463 unsigned long count = 0; 464 int i; 465 466 folio_batch_init(&fbatch); 467 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 468 bool xa_has_values = false; 469 int nr = folio_batch_count(&fbatch); 470 471 for (i = 0; i < nr; i++) { 472 struct folio *folio = fbatch.folios[i]; 473 474 /* We rely upon deletion not changing folio->index */ 475 476 if (xa_is_value(folio)) { 477 xa_has_values = true; 478 count++; 479 continue; 480 } 481 482 ret = mapping_evict_folio(mapping, folio); 483 folio_unlock(folio); 484 /* 485 * Invalidation is a hint that the folio is no longer 486 * of interest and try to speed up its reclaim. 487 */ 488 if (!ret) { 489 deactivate_file_folio(folio); 490 /* Likely in the lru cache of a remote CPU */ 491 if (nr_failed) 492 (*nr_failed)++; 493 } 494 count += ret; 495 } 496 497 if (xa_has_values) 498 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 499 500 folio_batch_remove_exceptionals(&fbatch); 501 folio_batch_release(&fbatch); 502 cond_resched(); 503 } 504 return count; 505 } 506 507 /** 508 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 509 * @mapping: the address_space which holds the cache to invalidate 510 * @start: the offset 'from' which to invalidate 511 * @end: the offset 'to' which to invalidate (inclusive) 512 * 513 * This function removes pages that are clean, unmapped and unlocked, 514 * as well as shadow entries. It will not block on IO activity. 515 * 516 * If you want to remove all the pages of one inode, regardless of 517 * their use and writeback state, use truncate_inode_pages(). 518 * 519 * Return: The number of indices that had their contents invalidated 520 */ 521 unsigned long invalidate_mapping_pages(struct address_space *mapping, 522 pgoff_t start, pgoff_t end) 523 { 524 return mapping_try_invalidate(mapping, start, end, NULL); 525 } 526 EXPORT_SYMBOL(invalidate_mapping_pages); 527 528 /* 529 * This is like mapping_evict_folio(), except it ignores the folio's 530 * refcount. We do this because invalidate_inode_pages2() needs stronger 531 * invalidation guarantees, and cannot afford to leave folios behind because 532 * shrink_folio_list() has a temp ref on them, or because they're transiently 533 * sitting in the folio_add_lru() caches. 534 */ 535 static int invalidate_complete_folio2(struct address_space *mapping, 536 struct folio *folio) 537 { 538 if (folio->mapping != mapping) 539 return 0; 540 541 if (!filemap_release_folio(folio, GFP_KERNEL)) 542 return 0; 543 544 spin_lock(&mapping->host->i_lock); 545 xa_lock_irq(&mapping->i_pages); 546 if (folio_test_dirty(folio)) 547 goto failed; 548 549 BUG_ON(folio_has_private(folio)); 550 __filemap_remove_folio(folio, NULL); 551 xa_unlock_irq(&mapping->i_pages); 552 if (mapping_shrinkable(mapping)) 553 inode_add_lru(mapping->host); 554 spin_unlock(&mapping->host->i_lock); 555 556 filemap_free_folio(mapping, folio); 557 return 1; 558 failed: 559 xa_unlock_irq(&mapping->i_pages); 560 spin_unlock(&mapping->host->i_lock); 561 return 0; 562 } 563 564 static int folio_launder(struct address_space *mapping, struct folio *folio) 565 { 566 if (!folio_test_dirty(folio)) 567 return 0; 568 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 569 return 0; 570 return mapping->a_ops->launder_folio(folio); 571 } 572 573 /** 574 * invalidate_inode_pages2_range - remove range of pages from an address_space 575 * @mapping: the address_space 576 * @start: the page offset 'from' which to invalidate 577 * @end: the page offset 'to' which to invalidate (inclusive) 578 * 579 * Any pages which are found to be mapped into pagetables are unmapped prior to 580 * invalidation. 581 * 582 * Return: -EBUSY if any pages could not be invalidated. 583 */ 584 int invalidate_inode_pages2_range(struct address_space *mapping, 585 pgoff_t start, pgoff_t end) 586 { 587 pgoff_t indices[PAGEVEC_SIZE]; 588 struct folio_batch fbatch; 589 pgoff_t index; 590 int i; 591 int ret = 0; 592 int ret2 = 0; 593 int did_range_unmap = 0; 594 595 if (mapping_empty(mapping)) 596 return 0; 597 598 folio_batch_init(&fbatch); 599 index = start; 600 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 601 bool xa_has_values = false; 602 int nr = folio_batch_count(&fbatch); 603 604 for (i = 0; i < nr; i++) { 605 struct folio *folio = fbatch.folios[i]; 606 607 /* We rely upon deletion not changing folio->index */ 608 609 if (xa_is_value(folio)) { 610 xa_has_values = true; 611 if (dax_mapping(mapping) && 612 !dax_invalidate_mapping_entry_sync(mapping, indices[i])) 613 ret = -EBUSY; 614 continue; 615 } 616 617 if (!did_range_unmap && folio_mapped(folio)) { 618 /* 619 * If folio is mapped, before taking its lock, 620 * zap the rest of the file in one hit. 621 */ 622 unmap_mapping_pages(mapping, indices[i], 623 (1 + end - indices[i]), false); 624 did_range_unmap = 1; 625 } 626 627 folio_lock(folio); 628 if (unlikely(folio->mapping != mapping)) { 629 folio_unlock(folio); 630 continue; 631 } 632 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 633 folio_wait_writeback(folio); 634 635 if (folio_mapped(folio)) 636 unmap_mapping_folio(folio); 637 BUG_ON(folio_mapped(folio)); 638 639 ret2 = folio_launder(mapping, folio); 640 if (ret2 == 0) { 641 if (!invalidate_complete_folio2(mapping, folio)) 642 ret2 = -EBUSY; 643 } 644 if (ret2 < 0) 645 ret = ret2; 646 folio_unlock(folio); 647 } 648 649 if (xa_has_values) 650 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 651 652 folio_batch_remove_exceptionals(&fbatch); 653 folio_batch_release(&fbatch); 654 cond_resched(); 655 } 656 /* 657 * For DAX we invalidate page tables after invalidating page cache. We 658 * could invalidate page tables while invalidating each entry however 659 * that would be expensive. And doing range unmapping before doesn't 660 * work as we have no cheap way to find whether page cache entry didn't 661 * get remapped later. 662 */ 663 if (dax_mapping(mapping)) { 664 unmap_mapping_pages(mapping, start, end - start + 1, false); 665 } 666 return ret; 667 } 668 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 669 670 /** 671 * invalidate_inode_pages2 - remove all pages from an address_space 672 * @mapping: the address_space 673 * 674 * Any pages which are found to be mapped into pagetables are unmapped prior to 675 * invalidation. 676 * 677 * Return: -EBUSY if any pages could not be invalidated. 678 */ 679 int invalidate_inode_pages2(struct address_space *mapping) 680 { 681 return invalidate_inode_pages2_range(mapping, 0, -1); 682 } 683 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 684 685 /** 686 * truncate_pagecache - unmap and remove pagecache that has been truncated 687 * @inode: inode 688 * @newsize: new file size 689 * 690 * inode's new i_size must already be written before truncate_pagecache 691 * is called. 692 * 693 * This function should typically be called before the filesystem 694 * releases resources associated with the freed range (eg. deallocates 695 * blocks). This way, pagecache will always stay logically coherent 696 * with on-disk format, and the filesystem would not have to deal with 697 * situations such as writepage being called for a page that has already 698 * had its underlying blocks deallocated. 699 */ 700 void truncate_pagecache(struct inode *inode, loff_t newsize) 701 { 702 struct address_space *mapping = inode->i_mapping; 703 loff_t holebegin = round_up(newsize, PAGE_SIZE); 704 705 /* 706 * unmap_mapping_range is called twice, first simply for 707 * efficiency so that truncate_inode_pages does fewer 708 * single-page unmaps. However after this first call, and 709 * before truncate_inode_pages finishes, it is possible for 710 * private pages to be COWed, which remain after 711 * truncate_inode_pages finishes, hence the second 712 * unmap_mapping_range call must be made for correctness. 713 */ 714 unmap_mapping_range(mapping, holebegin, 0, 1); 715 truncate_inode_pages(mapping, newsize); 716 unmap_mapping_range(mapping, holebegin, 0, 1); 717 } 718 EXPORT_SYMBOL(truncate_pagecache); 719 720 /** 721 * truncate_setsize - update inode and pagecache for a new file size 722 * @inode: inode 723 * @newsize: new file size 724 * 725 * truncate_setsize updates i_size and performs pagecache truncation (if 726 * necessary) to @newsize. It will be typically be called from the filesystem's 727 * setattr function when ATTR_SIZE is passed in. 728 * 729 * Must be called with a lock serializing truncates and writes (generally 730 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 731 * specific block truncation has been performed. 732 */ 733 void truncate_setsize(struct inode *inode, loff_t newsize) 734 { 735 loff_t oldsize = inode->i_size; 736 737 i_size_write(inode, newsize); 738 if (newsize > oldsize) 739 pagecache_isize_extended(inode, oldsize, newsize); 740 truncate_pagecache(inode, newsize); 741 } 742 EXPORT_SYMBOL(truncate_setsize); 743 744 /** 745 * pagecache_isize_extended - update pagecache after extension of i_size 746 * @inode: inode for which i_size was extended 747 * @from: original inode size 748 * @to: new inode size 749 * 750 * Handle extension of inode size either caused by extending truncate or 751 * by write starting after current i_size. We mark the page straddling 752 * current i_size RO so that page_mkwrite() is called on the first 753 * write access to the page. The filesystem will update its per-block 754 * information before user writes to the page via mmap after the i_size 755 * has been changed. 756 * 757 * The function must be called after i_size is updated so that page fault 758 * coming after we unlock the folio will already see the new i_size. 759 * The function must be called while we still hold i_rwsem - this not only 760 * makes sure i_size is stable but also that userspace cannot observe new 761 * i_size value before we are prepared to store mmap writes at new inode size. 762 */ 763 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 764 { 765 int bsize = i_blocksize(inode); 766 loff_t rounded_from; 767 struct folio *folio; 768 769 WARN_ON(to > inode->i_size); 770 771 if (from >= to || bsize >= PAGE_SIZE) 772 return; 773 /* Page straddling @from will not have any hole block created? */ 774 rounded_from = round_up(from, bsize); 775 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 776 return; 777 778 folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE); 779 /* Folio not cached? Nothing to do */ 780 if (IS_ERR(folio)) 781 return; 782 /* 783 * See folio_clear_dirty_for_io() for details why folio_mark_dirty() 784 * is needed. 785 */ 786 if (folio_mkclean(folio)) 787 folio_mark_dirty(folio); 788 789 /* 790 * The post-eof range of the folio must be zeroed before it is exposed 791 * to the file. Writeback normally does this, but since i_size has been 792 * increased we handle it here. 793 */ 794 if (folio_test_dirty(folio)) { 795 unsigned int offset, end; 796 797 offset = from - folio_pos(folio); 798 end = min_t(unsigned int, to - folio_pos(folio), 799 folio_size(folio)); 800 folio_zero_segment(folio, offset, end); 801 } 802 803 folio_unlock(folio); 804 folio_put(folio); 805 } 806 EXPORT_SYMBOL(pagecache_isize_extended); 807 808 /** 809 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 810 * @inode: inode 811 * @lstart: offset of beginning of hole 812 * @lend: offset of last byte of hole 813 * 814 * This function should typically be called before the filesystem 815 * releases resources associated with the freed range (eg. deallocates 816 * blocks). This way, pagecache will always stay logically coherent 817 * with on-disk format, and the filesystem would not have to deal with 818 * situations such as writepage being called for a page that has already 819 * had its underlying blocks deallocated. 820 */ 821 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 822 { 823 struct address_space *mapping = inode->i_mapping; 824 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 825 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 826 /* 827 * This rounding is currently just for example: unmap_mapping_range 828 * expands its hole outwards, whereas we want it to contract the hole 829 * inwards. However, existing callers of truncate_pagecache_range are 830 * doing their own page rounding first. Note that unmap_mapping_range 831 * allows holelen 0 for all, and we allow lend -1 for end of file. 832 */ 833 834 /* 835 * Unlike in truncate_pagecache, unmap_mapping_range is called only 836 * once (before truncating pagecache), and without "even_cows" flag: 837 * hole-punching should not remove private COWed pages from the hole. 838 */ 839 if ((u64)unmap_end > (u64)unmap_start) 840 unmap_mapping_range(mapping, unmap_start, 841 1 + unmap_end - unmap_start, 0); 842 truncate_inode_pages_range(mapping, lstart, lend); 843 } 844 EXPORT_SYMBOL(truncate_pagecache_range); 845