xref: /linux/mm/truncate.c (revision 765532c8aaac624b5f8687af6d319c6a1138a257)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/module.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include "internal.h"
23 
24 
25 /**
26  * do_invalidatepage - invalidate part or all of a page
27  * @page: the page which is affected
28  * @offset: the index of the truncation point
29  *
30  * do_invalidatepage() is called when all or part of the page has become
31  * invalidated by a truncate operation.
32  *
33  * do_invalidatepage() does not have to release all buffers, but it must
34  * ensure that no dirty buffer is left outside @offset and that no I/O
35  * is underway against any of the blocks which are outside the truncation
36  * point.  Because the caller is about to free (and possibly reuse) those
37  * blocks on-disk.
38  */
39 void do_invalidatepage(struct page *page, unsigned long offset)
40 {
41 	void (*invalidatepage)(struct page *, unsigned long);
42 	invalidatepage = page->mapping->a_ops->invalidatepage;
43 #ifdef CONFIG_BLOCK
44 	if (!invalidatepage)
45 		invalidatepage = block_invalidatepage;
46 #endif
47 	if (invalidatepage)
48 		(*invalidatepage)(page, offset);
49 }
50 
51 static inline void truncate_partial_page(struct page *page, unsigned partial)
52 {
53 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
54 	if (page_has_private(page))
55 		do_invalidatepage(page, partial);
56 }
57 
58 /*
59  * This cancels just the dirty bit on the kernel page itself, it
60  * does NOT actually remove dirty bits on any mmap's that may be
61  * around. It also leaves the page tagged dirty, so any sync
62  * activity will still find it on the dirty lists, and in particular,
63  * clear_page_dirty_for_io() will still look at the dirty bits in
64  * the VM.
65  *
66  * Doing this should *normally* only ever be done when a page
67  * is truncated, and is not actually mapped anywhere at all. However,
68  * fs/buffer.c does this when it notices that somebody has cleaned
69  * out all the buffers on a page without actually doing it through
70  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
71  */
72 void cancel_dirty_page(struct page *page, unsigned int account_size)
73 {
74 	if (TestClearPageDirty(page)) {
75 		struct address_space *mapping = page->mapping;
76 		if (mapping && mapping_cap_account_dirty(mapping)) {
77 			dec_zone_page_state(page, NR_FILE_DIRTY);
78 			dec_bdi_stat(mapping->backing_dev_info,
79 					BDI_RECLAIMABLE);
80 			if (account_size)
81 				task_io_account_cancelled_write(account_size);
82 		}
83 	}
84 }
85 EXPORT_SYMBOL(cancel_dirty_page);
86 
87 /*
88  * If truncate cannot remove the fs-private metadata from the page, the page
89  * becomes orphaned.  It will be left on the LRU and may even be mapped into
90  * user pagetables if we're racing with filemap_fault().
91  *
92  * We need to bale out if page->mapping is no longer equal to the original
93  * mapping.  This happens a) when the VM reclaimed the page while we waited on
94  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
95  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
96  */
97 static int
98 truncate_complete_page(struct address_space *mapping, struct page *page)
99 {
100 	if (page->mapping != mapping)
101 		return -EIO;
102 
103 	if (page_has_private(page))
104 		do_invalidatepage(page, 0);
105 
106 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
107 
108 	clear_page_mlock(page);
109 	remove_from_page_cache(page);
110 	ClearPageMappedToDisk(page);
111 	page_cache_release(page);	/* pagecache ref */
112 	return 0;
113 }
114 
115 /*
116  * This is for invalidate_mapping_pages().  That function can be called at
117  * any time, and is not supposed to throw away dirty pages.  But pages can
118  * be marked dirty at any time too, so use remove_mapping which safely
119  * discards clean, unused pages.
120  *
121  * Returns non-zero if the page was successfully invalidated.
122  */
123 static int
124 invalidate_complete_page(struct address_space *mapping, struct page *page)
125 {
126 	int ret;
127 
128 	if (page->mapping != mapping)
129 		return 0;
130 
131 	if (page_has_private(page) && !try_to_release_page(page, 0))
132 		return 0;
133 
134 	clear_page_mlock(page);
135 	ret = remove_mapping(mapping, page);
136 
137 	return ret;
138 }
139 
140 int truncate_inode_page(struct address_space *mapping, struct page *page)
141 {
142 	if (page_mapped(page)) {
143 		unmap_mapping_range(mapping,
144 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
145 				   PAGE_CACHE_SIZE, 0);
146 	}
147 	return truncate_complete_page(mapping, page);
148 }
149 
150 /*
151  * Used to get rid of pages on hardware memory corruption.
152  */
153 int generic_error_remove_page(struct address_space *mapping, struct page *page)
154 {
155 	if (!mapping)
156 		return -EINVAL;
157 	/*
158 	 * Only punch for normal data pages for now.
159 	 * Handling other types like directories would need more auditing.
160 	 */
161 	if (!S_ISREG(mapping->host->i_mode))
162 		return -EIO;
163 	return truncate_inode_page(mapping, page);
164 }
165 EXPORT_SYMBOL(generic_error_remove_page);
166 
167 /*
168  * Safely invalidate one page from its pagecache mapping.
169  * It only drops clean, unused pages. The page must be locked.
170  *
171  * Returns 1 if the page is successfully invalidated, otherwise 0.
172  */
173 int invalidate_inode_page(struct page *page)
174 {
175 	struct address_space *mapping = page_mapping(page);
176 	if (!mapping)
177 		return 0;
178 	if (PageDirty(page) || PageWriteback(page))
179 		return 0;
180 	if (page_mapped(page))
181 		return 0;
182 	return invalidate_complete_page(mapping, page);
183 }
184 
185 /**
186  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
187  * @mapping: mapping to truncate
188  * @lstart: offset from which to truncate
189  * @lend: offset to which to truncate
190  *
191  * Truncate the page cache, removing the pages that are between
192  * specified offsets (and zeroing out partial page
193  * (if lstart is not page aligned)).
194  *
195  * Truncate takes two passes - the first pass is nonblocking.  It will not
196  * block on page locks and it will not block on writeback.  The second pass
197  * will wait.  This is to prevent as much IO as possible in the affected region.
198  * The first pass will remove most pages, so the search cost of the second pass
199  * is low.
200  *
201  * When looking at page->index outside the page lock we need to be careful to
202  * copy it into a local to avoid races (it could change at any time).
203  *
204  * We pass down the cache-hot hint to the page freeing code.  Even if the
205  * mapping is large, it is probably the case that the final pages are the most
206  * recently touched, and freeing happens in ascending file offset order.
207  */
208 void truncate_inode_pages_range(struct address_space *mapping,
209 				loff_t lstart, loff_t lend)
210 {
211 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
212 	pgoff_t end;
213 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
214 	struct pagevec pvec;
215 	pgoff_t next;
216 	int i;
217 
218 	if (mapping->nrpages == 0)
219 		return;
220 
221 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
222 	end = (lend >> PAGE_CACHE_SHIFT);
223 
224 	pagevec_init(&pvec, 0);
225 	next = start;
226 	while (next <= end &&
227 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
228 		for (i = 0; i < pagevec_count(&pvec); i++) {
229 			struct page *page = pvec.pages[i];
230 			pgoff_t page_index = page->index;
231 
232 			if (page_index > end) {
233 				next = page_index;
234 				break;
235 			}
236 
237 			if (page_index > next)
238 				next = page_index;
239 			next++;
240 			if (!trylock_page(page))
241 				continue;
242 			if (PageWriteback(page)) {
243 				unlock_page(page);
244 				continue;
245 			}
246 			truncate_inode_page(mapping, page);
247 			unlock_page(page);
248 		}
249 		pagevec_release(&pvec);
250 		cond_resched();
251 	}
252 
253 	if (partial) {
254 		struct page *page = find_lock_page(mapping, start - 1);
255 		if (page) {
256 			wait_on_page_writeback(page);
257 			truncate_partial_page(page, partial);
258 			unlock_page(page);
259 			page_cache_release(page);
260 		}
261 	}
262 
263 	next = start;
264 	for ( ; ; ) {
265 		cond_resched();
266 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
267 			if (next == start)
268 				break;
269 			next = start;
270 			continue;
271 		}
272 		if (pvec.pages[0]->index > end) {
273 			pagevec_release(&pvec);
274 			break;
275 		}
276 		mem_cgroup_uncharge_start();
277 		for (i = 0; i < pagevec_count(&pvec); i++) {
278 			struct page *page = pvec.pages[i];
279 
280 			if (page->index > end)
281 				break;
282 			lock_page(page);
283 			wait_on_page_writeback(page);
284 			truncate_inode_page(mapping, page);
285 			if (page->index > next)
286 				next = page->index;
287 			next++;
288 			unlock_page(page);
289 		}
290 		pagevec_release(&pvec);
291 		mem_cgroup_uncharge_end();
292 	}
293 }
294 EXPORT_SYMBOL(truncate_inode_pages_range);
295 
296 /**
297  * truncate_inode_pages - truncate *all* the pages from an offset
298  * @mapping: mapping to truncate
299  * @lstart: offset from which to truncate
300  *
301  * Called under (and serialised by) inode->i_mutex.
302  */
303 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
304 {
305 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
306 }
307 EXPORT_SYMBOL(truncate_inode_pages);
308 
309 /**
310  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
311  * @mapping: the address_space which holds the pages to invalidate
312  * @start: the offset 'from' which to invalidate
313  * @end: the offset 'to' which to invalidate (inclusive)
314  *
315  * This function only removes the unlocked pages, if you want to
316  * remove all the pages of one inode, you must call truncate_inode_pages.
317  *
318  * invalidate_mapping_pages() will not block on IO activity. It will not
319  * invalidate pages which are dirty, locked, under writeback or mapped into
320  * pagetables.
321  */
322 unsigned long invalidate_mapping_pages(struct address_space *mapping,
323 				       pgoff_t start, pgoff_t end)
324 {
325 	struct pagevec pvec;
326 	pgoff_t next = start;
327 	unsigned long ret = 0;
328 	int i;
329 
330 	pagevec_init(&pvec, 0);
331 	while (next <= end &&
332 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
333 		mem_cgroup_uncharge_start();
334 		for (i = 0; i < pagevec_count(&pvec); i++) {
335 			struct page *page = pvec.pages[i];
336 			pgoff_t index;
337 			int lock_failed;
338 
339 			lock_failed = !trylock_page(page);
340 
341 			/*
342 			 * We really shouldn't be looking at the ->index of an
343 			 * unlocked page.  But we're not allowed to lock these
344 			 * pages.  So we rely upon nobody altering the ->index
345 			 * of this (pinned-by-us) page.
346 			 */
347 			index = page->index;
348 			if (index > next)
349 				next = index;
350 			next++;
351 			if (lock_failed)
352 				continue;
353 
354 			ret += invalidate_inode_page(page);
355 
356 			unlock_page(page);
357 			if (next > end)
358 				break;
359 		}
360 		pagevec_release(&pvec);
361 		mem_cgroup_uncharge_end();
362 		cond_resched();
363 	}
364 	return ret;
365 }
366 EXPORT_SYMBOL(invalidate_mapping_pages);
367 
368 /*
369  * This is like invalidate_complete_page(), except it ignores the page's
370  * refcount.  We do this because invalidate_inode_pages2() needs stronger
371  * invalidation guarantees, and cannot afford to leave pages behind because
372  * shrink_page_list() has a temp ref on them, or because they're transiently
373  * sitting in the lru_cache_add() pagevecs.
374  */
375 static int
376 invalidate_complete_page2(struct address_space *mapping, struct page *page)
377 {
378 	if (page->mapping != mapping)
379 		return 0;
380 
381 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
382 		return 0;
383 
384 	spin_lock_irq(&mapping->tree_lock);
385 	if (PageDirty(page))
386 		goto failed;
387 
388 	clear_page_mlock(page);
389 	BUG_ON(page_has_private(page));
390 	__remove_from_page_cache(page);
391 	spin_unlock_irq(&mapping->tree_lock);
392 	mem_cgroup_uncharge_cache_page(page);
393 
394 	if (mapping->a_ops->freepage)
395 		mapping->a_ops->freepage(page);
396 
397 	page_cache_release(page);	/* pagecache ref */
398 	return 1;
399 failed:
400 	spin_unlock_irq(&mapping->tree_lock);
401 	return 0;
402 }
403 
404 static int do_launder_page(struct address_space *mapping, struct page *page)
405 {
406 	if (!PageDirty(page))
407 		return 0;
408 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
409 		return 0;
410 	return mapping->a_ops->launder_page(page);
411 }
412 
413 /**
414  * invalidate_inode_pages2_range - remove range of pages from an address_space
415  * @mapping: the address_space
416  * @start: the page offset 'from' which to invalidate
417  * @end: the page offset 'to' which to invalidate (inclusive)
418  *
419  * Any pages which are found to be mapped into pagetables are unmapped prior to
420  * invalidation.
421  *
422  * Returns -EBUSY if any pages could not be invalidated.
423  */
424 int invalidate_inode_pages2_range(struct address_space *mapping,
425 				  pgoff_t start, pgoff_t end)
426 {
427 	struct pagevec pvec;
428 	pgoff_t next;
429 	int i;
430 	int ret = 0;
431 	int ret2 = 0;
432 	int did_range_unmap = 0;
433 	int wrapped = 0;
434 
435 	pagevec_init(&pvec, 0);
436 	next = start;
437 	while (next <= end && !wrapped &&
438 		pagevec_lookup(&pvec, mapping, next,
439 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
440 		mem_cgroup_uncharge_start();
441 		for (i = 0; i < pagevec_count(&pvec); i++) {
442 			struct page *page = pvec.pages[i];
443 			pgoff_t page_index;
444 
445 			lock_page(page);
446 			if (page->mapping != mapping) {
447 				unlock_page(page);
448 				continue;
449 			}
450 			page_index = page->index;
451 			next = page_index + 1;
452 			if (next == 0)
453 				wrapped = 1;
454 			if (page_index > end) {
455 				unlock_page(page);
456 				break;
457 			}
458 			wait_on_page_writeback(page);
459 			if (page_mapped(page)) {
460 				if (!did_range_unmap) {
461 					/*
462 					 * Zap the rest of the file in one hit.
463 					 */
464 					unmap_mapping_range(mapping,
465 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
466 					   (loff_t)(end - page_index + 1)
467 							<< PAGE_CACHE_SHIFT,
468 					    0);
469 					did_range_unmap = 1;
470 				} else {
471 					/*
472 					 * Just zap this page
473 					 */
474 					unmap_mapping_range(mapping,
475 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
476 					  PAGE_CACHE_SIZE, 0);
477 				}
478 			}
479 			BUG_ON(page_mapped(page));
480 			ret2 = do_launder_page(mapping, page);
481 			if (ret2 == 0) {
482 				if (!invalidate_complete_page2(mapping, page))
483 					ret2 = -EBUSY;
484 			}
485 			if (ret2 < 0)
486 				ret = ret2;
487 			unlock_page(page);
488 		}
489 		pagevec_release(&pvec);
490 		mem_cgroup_uncharge_end();
491 		cond_resched();
492 	}
493 	return ret;
494 }
495 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
496 
497 /**
498  * invalidate_inode_pages2 - remove all pages from an address_space
499  * @mapping: the address_space
500  *
501  * Any pages which are found to be mapped into pagetables are unmapped prior to
502  * invalidation.
503  *
504  * Returns -EBUSY if any pages could not be invalidated.
505  */
506 int invalidate_inode_pages2(struct address_space *mapping)
507 {
508 	return invalidate_inode_pages2_range(mapping, 0, -1);
509 }
510 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
511 
512 /**
513  * truncate_pagecache - unmap and remove pagecache that has been truncated
514  * @inode: inode
515  * @old: old file offset
516  * @new: new file offset
517  *
518  * inode's new i_size must already be written before truncate_pagecache
519  * is called.
520  *
521  * This function should typically be called before the filesystem
522  * releases resources associated with the freed range (eg. deallocates
523  * blocks). This way, pagecache will always stay logically coherent
524  * with on-disk format, and the filesystem would not have to deal with
525  * situations such as writepage being called for a page that has already
526  * had its underlying blocks deallocated.
527  */
528 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
529 {
530 	struct address_space *mapping = inode->i_mapping;
531 
532 	/*
533 	 * unmap_mapping_range is called twice, first simply for
534 	 * efficiency so that truncate_inode_pages does fewer
535 	 * single-page unmaps.  However after this first call, and
536 	 * before truncate_inode_pages finishes, it is possible for
537 	 * private pages to be COWed, which remain after
538 	 * truncate_inode_pages finishes, hence the second
539 	 * unmap_mapping_range call must be made for correctness.
540 	 */
541 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
542 	truncate_inode_pages(mapping, new);
543 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
544 }
545 EXPORT_SYMBOL(truncate_pagecache);
546 
547 /**
548  * truncate_setsize - update inode and pagecache for a new file size
549  * @inode: inode
550  * @newsize: new file size
551  *
552  * truncate_setsize updastes i_size update and performs pagecache
553  * truncation (if necessary) for a file size updates. It will be
554  * typically be called from the filesystem's setattr function when
555  * ATTR_SIZE is passed in.
556  *
557  * Must be called with inode_mutex held and after all filesystem
558  * specific block truncation has been performed.
559  */
560 void truncate_setsize(struct inode *inode, loff_t newsize)
561 {
562 	loff_t oldsize;
563 
564 	oldsize = inode->i_size;
565 	i_size_write(inode, newsize);
566 
567 	truncate_pagecache(inode, oldsize, newsize);
568 }
569 EXPORT_SYMBOL(truncate_setsize);
570 
571 /**
572  * vmtruncate - unmap mappings "freed" by truncate() syscall
573  * @inode: inode of the file used
574  * @offset: file offset to start truncating
575  *
576  * This function is deprecated and truncate_setsize or truncate_pagecache
577  * should be used instead, together with filesystem specific block truncation.
578  */
579 int vmtruncate(struct inode *inode, loff_t offset)
580 {
581 	int error;
582 
583 	error = inode_newsize_ok(inode, offset);
584 	if (error)
585 		return error;
586 
587 	truncate_setsize(inode, offset);
588 	if (inode->i_op->truncate)
589 		inode->i_op->truncate(inode);
590 	return 0;
591 }
592 EXPORT_SYMBOL(vmtruncate);
593