1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/module.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include "internal.h" 23 24 25 /** 26 * do_invalidatepage - invalidate part or all of a page 27 * @page: the page which is affected 28 * @offset: the index of the truncation point 29 * 30 * do_invalidatepage() is called when all or part of the page has become 31 * invalidated by a truncate operation. 32 * 33 * do_invalidatepage() does not have to release all buffers, but it must 34 * ensure that no dirty buffer is left outside @offset and that no I/O 35 * is underway against any of the blocks which are outside the truncation 36 * point. Because the caller is about to free (and possibly reuse) those 37 * blocks on-disk. 38 */ 39 void do_invalidatepage(struct page *page, unsigned long offset) 40 { 41 void (*invalidatepage)(struct page *, unsigned long); 42 invalidatepage = page->mapping->a_ops->invalidatepage; 43 #ifdef CONFIG_BLOCK 44 if (!invalidatepage) 45 invalidatepage = block_invalidatepage; 46 #endif 47 if (invalidatepage) 48 (*invalidatepage)(page, offset); 49 } 50 51 static inline void truncate_partial_page(struct page *page, unsigned partial) 52 { 53 zero_user_segment(page, partial, PAGE_CACHE_SIZE); 54 if (page_has_private(page)) 55 do_invalidatepage(page, partial); 56 } 57 58 /* 59 * This cancels just the dirty bit on the kernel page itself, it 60 * does NOT actually remove dirty bits on any mmap's that may be 61 * around. It also leaves the page tagged dirty, so any sync 62 * activity will still find it on the dirty lists, and in particular, 63 * clear_page_dirty_for_io() will still look at the dirty bits in 64 * the VM. 65 * 66 * Doing this should *normally* only ever be done when a page 67 * is truncated, and is not actually mapped anywhere at all. However, 68 * fs/buffer.c does this when it notices that somebody has cleaned 69 * out all the buffers on a page without actually doing it through 70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 71 */ 72 void cancel_dirty_page(struct page *page, unsigned int account_size) 73 { 74 if (TestClearPageDirty(page)) { 75 struct address_space *mapping = page->mapping; 76 if (mapping && mapping_cap_account_dirty(mapping)) { 77 dec_zone_page_state(page, NR_FILE_DIRTY); 78 dec_bdi_stat(mapping->backing_dev_info, 79 BDI_RECLAIMABLE); 80 if (account_size) 81 task_io_account_cancelled_write(account_size); 82 } 83 } 84 } 85 EXPORT_SYMBOL(cancel_dirty_page); 86 87 /* 88 * If truncate cannot remove the fs-private metadata from the page, the page 89 * becomes orphaned. It will be left on the LRU and may even be mapped into 90 * user pagetables if we're racing with filemap_fault(). 91 * 92 * We need to bale out if page->mapping is no longer equal to the original 93 * mapping. This happens a) when the VM reclaimed the page while we waited on 94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 96 */ 97 static int 98 truncate_complete_page(struct address_space *mapping, struct page *page) 99 { 100 if (page->mapping != mapping) 101 return -EIO; 102 103 if (page_has_private(page)) 104 do_invalidatepage(page, 0); 105 106 cancel_dirty_page(page, PAGE_CACHE_SIZE); 107 108 clear_page_mlock(page); 109 remove_from_page_cache(page); 110 ClearPageMappedToDisk(page); 111 page_cache_release(page); /* pagecache ref */ 112 return 0; 113 } 114 115 /* 116 * This is for invalidate_mapping_pages(). That function can be called at 117 * any time, and is not supposed to throw away dirty pages. But pages can 118 * be marked dirty at any time too, so use remove_mapping which safely 119 * discards clean, unused pages. 120 * 121 * Returns non-zero if the page was successfully invalidated. 122 */ 123 static int 124 invalidate_complete_page(struct address_space *mapping, struct page *page) 125 { 126 int ret; 127 128 if (page->mapping != mapping) 129 return 0; 130 131 if (page_has_private(page) && !try_to_release_page(page, 0)) 132 return 0; 133 134 clear_page_mlock(page); 135 ret = remove_mapping(mapping, page); 136 137 return ret; 138 } 139 140 int truncate_inode_page(struct address_space *mapping, struct page *page) 141 { 142 if (page_mapped(page)) { 143 unmap_mapping_range(mapping, 144 (loff_t)page->index << PAGE_CACHE_SHIFT, 145 PAGE_CACHE_SIZE, 0); 146 } 147 return truncate_complete_page(mapping, page); 148 } 149 150 /* 151 * Used to get rid of pages on hardware memory corruption. 152 */ 153 int generic_error_remove_page(struct address_space *mapping, struct page *page) 154 { 155 if (!mapping) 156 return -EINVAL; 157 /* 158 * Only punch for normal data pages for now. 159 * Handling other types like directories would need more auditing. 160 */ 161 if (!S_ISREG(mapping->host->i_mode)) 162 return -EIO; 163 return truncate_inode_page(mapping, page); 164 } 165 EXPORT_SYMBOL(generic_error_remove_page); 166 167 /* 168 * Safely invalidate one page from its pagecache mapping. 169 * It only drops clean, unused pages. The page must be locked. 170 * 171 * Returns 1 if the page is successfully invalidated, otherwise 0. 172 */ 173 int invalidate_inode_page(struct page *page) 174 { 175 struct address_space *mapping = page_mapping(page); 176 if (!mapping) 177 return 0; 178 if (PageDirty(page) || PageWriteback(page)) 179 return 0; 180 if (page_mapped(page)) 181 return 0; 182 return invalidate_complete_page(mapping, page); 183 } 184 185 /** 186 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 187 * @mapping: mapping to truncate 188 * @lstart: offset from which to truncate 189 * @lend: offset to which to truncate 190 * 191 * Truncate the page cache, removing the pages that are between 192 * specified offsets (and zeroing out partial page 193 * (if lstart is not page aligned)). 194 * 195 * Truncate takes two passes - the first pass is nonblocking. It will not 196 * block on page locks and it will not block on writeback. The second pass 197 * will wait. This is to prevent as much IO as possible in the affected region. 198 * The first pass will remove most pages, so the search cost of the second pass 199 * is low. 200 * 201 * When looking at page->index outside the page lock we need to be careful to 202 * copy it into a local to avoid races (it could change at any time). 203 * 204 * We pass down the cache-hot hint to the page freeing code. Even if the 205 * mapping is large, it is probably the case that the final pages are the most 206 * recently touched, and freeing happens in ascending file offset order. 207 */ 208 void truncate_inode_pages_range(struct address_space *mapping, 209 loff_t lstart, loff_t lend) 210 { 211 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 212 pgoff_t end; 213 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 214 struct pagevec pvec; 215 pgoff_t next; 216 int i; 217 218 if (mapping->nrpages == 0) 219 return; 220 221 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 222 end = (lend >> PAGE_CACHE_SHIFT); 223 224 pagevec_init(&pvec, 0); 225 next = start; 226 while (next <= end && 227 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 228 for (i = 0; i < pagevec_count(&pvec); i++) { 229 struct page *page = pvec.pages[i]; 230 pgoff_t page_index = page->index; 231 232 if (page_index > end) { 233 next = page_index; 234 break; 235 } 236 237 if (page_index > next) 238 next = page_index; 239 next++; 240 if (!trylock_page(page)) 241 continue; 242 if (PageWriteback(page)) { 243 unlock_page(page); 244 continue; 245 } 246 truncate_inode_page(mapping, page); 247 unlock_page(page); 248 } 249 pagevec_release(&pvec); 250 cond_resched(); 251 } 252 253 if (partial) { 254 struct page *page = find_lock_page(mapping, start - 1); 255 if (page) { 256 wait_on_page_writeback(page); 257 truncate_partial_page(page, partial); 258 unlock_page(page); 259 page_cache_release(page); 260 } 261 } 262 263 next = start; 264 for ( ; ; ) { 265 cond_resched(); 266 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 267 if (next == start) 268 break; 269 next = start; 270 continue; 271 } 272 if (pvec.pages[0]->index > end) { 273 pagevec_release(&pvec); 274 break; 275 } 276 mem_cgroup_uncharge_start(); 277 for (i = 0; i < pagevec_count(&pvec); i++) { 278 struct page *page = pvec.pages[i]; 279 280 if (page->index > end) 281 break; 282 lock_page(page); 283 wait_on_page_writeback(page); 284 truncate_inode_page(mapping, page); 285 if (page->index > next) 286 next = page->index; 287 next++; 288 unlock_page(page); 289 } 290 pagevec_release(&pvec); 291 mem_cgroup_uncharge_end(); 292 } 293 } 294 EXPORT_SYMBOL(truncate_inode_pages_range); 295 296 /** 297 * truncate_inode_pages - truncate *all* the pages from an offset 298 * @mapping: mapping to truncate 299 * @lstart: offset from which to truncate 300 * 301 * Called under (and serialised by) inode->i_mutex. 302 */ 303 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 304 { 305 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 306 } 307 EXPORT_SYMBOL(truncate_inode_pages); 308 309 /** 310 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 311 * @mapping: the address_space which holds the pages to invalidate 312 * @start: the offset 'from' which to invalidate 313 * @end: the offset 'to' which to invalidate (inclusive) 314 * 315 * This function only removes the unlocked pages, if you want to 316 * remove all the pages of one inode, you must call truncate_inode_pages. 317 * 318 * invalidate_mapping_pages() will not block on IO activity. It will not 319 * invalidate pages which are dirty, locked, under writeback or mapped into 320 * pagetables. 321 */ 322 unsigned long invalidate_mapping_pages(struct address_space *mapping, 323 pgoff_t start, pgoff_t end) 324 { 325 struct pagevec pvec; 326 pgoff_t next = start; 327 unsigned long ret = 0; 328 int i; 329 330 pagevec_init(&pvec, 0); 331 while (next <= end && 332 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 333 mem_cgroup_uncharge_start(); 334 for (i = 0; i < pagevec_count(&pvec); i++) { 335 struct page *page = pvec.pages[i]; 336 pgoff_t index; 337 int lock_failed; 338 339 lock_failed = !trylock_page(page); 340 341 /* 342 * We really shouldn't be looking at the ->index of an 343 * unlocked page. But we're not allowed to lock these 344 * pages. So we rely upon nobody altering the ->index 345 * of this (pinned-by-us) page. 346 */ 347 index = page->index; 348 if (index > next) 349 next = index; 350 next++; 351 if (lock_failed) 352 continue; 353 354 ret += invalidate_inode_page(page); 355 356 unlock_page(page); 357 if (next > end) 358 break; 359 } 360 pagevec_release(&pvec); 361 mem_cgroup_uncharge_end(); 362 cond_resched(); 363 } 364 return ret; 365 } 366 EXPORT_SYMBOL(invalidate_mapping_pages); 367 368 /* 369 * This is like invalidate_complete_page(), except it ignores the page's 370 * refcount. We do this because invalidate_inode_pages2() needs stronger 371 * invalidation guarantees, and cannot afford to leave pages behind because 372 * shrink_page_list() has a temp ref on them, or because they're transiently 373 * sitting in the lru_cache_add() pagevecs. 374 */ 375 static int 376 invalidate_complete_page2(struct address_space *mapping, struct page *page) 377 { 378 if (page->mapping != mapping) 379 return 0; 380 381 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 382 return 0; 383 384 spin_lock_irq(&mapping->tree_lock); 385 if (PageDirty(page)) 386 goto failed; 387 388 clear_page_mlock(page); 389 BUG_ON(page_has_private(page)); 390 __remove_from_page_cache(page); 391 spin_unlock_irq(&mapping->tree_lock); 392 mem_cgroup_uncharge_cache_page(page); 393 394 if (mapping->a_ops->freepage) 395 mapping->a_ops->freepage(page); 396 397 page_cache_release(page); /* pagecache ref */ 398 return 1; 399 failed: 400 spin_unlock_irq(&mapping->tree_lock); 401 return 0; 402 } 403 404 static int do_launder_page(struct address_space *mapping, struct page *page) 405 { 406 if (!PageDirty(page)) 407 return 0; 408 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 409 return 0; 410 return mapping->a_ops->launder_page(page); 411 } 412 413 /** 414 * invalidate_inode_pages2_range - remove range of pages from an address_space 415 * @mapping: the address_space 416 * @start: the page offset 'from' which to invalidate 417 * @end: the page offset 'to' which to invalidate (inclusive) 418 * 419 * Any pages which are found to be mapped into pagetables are unmapped prior to 420 * invalidation. 421 * 422 * Returns -EBUSY if any pages could not be invalidated. 423 */ 424 int invalidate_inode_pages2_range(struct address_space *mapping, 425 pgoff_t start, pgoff_t end) 426 { 427 struct pagevec pvec; 428 pgoff_t next; 429 int i; 430 int ret = 0; 431 int ret2 = 0; 432 int did_range_unmap = 0; 433 int wrapped = 0; 434 435 pagevec_init(&pvec, 0); 436 next = start; 437 while (next <= end && !wrapped && 438 pagevec_lookup(&pvec, mapping, next, 439 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 440 mem_cgroup_uncharge_start(); 441 for (i = 0; i < pagevec_count(&pvec); i++) { 442 struct page *page = pvec.pages[i]; 443 pgoff_t page_index; 444 445 lock_page(page); 446 if (page->mapping != mapping) { 447 unlock_page(page); 448 continue; 449 } 450 page_index = page->index; 451 next = page_index + 1; 452 if (next == 0) 453 wrapped = 1; 454 if (page_index > end) { 455 unlock_page(page); 456 break; 457 } 458 wait_on_page_writeback(page); 459 if (page_mapped(page)) { 460 if (!did_range_unmap) { 461 /* 462 * Zap the rest of the file in one hit. 463 */ 464 unmap_mapping_range(mapping, 465 (loff_t)page_index<<PAGE_CACHE_SHIFT, 466 (loff_t)(end - page_index + 1) 467 << PAGE_CACHE_SHIFT, 468 0); 469 did_range_unmap = 1; 470 } else { 471 /* 472 * Just zap this page 473 */ 474 unmap_mapping_range(mapping, 475 (loff_t)page_index<<PAGE_CACHE_SHIFT, 476 PAGE_CACHE_SIZE, 0); 477 } 478 } 479 BUG_ON(page_mapped(page)); 480 ret2 = do_launder_page(mapping, page); 481 if (ret2 == 0) { 482 if (!invalidate_complete_page2(mapping, page)) 483 ret2 = -EBUSY; 484 } 485 if (ret2 < 0) 486 ret = ret2; 487 unlock_page(page); 488 } 489 pagevec_release(&pvec); 490 mem_cgroup_uncharge_end(); 491 cond_resched(); 492 } 493 return ret; 494 } 495 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 496 497 /** 498 * invalidate_inode_pages2 - remove all pages from an address_space 499 * @mapping: the address_space 500 * 501 * Any pages which are found to be mapped into pagetables are unmapped prior to 502 * invalidation. 503 * 504 * Returns -EBUSY if any pages could not be invalidated. 505 */ 506 int invalidate_inode_pages2(struct address_space *mapping) 507 { 508 return invalidate_inode_pages2_range(mapping, 0, -1); 509 } 510 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 511 512 /** 513 * truncate_pagecache - unmap and remove pagecache that has been truncated 514 * @inode: inode 515 * @old: old file offset 516 * @new: new file offset 517 * 518 * inode's new i_size must already be written before truncate_pagecache 519 * is called. 520 * 521 * This function should typically be called before the filesystem 522 * releases resources associated with the freed range (eg. deallocates 523 * blocks). This way, pagecache will always stay logically coherent 524 * with on-disk format, and the filesystem would not have to deal with 525 * situations such as writepage being called for a page that has already 526 * had its underlying blocks deallocated. 527 */ 528 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new) 529 { 530 struct address_space *mapping = inode->i_mapping; 531 532 /* 533 * unmap_mapping_range is called twice, first simply for 534 * efficiency so that truncate_inode_pages does fewer 535 * single-page unmaps. However after this first call, and 536 * before truncate_inode_pages finishes, it is possible for 537 * private pages to be COWed, which remain after 538 * truncate_inode_pages finishes, hence the second 539 * unmap_mapping_range call must be made for correctness. 540 */ 541 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 542 truncate_inode_pages(mapping, new); 543 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 544 } 545 EXPORT_SYMBOL(truncate_pagecache); 546 547 /** 548 * truncate_setsize - update inode and pagecache for a new file size 549 * @inode: inode 550 * @newsize: new file size 551 * 552 * truncate_setsize updastes i_size update and performs pagecache 553 * truncation (if necessary) for a file size updates. It will be 554 * typically be called from the filesystem's setattr function when 555 * ATTR_SIZE is passed in. 556 * 557 * Must be called with inode_mutex held and after all filesystem 558 * specific block truncation has been performed. 559 */ 560 void truncate_setsize(struct inode *inode, loff_t newsize) 561 { 562 loff_t oldsize; 563 564 oldsize = inode->i_size; 565 i_size_write(inode, newsize); 566 567 truncate_pagecache(inode, oldsize, newsize); 568 } 569 EXPORT_SYMBOL(truncate_setsize); 570 571 /** 572 * vmtruncate - unmap mappings "freed" by truncate() syscall 573 * @inode: inode of the file used 574 * @offset: file offset to start truncating 575 * 576 * This function is deprecated and truncate_setsize or truncate_pagecache 577 * should be used instead, together with filesystem specific block truncation. 578 */ 579 int vmtruncate(struct inode *inode, loff_t offset) 580 { 581 int error; 582 583 error = inode_newsize_ok(inode, offset); 584 if (error) 585 return error; 586 587 truncate_setsize(inode, offset); 588 if (inode->i_op->truncate) 589 inode->i_op->truncate(inode); 590 return 0; 591 } 592 EXPORT_SYMBOL(vmtruncate); 593