xref: /linux/mm/truncate.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
20 				   do_invalidatepage */
21 #include "internal.h"
22 
23 
24 /**
25  * do_invalidatepage - invalidate part or all of a page
26  * @page: the page which is affected
27  * @offset: the index of the truncation point
28  *
29  * do_invalidatepage() is called when all or part of the page has become
30  * invalidated by a truncate operation.
31  *
32  * do_invalidatepage() does not have to release all buffers, but it must
33  * ensure that no dirty buffer is left outside @offset and that no I/O
34  * is underway against any of the blocks which are outside the truncation
35  * point.  Because the caller is about to free (and possibly reuse) those
36  * blocks on-disk.
37  */
38 void do_invalidatepage(struct page *page, unsigned long offset)
39 {
40 	void (*invalidatepage)(struct page *, unsigned long);
41 	invalidatepage = page->mapping->a_ops->invalidatepage;
42 #ifdef CONFIG_BLOCK
43 	if (!invalidatepage)
44 		invalidatepage = block_invalidatepage;
45 #endif
46 	if (invalidatepage)
47 		(*invalidatepage)(page, offset);
48 }
49 
50 static inline void truncate_partial_page(struct page *page, unsigned partial)
51 {
52 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
53 	if (page_has_private(page))
54 		do_invalidatepage(page, partial);
55 }
56 
57 /*
58  * This cancels just the dirty bit on the kernel page itself, it
59  * does NOT actually remove dirty bits on any mmap's that may be
60  * around. It also leaves the page tagged dirty, so any sync
61  * activity will still find it on the dirty lists, and in particular,
62  * clear_page_dirty_for_io() will still look at the dirty bits in
63  * the VM.
64  *
65  * Doing this should *normally* only ever be done when a page
66  * is truncated, and is not actually mapped anywhere at all. However,
67  * fs/buffer.c does this when it notices that somebody has cleaned
68  * out all the buffers on a page without actually doing it through
69  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
70  */
71 void cancel_dirty_page(struct page *page, unsigned int account_size)
72 {
73 	if (TestClearPageDirty(page)) {
74 		struct address_space *mapping = page->mapping;
75 		if (mapping && mapping_cap_account_dirty(mapping)) {
76 			dec_zone_page_state(page, NR_FILE_DIRTY);
77 			dec_bdi_stat(mapping->backing_dev_info,
78 					BDI_RECLAIMABLE);
79 			if (account_size)
80 				task_io_account_cancelled_write(account_size);
81 		}
82 	}
83 }
84 EXPORT_SYMBOL(cancel_dirty_page);
85 
86 /*
87  * If truncate cannot remove the fs-private metadata from the page, the page
88  * becomes orphaned.  It will be left on the LRU and may even be mapped into
89  * user pagetables if we're racing with filemap_fault().
90  *
91  * We need to bale out if page->mapping is no longer equal to the original
92  * mapping.  This happens a) when the VM reclaimed the page while we waited on
93  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
94  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
95  */
96 static int
97 truncate_complete_page(struct address_space *mapping, struct page *page)
98 {
99 	if (page->mapping != mapping)
100 		return -EIO;
101 
102 	if (page_has_private(page))
103 		do_invalidatepage(page, 0);
104 
105 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
106 
107 	clear_page_mlock(page);
108 	remove_from_page_cache(page);
109 	ClearPageMappedToDisk(page);
110 	page_cache_release(page);	/* pagecache ref */
111 	return 0;
112 }
113 
114 /*
115  * This is for invalidate_mapping_pages().  That function can be called at
116  * any time, and is not supposed to throw away dirty pages.  But pages can
117  * be marked dirty at any time too, so use remove_mapping which safely
118  * discards clean, unused pages.
119  *
120  * Returns non-zero if the page was successfully invalidated.
121  */
122 static int
123 invalidate_complete_page(struct address_space *mapping, struct page *page)
124 {
125 	int ret;
126 
127 	if (page->mapping != mapping)
128 		return 0;
129 
130 	if (page_has_private(page) && !try_to_release_page(page, 0))
131 		return 0;
132 
133 	clear_page_mlock(page);
134 	ret = remove_mapping(mapping, page);
135 
136 	return ret;
137 }
138 
139 int truncate_inode_page(struct address_space *mapping, struct page *page)
140 {
141 	if (page_mapped(page)) {
142 		unmap_mapping_range(mapping,
143 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
144 				   PAGE_CACHE_SIZE, 0);
145 	}
146 	return truncate_complete_page(mapping, page);
147 }
148 
149 /*
150  * Used to get rid of pages on hardware memory corruption.
151  */
152 int generic_error_remove_page(struct address_space *mapping, struct page *page)
153 {
154 	if (!mapping)
155 		return -EINVAL;
156 	/*
157 	 * Only punch for normal data pages for now.
158 	 * Handling other types like directories would need more auditing.
159 	 */
160 	if (!S_ISREG(mapping->host->i_mode))
161 		return -EIO;
162 	return truncate_inode_page(mapping, page);
163 }
164 EXPORT_SYMBOL(generic_error_remove_page);
165 
166 /*
167  * Safely invalidate one page from its pagecache mapping.
168  * It only drops clean, unused pages. The page must be locked.
169  *
170  * Returns 1 if the page is successfully invalidated, otherwise 0.
171  */
172 int invalidate_inode_page(struct page *page)
173 {
174 	struct address_space *mapping = page_mapping(page);
175 	if (!mapping)
176 		return 0;
177 	if (PageDirty(page) || PageWriteback(page))
178 		return 0;
179 	if (page_mapped(page))
180 		return 0;
181 	return invalidate_complete_page(mapping, page);
182 }
183 
184 /**
185  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
186  * @mapping: mapping to truncate
187  * @lstart: offset from which to truncate
188  * @lend: offset to which to truncate
189  *
190  * Truncate the page cache, removing the pages that are between
191  * specified offsets (and zeroing out partial page
192  * (if lstart is not page aligned)).
193  *
194  * Truncate takes two passes - the first pass is nonblocking.  It will not
195  * block on page locks and it will not block on writeback.  The second pass
196  * will wait.  This is to prevent as much IO as possible in the affected region.
197  * The first pass will remove most pages, so the search cost of the second pass
198  * is low.
199  *
200  * When looking at page->index outside the page lock we need to be careful to
201  * copy it into a local to avoid races (it could change at any time).
202  *
203  * We pass down the cache-hot hint to the page freeing code.  Even if the
204  * mapping is large, it is probably the case that the final pages are the most
205  * recently touched, and freeing happens in ascending file offset order.
206  */
207 void truncate_inode_pages_range(struct address_space *mapping,
208 				loff_t lstart, loff_t lend)
209 {
210 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
211 	pgoff_t end;
212 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
213 	struct pagevec pvec;
214 	pgoff_t next;
215 	int i;
216 
217 	if (mapping->nrpages == 0)
218 		return;
219 
220 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221 	end = (lend >> PAGE_CACHE_SHIFT);
222 
223 	pagevec_init(&pvec, 0);
224 	next = start;
225 	while (next <= end &&
226 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
227 		for (i = 0; i < pagevec_count(&pvec); i++) {
228 			struct page *page = pvec.pages[i];
229 			pgoff_t page_index = page->index;
230 
231 			if (page_index > end) {
232 				next = page_index;
233 				break;
234 			}
235 
236 			if (page_index > next)
237 				next = page_index;
238 			next++;
239 			if (!trylock_page(page))
240 				continue;
241 			if (PageWriteback(page)) {
242 				unlock_page(page);
243 				continue;
244 			}
245 			truncate_inode_page(mapping, page);
246 			unlock_page(page);
247 		}
248 		pagevec_release(&pvec);
249 		cond_resched();
250 	}
251 
252 	if (partial) {
253 		struct page *page = find_lock_page(mapping, start - 1);
254 		if (page) {
255 			wait_on_page_writeback(page);
256 			truncate_partial_page(page, partial);
257 			unlock_page(page);
258 			page_cache_release(page);
259 		}
260 	}
261 
262 	next = start;
263 	for ( ; ; ) {
264 		cond_resched();
265 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
266 			if (next == start)
267 				break;
268 			next = start;
269 			continue;
270 		}
271 		if (pvec.pages[0]->index > end) {
272 			pagevec_release(&pvec);
273 			break;
274 		}
275 		for (i = 0; i < pagevec_count(&pvec); i++) {
276 			struct page *page = pvec.pages[i];
277 
278 			if (page->index > end)
279 				break;
280 			lock_page(page);
281 			wait_on_page_writeback(page);
282 			truncate_inode_page(mapping, page);
283 			if (page->index > next)
284 				next = page->index;
285 			next++;
286 			unlock_page(page);
287 		}
288 		pagevec_release(&pvec);
289 	}
290 }
291 EXPORT_SYMBOL(truncate_inode_pages_range);
292 
293 /**
294  * truncate_inode_pages - truncate *all* the pages from an offset
295  * @mapping: mapping to truncate
296  * @lstart: offset from which to truncate
297  *
298  * Called under (and serialised by) inode->i_mutex.
299  */
300 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
301 {
302 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
303 }
304 EXPORT_SYMBOL(truncate_inode_pages);
305 
306 /**
307  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
308  * @mapping: the address_space which holds the pages to invalidate
309  * @start: the offset 'from' which to invalidate
310  * @end: the offset 'to' which to invalidate (inclusive)
311  *
312  * This function only removes the unlocked pages, if you want to
313  * remove all the pages of one inode, you must call truncate_inode_pages.
314  *
315  * invalidate_mapping_pages() will not block on IO activity. It will not
316  * invalidate pages which are dirty, locked, under writeback or mapped into
317  * pagetables.
318  */
319 unsigned long invalidate_mapping_pages(struct address_space *mapping,
320 				       pgoff_t start, pgoff_t end)
321 {
322 	struct pagevec pvec;
323 	pgoff_t next = start;
324 	unsigned long ret = 0;
325 	int i;
326 
327 	pagevec_init(&pvec, 0);
328 	while (next <= end &&
329 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
330 		for (i = 0; i < pagevec_count(&pvec); i++) {
331 			struct page *page = pvec.pages[i];
332 			pgoff_t index;
333 			int lock_failed;
334 
335 			lock_failed = !trylock_page(page);
336 
337 			/*
338 			 * We really shouldn't be looking at the ->index of an
339 			 * unlocked page.  But we're not allowed to lock these
340 			 * pages.  So we rely upon nobody altering the ->index
341 			 * of this (pinned-by-us) page.
342 			 */
343 			index = page->index;
344 			if (index > next)
345 				next = index;
346 			next++;
347 			if (lock_failed)
348 				continue;
349 
350 			ret += invalidate_inode_page(page);
351 
352 			unlock_page(page);
353 			if (next > end)
354 				break;
355 		}
356 		pagevec_release(&pvec);
357 		cond_resched();
358 	}
359 	return ret;
360 }
361 EXPORT_SYMBOL(invalidate_mapping_pages);
362 
363 /*
364  * This is like invalidate_complete_page(), except it ignores the page's
365  * refcount.  We do this because invalidate_inode_pages2() needs stronger
366  * invalidation guarantees, and cannot afford to leave pages behind because
367  * shrink_page_list() has a temp ref on them, or because they're transiently
368  * sitting in the lru_cache_add() pagevecs.
369  */
370 static int
371 invalidate_complete_page2(struct address_space *mapping, struct page *page)
372 {
373 	if (page->mapping != mapping)
374 		return 0;
375 
376 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
377 		return 0;
378 
379 	spin_lock_irq(&mapping->tree_lock);
380 	if (PageDirty(page))
381 		goto failed;
382 
383 	clear_page_mlock(page);
384 	BUG_ON(page_has_private(page));
385 	__remove_from_page_cache(page);
386 	spin_unlock_irq(&mapping->tree_lock);
387 	mem_cgroup_uncharge_cache_page(page);
388 	page_cache_release(page);	/* pagecache ref */
389 	return 1;
390 failed:
391 	spin_unlock_irq(&mapping->tree_lock);
392 	return 0;
393 }
394 
395 static int do_launder_page(struct address_space *mapping, struct page *page)
396 {
397 	if (!PageDirty(page))
398 		return 0;
399 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
400 		return 0;
401 	return mapping->a_ops->launder_page(page);
402 }
403 
404 /**
405  * invalidate_inode_pages2_range - remove range of pages from an address_space
406  * @mapping: the address_space
407  * @start: the page offset 'from' which to invalidate
408  * @end: the page offset 'to' which to invalidate (inclusive)
409  *
410  * Any pages which are found to be mapped into pagetables are unmapped prior to
411  * invalidation.
412  *
413  * Returns -EBUSY if any pages could not be invalidated.
414  */
415 int invalidate_inode_pages2_range(struct address_space *mapping,
416 				  pgoff_t start, pgoff_t end)
417 {
418 	struct pagevec pvec;
419 	pgoff_t next;
420 	int i;
421 	int ret = 0;
422 	int ret2 = 0;
423 	int did_range_unmap = 0;
424 	int wrapped = 0;
425 
426 	pagevec_init(&pvec, 0);
427 	next = start;
428 	while (next <= end && !wrapped &&
429 		pagevec_lookup(&pvec, mapping, next,
430 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
431 		for (i = 0; i < pagevec_count(&pvec); i++) {
432 			struct page *page = pvec.pages[i];
433 			pgoff_t page_index;
434 
435 			lock_page(page);
436 			if (page->mapping != mapping) {
437 				unlock_page(page);
438 				continue;
439 			}
440 			page_index = page->index;
441 			next = page_index + 1;
442 			if (next == 0)
443 				wrapped = 1;
444 			if (page_index > end) {
445 				unlock_page(page);
446 				break;
447 			}
448 			wait_on_page_writeback(page);
449 			if (page_mapped(page)) {
450 				if (!did_range_unmap) {
451 					/*
452 					 * Zap the rest of the file in one hit.
453 					 */
454 					unmap_mapping_range(mapping,
455 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
456 					   (loff_t)(end - page_index + 1)
457 							<< PAGE_CACHE_SHIFT,
458 					    0);
459 					did_range_unmap = 1;
460 				} else {
461 					/*
462 					 * Just zap this page
463 					 */
464 					unmap_mapping_range(mapping,
465 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
466 					  PAGE_CACHE_SIZE, 0);
467 				}
468 			}
469 			BUG_ON(page_mapped(page));
470 			ret2 = do_launder_page(mapping, page);
471 			if (ret2 == 0) {
472 				if (!invalidate_complete_page2(mapping, page))
473 					ret2 = -EBUSY;
474 			}
475 			if (ret2 < 0)
476 				ret = ret2;
477 			unlock_page(page);
478 		}
479 		pagevec_release(&pvec);
480 		cond_resched();
481 	}
482 	return ret;
483 }
484 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
485 
486 /**
487  * invalidate_inode_pages2 - remove all pages from an address_space
488  * @mapping: the address_space
489  *
490  * Any pages which are found to be mapped into pagetables are unmapped prior to
491  * invalidation.
492  *
493  * Returns -EIO if any pages could not be invalidated.
494  */
495 int invalidate_inode_pages2(struct address_space *mapping)
496 {
497 	return invalidate_inode_pages2_range(mapping, 0, -1);
498 }
499 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
500 
501 /**
502  * truncate_pagecache - unmap and remove pagecache that has been truncated
503  * @inode: inode
504  * @old: old file offset
505  * @new: new file offset
506  *
507  * inode's new i_size must already be written before truncate_pagecache
508  * is called.
509  *
510  * This function should typically be called before the filesystem
511  * releases resources associated with the freed range (eg. deallocates
512  * blocks). This way, pagecache will always stay logically coherent
513  * with on-disk format, and the filesystem would not have to deal with
514  * situations such as writepage being called for a page that has already
515  * had its underlying blocks deallocated.
516  */
517 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
518 {
519 	if (new < old) {
520 		struct address_space *mapping = inode->i_mapping;
521 
522 		/*
523 		 * unmap_mapping_range is called twice, first simply for
524 		 * efficiency so that truncate_inode_pages does fewer
525 		 * single-page unmaps.  However after this first call, and
526 		 * before truncate_inode_pages finishes, it is possible for
527 		 * private pages to be COWed, which remain after
528 		 * truncate_inode_pages finishes, hence the second
529 		 * unmap_mapping_range call must be made for correctness.
530 		 */
531 		unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
532 		truncate_inode_pages(mapping, new);
533 		unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
534 	}
535 }
536 EXPORT_SYMBOL(truncate_pagecache);
537 
538 /**
539  * vmtruncate - unmap mappings "freed" by truncate() syscall
540  * @inode: inode of the file used
541  * @offset: file offset to start truncating
542  *
543  * NOTE! We have to be ready to update the memory sharing
544  * between the file and the memory map for a potential last
545  * incomplete page.  Ugly, but necessary.
546  */
547 int vmtruncate(struct inode *inode, loff_t offset)
548 {
549 	loff_t oldsize;
550 	int error;
551 
552 	error = inode_newsize_ok(inode, offset);
553 	if (error)
554 		return error;
555 	oldsize = inode->i_size;
556 	i_size_write(inode, offset);
557 	truncate_pagecache(inode, oldsize, offset);
558 	if (inode->i_op->truncate)
559 		inode->i_op->truncate(inode);
560 
561 	return error;
562 }
563 EXPORT_SYMBOL(vmtruncate);
564