1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/module.h> 15 #include <linux/pagemap.h> 16 #include <linux/highmem.h> 17 #include <linux/pagevec.h> 18 #include <linux/task_io_accounting_ops.h> 19 #include <linux/buffer_head.h> /* grr. try_to_release_page, 20 do_invalidatepage */ 21 #include "internal.h" 22 23 24 /** 25 * do_invalidatepage - invalidate part or all of a page 26 * @page: the page which is affected 27 * @offset: the index of the truncation point 28 * 29 * do_invalidatepage() is called when all or part of the page has become 30 * invalidated by a truncate operation. 31 * 32 * do_invalidatepage() does not have to release all buffers, but it must 33 * ensure that no dirty buffer is left outside @offset and that no I/O 34 * is underway against any of the blocks which are outside the truncation 35 * point. Because the caller is about to free (and possibly reuse) those 36 * blocks on-disk. 37 */ 38 void do_invalidatepage(struct page *page, unsigned long offset) 39 { 40 void (*invalidatepage)(struct page *, unsigned long); 41 invalidatepage = page->mapping->a_ops->invalidatepage; 42 #ifdef CONFIG_BLOCK 43 if (!invalidatepage) 44 invalidatepage = block_invalidatepage; 45 #endif 46 if (invalidatepage) 47 (*invalidatepage)(page, offset); 48 } 49 50 static inline void truncate_partial_page(struct page *page, unsigned partial) 51 { 52 zero_user_segment(page, partial, PAGE_CACHE_SIZE); 53 if (page_has_private(page)) 54 do_invalidatepage(page, partial); 55 } 56 57 /* 58 * This cancels just the dirty bit on the kernel page itself, it 59 * does NOT actually remove dirty bits on any mmap's that may be 60 * around. It also leaves the page tagged dirty, so any sync 61 * activity will still find it on the dirty lists, and in particular, 62 * clear_page_dirty_for_io() will still look at the dirty bits in 63 * the VM. 64 * 65 * Doing this should *normally* only ever be done when a page 66 * is truncated, and is not actually mapped anywhere at all. However, 67 * fs/buffer.c does this when it notices that somebody has cleaned 68 * out all the buffers on a page without actually doing it through 69 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 70 */ 71 void cancel_dirty_page(struct page *page, unsigned int account_size) 72 { 73 if (TestClearPageDirty(page)) { 74 struct address_space *mapping = page->mapping; 75 if (mapping && mapping_cap_account_dirty(mapping)) { 76 dec_zone_page_state(page, NR_FILE_DIRTY); 77 dec_bdi_stat(mapping->backing_dev_info, 78 BDI_RECLAIMABLE); 79 if (account_size) 80 task_io_account_cancelled_write(account_size); 81 } 82 } 83 } 84 EXPORT_SYMBOL(cancel_dirty_page); 85 86 /* 87 * If truncate cannot remove the fs-private metadata from the page, the page 88 * becomes orphaned. It will be left on the LRU and may even be mapped into 89 * user pagetables if we're racing with filemap_fault(). 90 * 91 * We need to bale out if page->mapping is no longer equal to the original 92 * mapping. This happens a) when the VM reclaimed the page while we waited on 93 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 94 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 95 */ 96 static int 97 truncate_complete_page(struct address_space *mapping, struct page *page) 98 { 99 if (page->mapping != mapping) 100 return -EIO; 101 102 if (page_has_private(page)) 103 do_invalidatepage(page, 0); 104 105 cancel_dirty_page(page, PAGE_CACHE_SIZE); 106 107 clear_page_mlock(page); 108 remove_from_page_cache(page); 109 ClearPageMappedToDisk(page); 110 page_cache_release(page); /* pagecache ref */ 111 return 0; 112 } 113 114 /* 115 * This is for invalidate_mapping_pages(). That function can be called at 116 * any time, and is not supposed to throw away dirty pages. But pages can 117 * be marked dirty at any time too, so use remove_mapping which safely 118 * discards clean, unused pages. 119 * 120 * Returns non-zero if the page was successfully invalidated. 121 */ 122 static int 123 invalidate_complete_page(struct address_space *mapping, struct page *page) 124 { 125 int ret; 126 127 if (page->mapping != mapping) 128 return 0; 129 130 if (page_has_private(page) && !try_to_release_page(page, 0)) 131 return 0; 132 133 clear_page_mlock(page); 134 ret = remove_mapping(mapping, page); 135 136 return ret; 137 } 138 139 int truncate_inode_page(struct address_space *mapping, struct page *page) 140 { 141 if (page_mapped(page)) { 142 unmap_mapping_range(mapping, 143 (loff_t)page->index << PAGE_CACHE_SHIFT, 144 PAGE_CACHE_SIZE, 0); 145 } 146 return truncate_complete_page(mapping, page); 147 } 148 149 /* 150 * Used to get rid of pages on hardware memory corruption. 151 */ 152 int generic_error_remove_page(struct address_space *mapping, struct page *page) 153 { 154 if (!mapping) 155 return -EINVAL; 156 /* 157 * Only punch for normal data pages for now. 158 * Handling other types like directories would need more auditing. 159 */ 160 if (!S_ISREG(mapping->host->i_mode)) 161 return -EIO; 162 return truncate_inode_page(mapping, page); 163 } 164 EXPORT_SYMBOL(generic_error_remove_page); 165 166 /* 167 * Safely invalidate one page from its pagecache mapping. 168 * It only drops clean, unused pages. The page must be locked. 169 * 170 * Returns 1 if the page is successfully invalidated, otherwise 0. 171 */ 172 int invalidate_inode_page(struct page *page) 173 { 174 struct address_space *mapping = page_mapping(page); 175 if (!mapping) 176 return 0; 177 if (PageDirty(page) || PageWriteback(page)) 178 return 0; 179 if (page_mapped(page)) 180 return 0; 181 return invalidate_complete_page(mapping, page); 182 } 183 184 /** 185 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 186 * @mapping: mapping to truncate 187 * @lstart: offset from which to truncate 188 * @lend: offset to which to truncate 189 * 190 * Truncate the page cache, removing the pages that are between 191 * specified offsets (and zeroing out partial page 192 * (if lstart is not page aligned)). 193 * 194 * Truncate takes two passes - the first pass is nonblocking. It will not 195 * block on page locks and it will not block on writeback. The second pass 196 * will wait. This is to prevent as much IO as possible in the affected region. 197 * The first pass will remove most pages, so the search cost of the second pass 198 * is low. 199 * 200 * When looking at page->index outside the page lock we need to be careful to 201 * copy it into a local to avoid races (it could change at any time). 202 * 203 * We pass down the cache-hot hint to the page freeing code. Even if the 204 * mapping is large, it is probably the case that the final pages are the most 205 * recently touched, and freeing happens in ascending file offset order. 206 */ 207 void truncate_inode_pages_range(struct address_space *mapping, 208 loff_t lstart, loff_t lend) 209 { 210 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 211 pgoff_t end; 212 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 213 struct pagevec pvec; 214 pgoff_t next; 215 int i; 216 217 if (mapping->nrpages == 0) 218 return; 219 220 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 221 end = (lend >> PAGE_CACHE_SHIFT); 222 223 pagevec_init(&pvec, 0); 224 next = start; 225 while (next <= end && 226 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 227 for (i = 0; i < pagevec_count(&pvec); i++) { 228 struct page *page = pvec.pages[i]; 229 pgoff_t page_index = page->index; 230 231 if (page_index > end) { 232 next = page_index; 233 break; 234 } 235 236 if (page_index > next) 237 next = page_index; 238 next++; 239 if (!trylock_page(page)) 240 continue; 241 if (PageWriteback(page)) { 242 unlock_page(page); 243 continue; 244 } 245 truncate_inode_page(mapping, page); 246 unlock_page(page); 247 } 248 pagevec_release(&pvec); 249 cond_resched(); 250 } 251 252 if (partial) { 253 struct page *page = find_lock_page(mapping, start - 1); 254 if (page) { 255 wait_on_page_writeback(page); 256 truncate_partial_page(page, partial); 257 unlock_page(page); 258 page_cache_release(page); 259 } 260 } 261 262 next = start; 263 for ( ; ; ) { 264 cond_resched(); 265 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 266 if (next == start) 267 break; 268 next = start; 269 continue; 270 } 271 if (pvec.pages[0]->index > end) { 272 pagevec_release(&pvec); 273 break; 274 } 275 for (i = 0; i < pagevec_count(&pvec); i++) { 276 struct page *page = pvec.pages[i]; 277 278 if (page->index > end) 279 break; 280 lock_page(page); 281 wait_on_page_writeback(page); 282 truncate_inode_page(mapping, page); 283 if (page->index > next) 284 next = page->index; 285 next++; 286 unlock_page(page); 287 } 288 pagevec_release(&pvec); 289 } 290 } 291 EXPORT_SYMBOL(truncate_inode_pages_range); 292 293 /** 294 * truncate_inode_pages - truncate *all* the pages from an offset 295 * @mapping: mapping to truncate 296 * @lstart: offset from which to truncate 297 * 298 * Called under (and serialised by) inode->i_mutex. 299 */ 300 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 301 { 302 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 303 } 304 EXPORT_SYMBOL(truncate_inode_pages); 305 306 /** 307 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 308 * @mapping: the address_space which holds the pages to invalidate 309 * @start: the offset 'from' which to invalidate 310 * @end: the offset 'to' which to invalidate (inclusive) 311 * 312 * This function only removes the unlocked pages, if you want to 313 * remove all the pages of one inode, you must call truncate_inode_pages. 314 * 315 * invalidate_mapping_pages() will not block on IO activity. It will not 316 * invalidate pages which are dirty, locked, under writeback or mapped into 317 * pagetables. 318 */ 319 unsigned long invalidate_mapping_pages(struct address_space *mapping, 320 pgoff_t start, pgoff_t end) 321 { 322 struct pagevec pvec; 323 pgoff_t next = start; 324 unsigned long ret = 0; 325 int i; 326 327 pagevec_init(&pvec, 0); 328 while (next <= end && 329 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 330 for (i = 0; i < pagevec_count(&pvec); i++) { 331 struct page *page = pvec.pages[i]; 332 pgoff_t index; 333 int lock_failed; 334 335 lock_failed = !trylock_page(page); 336 337 /* 338 * We really shouldn't be looking at the ->index of an 339 * unlocked page. But we're not allowed to lock these 340 * pages. So we rely upon nobody altering the ->index 341 * of this (pinned-by-us) page. 342 */ 343 index = page->index; 344 if (index > next) 345 next = index; 346 next++; 347 if (lock_failed) 348 continue; 349 350 ret += invalidate_inode_page(page); 351 352 unlock_page(page); 353 if (next > end) 354 break; 355 } 356 pagevec_release(&pvec); 357 cond_resched(); 358 } 359 return ret; 360 } 361 EXPORT_SYMBOL(invalidate_mapping_pages); 362 363 /* 364 * This is like invalidate_complete_page(), except it ignores the page's 365 * refcount. We do this because invalidate_inode_pages2() needs stronger 366 * invalidation guarantees, and cannot afford to leave pages behind because 367 * shrink_page_list() has a temp ref on them, or because they're transiently 368 * sitting in the lru_cache_add() pagevecs. 369 */ 370 static int 371 invalidate_complete_page2(struct address_space *mapping, struct page *page) 372 { 373 if (page->mapping != mapping) 374 return 0; 375 376 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 377 return 0; 378 379 spin_lock_irq(&mapping->tree_lock); 380 if (PageDirty(page)) 381 goto failed; 382 383 clear_page_mlock(page); 384 BUG_ON(page_has_private(page)); 385 __remove_from_page_cache(page); 386 spin_unlock_irq(&mapping->tree_lock); 387 mem_cgroup_uncharge_cache_page(page); 388 page_cache_release(page); /* pagecache ref */ 389 return 1; 390 failed: 391 spin_unlock_irq(&mapping->tree_lock); 392 return 0; 393 } 394 395 static int do_launder_page(struct address_space *mapping, struct page *page) 396 { 397 if (!PageDirty(page)) 398 return 0; 399 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 400 return 0; 401 return mapping->a_ops->launder_page(page); 402 } 403 404 /** 405 * invalidate_inode_pages2_range - remove range of pages from an address_space 406 * @mapping: the address_space 407 * @start: the page offset 'from' which to invalidate 408 * @end: the page offset 'to' which to invalidate (inclusive) 409 * 410 * Any pages which are found to be mapped into pagetables are unmapped prior to 411 * invalidation. 412 * 413 * Returns -EBUSY if any pages could not be invalidated. 414 */ 415 int invalidate_inode_pages2_range(struct address_space *mapping, 416 pgoff_t start, pgoff_t end) 417 { 418 struct pagevec pvec; 419 pgoff_t next; 420 int i; 421 int ret = 0; 422 int ret2 = 0; 423 int did_range_unmap = 0; 424 int wrapped = 0; 425 426 pagevec_init(&pvec, 0); 427 next = start; 428 while (next <= end && !wrapped && 429 pagevec_lookup(&pvec, mapping, next, 430 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 431 for (i = 0; i < pagevec_count(&pvec); i++) { 432 struct page *page = pvec.pages[i]; 433 pgoff_t page_index; 434 435 lock_page(page); 436 if (page->mapping != mapping) { 437 unlock_page(page); 438 continue; 439 } 440 page_index = page->index; 441 next = page_index + 1; 442 if (next == 0) 443 wrapped = 1; 444 if (page_index > end) { 445 unlock_page(page); 446 break; 447 } 448 wait_on_page_writeback(page); 449 if (page_mapped(page)) { 450 if (!did_range_unmap) { 451 /* 452 * Zap the rest of the file in one hit. 453 */ 454 unmap_mapping_range(mapping, 455 (loff_t)page_index<<PAGE_CACHE_SHIFT, 456 (loff_t)(end - page_index + 1) 457 << PAGE_CACHE_SHIFT, 458 0); 459 did_range_unmap = 1; 460 } else { 461 /* 462 * Just zap this page 463 */ 464 unmap_mapping_range(mapping, 465 (loff_t)page_index<<PAGE_CACHE_SHIFT, 466 PAGE_CACHE_SIZE, 0); 467 } 468 } 469 BUG_ON(page_mapped(page)); 470 ret2 = do_launder_page(mapping, page); 471 if (ret2 == 0) { 472 if (!invalidate_complete_page2(mapping, page)) 473 ret2 = -EBUSY; 474 } 475 if (ret2 < 0) 476 ret = ret2; 477 unlock_page(page); 478 } 479 pagevec_release(&pvec); 480 cond_resched(); 481 } 482 return ret; 483 } 484 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 485 486 /** 487 * invalidate_inode_pages2 - remove all pages from an address_space 488 * @mapping: the address_space 489 * 490 * Any pages which are found to be mapped into pagetables are unmapped prior to 491 * invalidation. 492 * 493 * Returns -EIO if any pages could not be invalidated. 494 */ 495 int invalidate_inode_pages2(struct address_space *mapping) 496 { 497 return invalidate_inode_pages2_range(mapping, 0, -1); 498 } 499 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 500 501 /** 502 * truncate_pagecache - unmap and remove pagecache that has been truncated 503 * @inode: inode 504 * @old: old file offset 505 * @new: new file offset 506 * 507 * inode's new i_size must already be written before truncate_pagecache 508 * is called. 509 * 510 * This function should typically be called before the filesystem 511 * releases resources associated with the freed range (eg. deallocates 512 * blocks). This way, pagecache will always stay logically coherent 513 * with on-disk format, and the filesystem would not have to deal with 514 * situations such as writepage being called for a page that has already 515 * had its underlying blocks deallocated. 516 */ 517 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new) 518 { 519 if (new < old) { 520 struct address_space *mapping = inode->i_mapping; 521 522 /* 523 * unmap_mapping_range is called twice, first simply for 524 * efficiency so that truncate_inode_pages does fewer 525 * single-page unmaps. However after this first call, and 526 * before truncate_inode_pages finishes, it is possible for 527 * private pages to be COWed, which remain after 528 * truncate_inode_pages finishes, hence the second 529 * unmap_mapping_range call must be made for correctness. 530 */ 531 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 532 truncate_inode_pages(mapping, new); 533 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1); 534 } 535 } 536 EXPORT_SYMBOL(truncate_pagecache); 537 538 /** 539 * vmtruncate - unmap mappings "freed" by truncate() syscall 540 * @inode: inode of the file used 541 * @offset: file offset to start truncating 542 * 543 * NOTE! We have to be ready to update the memory sharing 544 * between the file and the memory map for a potential last 545 * incomplete page. Ugly, but necessary. 546 */ 547 int vmtruncate(struct inode *inode, loff_t offset) 548 { 549 loff_t oldsize; 550 int error; 551 552 error = inode_newsize_ok(inode, offset); 553 if (error) 554 return error; 555 oldsize = inode->i_size; 556 i_size_write(inode, offset); 557 truncate_pagecache(inode, oldsize, offset); 558 if (inode->i_op->truncate) 559 inode->i_op->truncate(inode); 560 561 return error; 562 } 563 EXPORT_SYMBOL(vmtruncate); 564