1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/mm.h> 12 #include <linux/swap.h> 13 #include <linux/module.h> 14 #include <linux/pagemap.h> 15 #include <linux/pagevec.h> 16 #include <linux/buffer_head.h> /* grr. try_to_release_page, 17 do_invalidatepage */ 18 19 20 /** 21 * do_invalidatepage - invalidate part of all of a page 22 * @page: the page which is affected 23 * @offset: the index of the truncation point 24 * 25 * do_invalidatepage() is called when all or part of the page has become 26 * invalidated by a truncate operation. 27 * 28 * do_invalidatepage() does not have to release all buffers, but it must 29 * ensure that no dirty buffer is left outside @offset and that no I/O 30 * is underway against any of the blocks which are outside the truncation 31 * point. Because the caller is about to free (and possibly reuse) those 32 * blocks on-disk. 33 */ 34 void do_invalidatepage(struct page *page, unsigned long offset) 35 { 36 void (*invalidatepage)(struct page *, unsigned long); 37 invalidatepage = page->mapping->a_ops->invalidatepage; 38 #ifdef CONFIG_BLOCK 39 if (!invalidatepage) 40 invalidatepage = block_invalidatepage; 41 #endif 42 if (invalidatepage) 43 (*invalidatepage)(page, offset); 44 } 45 46 static inline void truncate_partial_page(struct page *page, unsigned partial) 47 { 48 memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial); 49 if (PagePrivate(page)) 50 do_invalidatepage(page, partial); 51 } 52 53 /* 54 * If truncate cannot remove the fs-private metadata from the page, the page 55 * becomes anonymous. It will be left on the LRU and may even be mapped into 56 * user pagetables if we're racing with filemap_nopage(). 57 * 58 * We need to bale out if page->mapping is no longer equal to the original 59 * mapping. This happens a) when the VM reclaimed the page while we waited on 60 * its lock, b) when a concurrent invalidate_inode_pages got there first and 61 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 62 */ 63 static void 64 truncate_complete_page(struct address_space *mapping, struct page *page) 65 { 66 if (page->mapping != mapping) 67 return; 68 69 if (PagePrivate(page)) 70 do_invalidatepage(page, 0); 71 72 clear_page_dirty(page); 73 ClearPageUptodate(page); 74 ClearPageMappedToDisk(page); 75 remove_from_page_cache(page); 76 page_cache_release(page); /* pagecache ref */ 77 } 78 79 /* 80 * This is for invalidate_inode_pages(). That function can be called at 81 * any time, and is not supposed to throw away dirty pages. But pages can 82 * be marked dirty at any time too, so use remove_mapping which safely 83 * discards clean, unused pages. 84 * 85 * Returns non-zero if the page was successfully invalidated. 86 */ 87 static int 88 invalidate_complete_page(struct address_space *mapping, struct page *page) 89 { 90 int ret; 91 92 if (page->mapping != mapping) 93 return 0; 94 95 if (PagePrivate(page) && !try_to_release_page(page, 0)) 96 return 0; 97 98 ret = remove_mapping(mapping, page); 99 100 return ret; 101 } 102 103 /** 104 * truncate_inode_pages - truncate range of pages specified by start and 105 * end byte offsets 106 * @mapping: mapping to truncate 107 * @lstart: offset from which to truncate 108 * @lend: offset to which to truncate 109 * 110 * Truncate the page cache, removing the pages that are between 111 * specified offsets (and zeroing out partial page 112 * (if lstart is not page aligned)). 113 * 114 * Truncate takes two passes - the first pass is nonblocking. It will not 115 * block on page locks and it will not block on writeback. The second pass 116 * will wait. This is to prevent as much IO as possible in the affected region. 117 * The first pass will remove most pages, so the search cost of the second pass 118 * is low. 119 * 120 * When looking at page->index outside the page lock we need to be careful to 121 * copy it into a local to avoid races (it could change at any time). 122 * 123 * We pass down the cache-hot hint to the page freeing code. Even if the 124 * mapping is large, it is probably the case that the final pages are the most 125 * recently touched, and freeing happens in ascending file offset order. 126 */ 127 void truncate_inode_pages_range(struct address_space *mapping, 128 loff_t lstart, loff_t lend) 129 { 130 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 131 pgoff_t end; 132 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 133 struct pagevec pvec; 134 pgoff_t next; 135 int i; 136 137 if (mapping->nrpages == 0) 138 return; 139 140 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 141 end = (lend >> PAGE_CACHE_SHIFT); 142 143 pagevec_init(&pvec, 0); 144 next = start; 145 while (next <= end && 146 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 147 for (i = 0; i < pagevec_count(&pvec); i++) { 148 struct page *page = pvec.pages[i]; 149 pgoff_t page_index = page->index; 150 151 if (page_index > end) { 152 next = page_index; 153 break; 154 } 155 156 if (page_index > next) 157 next = page_index; 158 next++; 159 if (TestSetPageLocked(page)) 160 continue; 161 if (PageWriteback(page)) { 162 unlock_page(page); 163 continue; 164 } 165 truncate_complete_page(mapping, page); 166 unlock_page(page); 167 } 168 pagevec_release(&pvec); 169 cond_resched(); 170 } 171 172 if (partial) { 173 struct page *page = find_lock_page(mapping, start - 1); 174 if (page) { 175 wait_on_page_writeback(page); 176 truncate_partial_page(page, partial); 177 unlock_page(page); 178 page_cache_release(page); 179 } 180 } 181 182 next = start; 183 for ( ; ; ) { 184 cond_resched(); 185 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 186 if (next == start) 187 break; 188 next = start; 189 continue; 190 } 191 if (pvec.pages[0]->index > end) { 192 pagevec_release(&pvec); 193 break; 194 } 195 for (i = 0; i < pagevec_count(&pvec); i++) { 196 struct page *page = pvec.pages[i]; 197 198 if (page->index > end) 199 break; 200 lock_page(page); 201 wait_on_page_writeback(page); 202 if (page->index > next) 203 next = page->index; 204 next++; 205 truncate_complete_page(mapping, page); 206 unlock_page(page); 207 } 208 pagevec_release(&pvec); 209 } 210 } 211 EXPORT_SYMBOL(truncate_inode_pages_range); 212 213 /** 214 * truncate_inode_pages - truncate *all* the pages from an offset 215 * @mapping: mapping to truncate 216 * @lstart: offset from which to truncate 217 * 218 * Called under (and serialised by) inode->i_mutex. 219 */ 220 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 221 { 222 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 223 } 224 EXPORT_SYMBOL(truncate_inode_pages); 225 226 /** 227 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 228 * @mapping: the address_space which holds the pages to invalidate 229 * @start: the offset 'from' which to invalidate 230 * @end: the offset 'to' which to invalidate (inclusive) 231 * 232 * This function only removes the unlocked pages, if you want to 233 * remove all the pages of one inode, you must call truncate_inode_pages. 234 * 235 * invalidate_mapping_pages() will not block on IO activity. It will not 236 * invalidate pages which are dirty, locked, under writeback or mapped into 237 * pagetables. 238 */ 239 unsigned long invalidate_mapping_pages(struct address_space *mapping, 240 pgoff_t start, pgoff_t end) 241 { 242 struct pagevec pvec; 243 pgoff_t next = start; 244 unsigned long ret = 0; 245 int i; 246 247 pagevec_init(&pvec, 0); 248 while (next <= end && 249 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 250 for (i = 0; i < pagevec_count(&pvec); i++) { 251 struct page *page = pvec.pages[i]; 252 pgoff_t index; 253 int lock_failed; 254 255 lock_failed = TestSetPageLocked(page); 256 257 /* 258 * We really shouldn't be looking at the ->index of an 259 * unlocked page. But we're not allowed to lock these 260 * pages. So we rely upon nobody altering the ->index 261 * of this (pinned-by-us) page. 262 */ 263 index = page->index; 264 if (index > next) 265 next = index; 266 next++; 267 if (lock_failed) 268 continue; 269 270 if (PageDirty(page) || PageWriteback(page)) 271 goto unlock; 272 if (page_mapped(page)) 273 goto unlock; 274 ret += invalidate_complete_page(mapping, page); 275 unlock: 276 unlock_page(page); 277 if (next > end) 278 break; 279 } 280 pagevec_release(&pvec); 281 } 282 return ret; 283 } 284 285 unsigned long invalidate_inode_pages(struct address_space *mapping) 286 { 287 return invalidate_mapping_pages(mapping, 0, ~0UL); 288 } 289 EXPORT_SYMBOL(invalidate_inode_pages); 290 291 /* 292 * This is like invalidate_complete_page(), except it ignores the page's 293 * refcount. We do this because invalidate_inode_pages2() needs stronger 294 * invalidation guarantees, and cannot afford to leave pages behind because 295 * shrink_list() has a temp ref on them, or because they're transiently sitting 296 * in the lru_cache_add() pagevecs. 297 */ 298 static int 299 invalidate_complete_page2(struct address_space *mapping, struct page *page) 300 { 301 if (page->mapping != mapping) 302 return 0; 303 304 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) 305 return 0; 306 307 write_lock_irq(&mapping->tree_lock); 308 if (PageDirty(page)) 309 goto failed; 310 311 BUG_ON(PagePrivate(page)); 312 __remove_from_page_cache(page); 313 write_unlock_irq(&mapping->tree_lock); 314 ClearPageUptodate(page); 315 page_cache_release(page); /* pagecache ref */ 316 return 1; 317 failed: 318 write_unlock_irq(&mapping->tree_lock); 319 return 0; 320 } 321 322 /** 323 * invalidate_inode_pages2_range - remove range of pages from an address_space 324 * @mapping: the address_space 325 * @start: the page offset 'from' which to invalidate 326 * @end: the page offset 'to' which to invalidate (inclusive) 327 * 328 * Any pages which are found to be mapped into pagetables are unmapped prior to 329 * invalidation. 330 * 331 * Returns -EIO if any pages could not be invalidated. 332 */ 333 int invalidate_inode_pages2_range(struct address_space *mapping, 334 pgoff_t start, pgoff_t end) 335 { 336 struct pagevec pvec; 337 pgoff_t next; 338 int i; 339 int ret = 0; 340 int did_range_unmap = 0; 341 int wrapped = 0; 342 343 pagevec_init(&pvec, 0); 344 next = start; 345 while (next <= end && !ret && !wrapped && 346 pagevec_lookup(&pvec, mapping, next, 347 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 348 for (i = 0; !ret && i < pagevec_count(&pvec); i++) { 349 struct page *page = pvec.pages[i]; 350 pgoff_t page_index; 351 int was_dirty; 352 353 lock_page(page); 354 if (page->mapping != mapping) { 355 unlock_page(page); 356 continue; 357 } 358 page_index = page->index; 359 next = page_index + 1; 360 if (next == 0) 361 wrapped = 1; 362 if (page_index > end) { 363 unlock_page(page); 364 break; 365 } 366 wait_on_page_writeback(page); 367 while (page_mapped(page)) { 368 if (!did_range_unmap) { 369 /* 370 * Zap the rest of the file in one hit. 371 */ 372 unmap_mapping_range(mapping, 373 (loff_t)page_index<<PAGE_CACHE_SHIFT, 374 (loff_t)(end - page_index + 1) 375 << PAGE_CACHE_SHIFT, 376 0); 377 did_range_unmap = 1; 378 } else { 379 /* 380 * Just zap this page 381 */ 382 unmap_mapping_range(mapping, 383 (loff_t)page_index<<PAGE_CACHE_SHIFT, 384 PAGE_CACHE_SIZE, 0); 385 } 386 } 387 was_dirty = test_clear_page_dirty(page); 388 if (!invalidate_complete_page2(mapping, page)) { 389 if (was_dirty) 390 set_page_dirty(page); 391 ret = -EIO; 392 } 393 unlock_page(page); 394 } 395 pagevec_release(&pvec); 396 cond_resched(); 397 } 398 WARN_ON_ONCE(ret); 399 return ret; 400 } 401 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 402 403 /** 404 * invalidate_inode_pages2 - remove all pages from an address_space 405 * @mapping: the address_space 406 * 407 * Any pages which are found to be mapped into pagetables are unmapped prior to 408 * invalidation. 409 * 410 * Returns -EIO if any pages could not be invalidated. 411 */ 412 int invalidate_inode_pages2(struct address_space *mapping) 413 { 414 return invalidate_inode_pages2_range(mapping, 0, -1); 415 } 416 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 417