xref: /linux/mm/truncate.c (revision 52990390f91c1c39ca742fc8f390b29891d95127)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h>	/* grr. try_to_release_page */
23 #include <linux/shmem_fs.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26 
27 /*
28  * Regular page slots are stabilized by the page lock even without the tree
29  * itself locked.  These unlocked entries need verification under the tree
30  * lock.
31  */
32 static inline void __clear_shadow_entry(struct address_space *mapping,
33 				pgoff_t index, void *entry)
34 {
35 	XA_STATE(xas, &mapping->i_pages, index);
36 
37 	xas_set_update(&xas, workingset_update_node);
38 	if (xas_load(&xas) != entry)
39 		return;
40 	xas_store(&xas, NULL);
41 }
42 
43 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
44 			       void *entry)
45 {
46 	spin_lock(&mapping->host->i_lock);
47 	xa_lock_irq(&mapping->i_pages);
48 	__clear_shadow_entry(mapping, index, entry);
49 	xa_unlock_irq(&mapping->i_pages);
50 	if (mapping_shrinkable(mapping))
51 		inode_add_lru(mapping->host);
52 	spin_unlock(&mapping->host->i_lock);
53 }
54 
55 /*
56  * Unconditionally remove exceptional entries. Usually called from truncate
57  * path. Note that the folio_batch may be altered by this function by removing
58  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
59  */
60 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
61 				struct folio_batch *fbatch, pgoff_t *indices)
62 {
63 	int i, j;
64 	bool dax;
65 
66 	/* Handled by shmem itself */
67 	if (shmem_mapping(mapping))
68 		return;
69 
70 	for (j = 0; j < folio_batch_count(fbatch); j++)
71 		if (xa_is_value(fbatch->folios[j]))
72 			break;
73 
74 	if (j == folio_batch_count(fbatch))
75 		return;
76 
77 	dax = dax_mapping(mapping);
78 	if (!dax) {
79 		spin_lock(&mapping->host->i_lock);
80 		xa_lock_irq(&mapping->i_pages);
81 	}
82 
83 	for (i = j; i < folio_batch_count(fbatch); i++) {
84 		struct folio *folio = fbatch->folios[i];
85 		pgoff_t index = indices[i];
86 
87 		if (!xa_is_value(folio)) {
88 			fbatch->folios[j++] = folio;
89 			continue;
90 		}
91 
92 		if (unlikely(dax)) {
93 			dax_delete_mapping_entry(mapping, index);
94 			continue;
95 		}
96 
97 		__clear_shadow_entry(mapping, index, folio);
98 	}
99 
100 	if (!dax) {
101 		xa_unlock_irq(&mapping->i_pages);
102 		if (mapping_shrinkable(mapping))
103 			inode_add_lru(mapping->host);
104 		spin_unlock(&mapping->host->i_lock);
105 	}
106 	fbatch->nr = j;
107 }
108 
109 /*
110  * Invalidate exceptional entry if easily possible. This handles exceptional
111  * entries for invalidate_inode_pages().
112  */
113 static int invalidate_exceptional_entry(struct address_space *mapping,
114 					pgoff_t index, void *entry)
115 {
116 	/* Handled by shmem itself, or for DAX we do nothing. */
117 	if (shmem_mapping(mapping) || dax_mapping(mapping))
118 		return 1;
119 	clear_shadow_entry(mapping, index, entry);
120 	return 1;
121 }
122 
123 /*
124  * Invalidate exceptional entry if clean. This handles exceptional entries for
125  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126  */
127 static int invalidate_exceptional_entry2(struct address_space *mapping,
128 					 pgoff_t index, void *entry)
129 {
130 	/* Handled by shmem itself */
131 	if (shmem_mapping(mapping))
132 		return 1;
133 	if (dax_mapping(mapping))
134 		return dax_invalidate_mapping_entry_sync(mapping, index);
135 	clear_shadow_entry(mapping, index, entry);
136 	return 1;
137 }
138 
139 /**
140  * folio_invalidate - Invalidate part or all of a folio.
141  * @folio: The folio which is affected.
142  * @offset: start of the range to invalidate
143  * @length: length of the range to invalidate
144  *
145  * folio_invalidate() is called when all or part of the folio has become
146  * invalidated by a truncate operation.
147  *
148  * folio_invalidate() does not have to release all buffers, but it must
149  * ensure that no dirty buffer is left outside @offset and that no I/O
150  * is underway against any of the blocks which are outside the truncation
151  * point.  Because the caller is about to free (and possibly reuse) those
152  * blocks on-disk.
153  */
154 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
155 {
156 	const struct address_space_operations *aops = folio->mapping->a_ops;
157 
158 	if (aops->invalidate_folio)
159 		aops->invalidate_folio(folio, offset, length);
160 }
161 EXPORT_SYMBOL_GPL(folio_invalidate);
162 
163 /*
164  * If truncate cannot remove the fs-private metadata from the page, the page
165  * becomes orphaned.  It will be left on the LRU and may even be mapped into
166  * user pagetables if we're racing with filemap_fault().
167  *
168  * We need to bail out if page->mapping is no longer equal to the original
169  * mapping.  This happens a) when the VM reclaimed the page while we waited on
170  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
171  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
172  */
173 static void truncate_cleanup_folio(struct folio *folio)
174 {
175 	if (folio_mapped(folio))
176 		unmap_mapping_folio(folio);
177 
178 	if (folio_has_private(folio))
179 		folio_invalidate(folio, 0, folio_size(folio));
180 
181 	/*
182 	 * Some filesystems seem to re-dirty the page even after
183 	 * the VM has canceled the dirty bit (eg ext3 journaling).
184 	 * Hence dirty accounting check is placed after invalidation.
185 	 */
186 	folio_cancel_dirty(folio);
187 	folio_clear_mappedtodisk(folio);
188 }
189 
190 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
191 {
192 	if (folio->mapping != mapping)
193 		return -EIO;
194 
195 	truncate_cleanup_folio(folio);
196 	filemap_remove_folio(folio);
197 	return 0;
198 }
199 
200 /*
201  * Handle partial folios.  The folio may be entirely within the
202  * range if a split has raced with us.  If not, we zero the part of the
203  * folio that's within the [start, end] range, and then split the folio if
204  * it's large.  split_page_range() will discard pages which now lie beyond
205  * i_size, and we rely on the caller to discard pages which lie within a
206  * newly created hole.
207  *
208  * Returns false if splitting failed so the caller can avoid
209  * discarding the entire folio which is stubbornly unsplit.
210  */
211 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
212 {
213 	loff_t pos = folio_pos(folio);
214 	unsigned int offset, length;
215 
216 	if (pos < start)
217 		offset = start - pos;
218 	else
219 		offset = 0;
220 	length = folio_size(folio);
221 	if (pos + length <= (u64)end)
222 		length = length - offset;
223 	else
224 		length = end + 1 - pos - offset;
225 
226 	folio_wait_writeback(folio);
227 	if (length == folio_size(folio)) {
228 		truncate_inode_folio(folio->mapping, folio);
229 		return true;
230 	}
231 
232 	/*
233 	 * We may be zeroing pages we're about to discard, but it avoids
234 	 * doing a complex calculation here, and then doing the zeroing
235 	 * anyway if the page split fails.
236 	 */
237 	folio_zero_range(folio, offset, length);
238 
239 	if (folio_has_private(folio))
240 		folio_invalidate(folio, offset, length);
241 	if (!folio_test_large(folio))
242 		return true;
243 	if (split_folio(folio) == 0)
244 		return true;
245 	if (folio_test_dirty(folio))
246 		return false;
247 	truncate_inode_folio(folio->mapping, folio);
248 	return true;
249 }
250 
251 /*
252  * Used to get rid of pages on hardware memory corruption.
253  */
254 int generic_error_remove_page(struct address_space *mapping, struct page *page)
255 {
256 	VM_BUG_ON_PAGE(PageTail(page), page);
257 
258 	if (!mapping)
259 		return -EINVAL;
260 	/*
261 	 * Only punch for normal data pages for now.
262 	 * Handling other types like directories would need more auditing.
263 	 */
264 	if (!S_ISREG(mapping->host->i_mode))
265 		return -EIO;
266 	return truncate_inode_folio(mapping, page_folio(page));
267 }
268 EXPORT_SYMBOL(generic_error_remove_page);
269 
270 static long mapping_evict_folio(struct address_space *mapping,
271 		struct folio *folio)
272 {
273 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
274 		return 0;
275 	/* The refcount will be elevated if any page in the folio is mapped */
276 	if (folio_ref_count(folio) >
277 			folio_nr_pages(folio) + folio_has_private(folio) + 1)
278 		return 0;
279 	if (folio_has_private(folio) && !filemap_release_folio(folio, 0))
280 		return 0;
281 
282 	return remove_mapping(mapping, folio);
283 }
284 
285 /**
286  * invalidate_inode_page() - Remove an unused page from the pagecache.
287  * @page: The page to remove.
288  *
289  * Safely invalidate one page from its pagecache mapping.
290  * It only drops clean, unused pages.
291  *
292  * Context: Page must be locked.
293  * Return: The number of pages successfully removed.
294  */
295 long invalidate_inode_page(struct page *page)
296 {
297 	struct folio *folio = page_folio(page);
298 	struct address_space *mapping = folio_mapping(folio);
299 
300 	/* The page may have been truncated before it was locked */
301 	if (!mapping)
302 		return 0;
303 	return mapping_evict_folio(mapping, folio);
304 }
305 
306 /**
307  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
308  * @mapping: mapping to truncate
309  * @lstart: offset from which to truncate
310  * @lend: offset to which to truncate (inclusive)
311  *
312  * Truncate the page cache, removing the pages that are between
313  * specified offsets (and zeroing out partial pages
314  * if lstart or lend + 1 is not page aligned).
315  *
316  * Truncate takes two passes - the first pass is nonblocking.  It will not
317  * block on page locks and it will not block on writeback.  The second pass
318  * will wait.  This is to prevent as much IO as possible in the affected region.
319  * The first pass will remove most pages, so the search cost of the second pass
320  * is low.
321  *
322  * We pass down the cache-hot hint to the page freeing code.  Even if the
323  * mapping is large, it is probably the case that the final pages are the most
324  * recently touched, and freeing happens in ascending file offset order.
325  *
326  * Note that since ->invalidate_folio() accepts range to invalidate
327  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
328  * page aligned properly.
329  */
330 void truncate_inode_pages_range(struct address_space *mapping,
331 				loff_t lstart, loff_t lend)
332 {
333 	pgoff_t		start;		/* inclusive */
334 	pgoff_t		end;		/* exclusive */
335 	struct folio_batch fbatch;
336 	pgoff_t		indices[PAGEVEC_SIZE];
337 	pgoff_t		index;
338 	int		i;
339 	struct folio	*folio;
340 	bool		same_folio;
341 
342 	if (mapping_empty(mapping))
343 		return;
344 
345 	/*
346 	 * 'start' and 'end' always covers the range of pages to be fully
347 	 * truncated. Partial pages are covered with 'partial_start' at the
348 	 * start of the range and 'partial_end' at the end of the range.
349 	 * Note that 'end' is exclusive while 'lend' is inclusive.
350 	 */
351 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
352 	if (lend == -1)
353 		/*
354 		 * lend == -1 indicates end-of-file so we have to set 'end'
355 		 * to the highest possible pgoff_t and since the type is
356 		 * unsigned we're using -1.
357 		 */
358 		end = -1;
359 	else
360 		end = (lend + 1) >> PAGE_SHIFT;
361 
362 	folio_batch_init(&fbatch);
363 	index = start;
364 	while (index < end && find_lock_entries(mapping, &index, end - 1,
365 			&fbatch, indices)) {
366 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
367 		for (i = 0; i < folio_batch_count(&fbatch); i++)
368 			truncate_cleanup_folio(fbatch.folios[i]);
369 		delete_from_page_cache_batch(mapping, &fbatch);
370 		for (i = 0; i < folio_batch_count(&fbatch); i++)
371 			folio_unlock(fbatch.folios[i]);
372 		folio_batch_release(&fbatch);
373 		cond_resched();
374 	}
375 
376 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
377 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
378 	if (!IS_ERR(folio)) {
379 		same_folio = lend < folio_pos(folio) + folio_size(folio);
380 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
381 			start = folio->index + folio_nr_pages(folio);
382 			if (same_folio)
383 				end = folio->index;
384 		}
385 		folio_unlock(folio);
386 		folio_put(folio);
387 		folio = NULL;
388 	}
389 
390 	if (!same_folio) {
391 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
392 						FGP_LOCK, 0);
393 		if (!IS_ERR(folio)) {
394 			if (!truncate_inode_partial_folio(folio, lstart, lend))
395 				end = folio->index;
396 			folio_unlock(folio);
397 			folio_put(folio);
398 		}
399 	}
400 
401 	index = start;
402 	while (index < end) {
403 		cond_resched();
404 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
405 				indices)) {
406 			/* If all gone from start onwards, we're done */
407 			if (index == start)
408 				break;
409 			/* Otherwise restart to make sure all gone */
410 			index = start;
411 			continue;
412 		}
413 
414 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
415 			struct folio *folio = fbatch.folios[i];
416 
417 			/* We rely upon deletion not changing page->index */
418 
419 			if (xa_is_value(folio))
420 				continue;
421 
422 			folio_lock(folio);
423 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
424 			folio_wait_writeback(folio);
425 			truncate_inode_folio(mapping, folio);
426 			folio_unlock(folio);
427 		}
428 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
429 		folio_batch_release(&fbatch);
430 	}
431 }
432 EXPORT_SYMBOL(truncate_inode_pages_range);
433 
434 /**
435  * truncate_inode_pages - truncate *all* the pages from an offset
436  * @mapping: mapping to truncate
437  * @lstart: offset from which to truncate
438  *
439  * Called under (and serialised by) inode->i_rwsem and
440  * mapping->invalidate_lock.
441  *
442  * Note: When this function returns, there can be a page in the process of
443  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
444  * mapping->nrpages can be non-zero when this function returns even after
445  * truncation of the whole mapping.
446  */
447 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
448 {
449 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
450 }
451 EXPORT_SYMBOL(truncate_inode_pages);
452 
453 /**
454  * truncate_inode_pages_final - truncate *all* pages before inode dies
455  * @mapping: mapping to truncate
456  *
457  * Called under (and serialized by) inode->i_rwsem.
458  *
459  * Filesystems have to use this in the .evict_inode path to inform the
460  * VM that this is the final truncate and the inode is going away.
461  */
462 void truncate_inode_pages_final(struct address_space *mapping)
463 {
464 	/*
465 	 * Page reclaim can not participate in regular inode lifetime
466 	 * management (can't call iput()) and thus can race with the
467 	 * inode teardown.  Tell it when the address space is exiting,
468 	 * so that it does not install eviction information after the
469 	 * final truncate has begun.
470 	 */
471 	mapping_set_exiting(mapping);
472 
473 	if (!mapping_empty(mapping)) {
474 		/*
475 		 * As truncation uses a lockless tree lookup, cycle
476 		 * the tree lock to make sure any ongoing tree
477 		 * modification that does not see AS_EXITING is
478 		 * completed before starting the final truncate.
479 		 */
480 		xa_lock_irq(&mapping->i_pages);
481 		xa_unlock_irq(&mapping->i_pages);
482 	}
483 
484 	truncate_inode_pages(mapping, 0);
485 }
486 EXPORT_SYMBOL(truncate_inode_pages_final);
487 
488 /**
489  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
490  * @mapping: the address_space which holds the pages to invalidate
491  * @start: the offset 'from' which to invalidate
492  * @end: the offset 'to' which to invalidate (inclusive)
493  * @nr_pagevec: invalidate failed page number for caller
494  *
495  * This helper is similar to invalidate_mapping_pages(), except that it accounts
496  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
497  * will be used by the caller.
498  */
499 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
500 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
501 {
502 	pgoff_t indices[PAGEVEC_SIZE];
503 	struct folio_batch fbatch;
504 	pgoff_t index = start;
505 	unsigned long ret;
506 	unsigned long count = 0;
507 	int i;
508 
509 	folio_batch_init(&fbatch);
510 	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
511 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
512 			struct folio *folio = fbatch.folios[i];
513 
514 			/* We rely upon deletion not changing folio->index */
515 
516 			if (xa_is_value(folio)) {
517 				count += invalidate_exceptional_entry(mapping,
518 							     indices[i], folio);
519 				continue;
520 			}
521 
522 			ret = mapping_evict_folio(mapping, folio);
523 			folio_unlock(folio);
524 			/*
525 			 * Invalidation is a hint that the folio is no longer
526 			 * of interest and try to speed up its reclaim.
527 			 */
528 			if (!ret) {
529 				deactivate_file_folio(folio);
530 				/* It is likely on the pagevec of a remote CPU */
531 				if (nr_pagevec)
532 					(*nr_pagevec)++;
533 			}
534 			count += ret;
535 		}
536 		folio_batch_remove_exceptionals(&fbatch);
537 		folio_batch_release(&fbatch);
538 		cond_resched();
539 	}
540 	return count;
541 }
542 
543 /**
544  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
545  * @mapping: the address_space which holds the cache to invalidate
546  * @start: the offset 'from' which to invalidate
547  * @end: the offset 'to' which to invalidate (inclusive)
548  *
549  * This function removes pages that are clean, unmapped and unlocked,
550  * as well as shadow entries. It will not block on IO activity.
551  *
552  * If you want to remove all the pages of one inode, regardless of
553  * their use and writeback state, use truncate_inode_pages().
554  *
555  * Return: the number of the cache entries that were invalidated
556  */
557 unsigned long invalidate_mapping_pages(struct address_space *mapping,
558 		pgoff_t start, pgoff_t end)
559 {
560 	return invalidate_mapping_pagevec(mapping, start, end, NULL);
561 }
562 EXPORT_SYMBOL(invalidate_mapping_pages);
563 
564 /*
565  * This is like invalidate_inode_page(), except it ignores the page's
566  * refcount.  We do this because invalidate_inode_pages2() needs stronger
567  * invalidation guarantees, and cannot afford to leave pages behind because
568  * shrink_page_list() has a temp ref on them, or because they're transiently
569  * sitting in the folio_add_lru() pagevecs.
570  */
571 static int invalidate_complete_folio2(struct address_space *mapping,
572 					struct folio *folio)
573 {
574 	if (folio->mapping != mapping)
575 		return 0;
576 
577 	if (folio_has_private(folio) &&
578 	    !filemap_release_folio(folio, GFP_KERNEL))
579 		return 0;
580 
581 	spin_lock(&mapping->host->i_lock);
582 	xa_lock_irq(&mapping->i_pages);
583 	if (folio_test_dirty(folio))
584 		goto failed;
585 
586 	BUG_ON(folio_has_private(folio));
587 	__filemap_remove_folio(folio, NULL);
588 	xa_unlock_irq(&mapping->i_pages);
589 	if (mapping_shrinkable(mapping))
590 		inode_add_lru(mapping->host);
591 	spin_unlock(&mapping->host->i_lock);
592 
593 	filemap_free_folio(mapping, folio);
594 	return 1;
595 failed:
596 	xa_unlock_irq(&mapping->i_pages);
597 	spin_unlock(&mapping->host->i_lock);
598 	return 0;
599 }
600 
601 static int folio_launder(struct address_space *mapping, struct folio *folio)
602 {
603 	if (!folio_test_dirty(folio))
604 		return 0;
605 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
606 		return 0;
607 	return mapping->a_ops->launder_folio(folio);
608 }
609 
610 /**
611  * invalidate_inode_pages2_range - remove range of pages from an address_space
612  * @mapping: the address_space
613  * @start: the page offset 'from' which to invalidate
614  * @end: the page offset 'to' which to invalidate (inclusive)
615  *
616  * Any pages which are found to be mapped into pagetables are unmapped prior to
617  * invalidation.
618  *
619  * Return: -EBUSY if any pages could not be invalidated.
620  */
621 int invalidate_inode_pages2_range(struct address_space *mapping,
622 				  pgoff_t start, pgoff_t end)
623 {
624 	pgoff_t indices[PAGEVEC_SIZE];
625 	struct folio_batch fbatch;
626 	pgoff_t index;
627 	int i;
628 	int ret = 0;
629 	int ret2 = 0;
630 	int did_range_unmap = 0;
631 
632 	if (mapping_empty(mapping))
633 		return 0;
634 
635 	folio_batch_init(&fbatch);
636 	index = start;
637 	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
638 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
639 			struct folio *folio = fbatch.folios[i];
640 
641 			/* We rely upon deletion not changing folio->index */
642 
643 			if (xa_is_value(folio)) {
644 				if (!invalidate_exceptional_entry2(mapping,
645 						indices[i], folio))
646 					ret = -EBUSY;
647 				continue;
648 			}
649 
650 			if (!did_range_unmap && folio_mapped(folio)) {
651 				/*
652 				 * If folio is mapped, before taking its lock,
653 				 * zap the rest of the file in one hit.
654 				 */
655 				unmap_mapping_pages(mapping, indices[i],
656 						(1 + end - indices[i]), false);
657 				did_range_unmap = 1;
658 			}
659 
660 			folio_lock(folio);
661 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
662 			if (folio->mapping != mapping) {
663 				folio_unlock(folio);
664 				continue;
665 			}
666 			folio_wait_writeback(folio);
667 
668 			if (folio_mapped(folio))
669 				unmap_mapping_folio(folio);
670 			BUG_ON(folio_mapped(folio));
671 
672 			ret2 = folio_launder(mapping, folio);
673 			if (ret2 == 0) {
674 				if (!invalidate_complete_folio2(mapping, folio))
675 					ret2 = -EBUSY;
676 			}
677 			if (ret2 < 0)
678 				ret = ret2;
679 			folio_unlock(folio);
680 		}
681 		folio_batch_remove_exceptionals(&fbatch);
682 		folio_batch_release(&fbatch);
683 		cond_resched();
684 	}
685 	/*
686 	 * For DAX we invalidate page tables after invalidating page cache.  We
687 	 * could invalidate page tables while invalidating each entry however
688 	 * that would be expensive. And doing range unmapping before doesn't
689 	 * work as we have no cheap way to find whether page cache entry didn't
690 	 * get remapped later.
691 	 */
692 	if (dax_mapping(mapping)) {
693 		unmap_mapping_pages(mapping, start, end - start + 1, false);
694 	}
695 	return ret;
696 }
697 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
698 
699 /**
700  * invalidate_inode_pages2 - remove all pages from an address_space
701  * @mapping: the address_space
702  *
703  * Any pages which are found to be mapped into pagetables are unmapped prior to
704  * invalidation.
705  *
706  * Return: -EBUSY if any pages could not be invalidated.
707  */
708 int invalidate_inode_pages2(struct address_space *mapping)
709 {
710 	return invalidate_inode_pages2_range(mapping, 0, -1);
711 }
712 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
713 
714 /**
715  * truncate_pagecache - unmap and remove pagecache that has been truncated
716  * @inode: inode
717  * @newsize: new file size
718  *
719  * inode's new i_size must already be written before truncate_pagecache
720  * is called.
721  *
722  * This function should typically be called before the filesystem
723  * releases resources associated with the freed range (eg. deallocates
724  * blocks). This way, pagecache will always stay logically coherent
725  * with on-disk format, and the filesystem would not have to deal with
726  * situations such as writepage being called for a page that has already
727  * had its underlying blocks deallocated.
728  */
729 void truncate_pagecache(struct inode *inode, loff_t newsize)
730 {
731 	struct address_space *mapping = inode->i_mapping;
732 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
733 
734 	/*
735 	 * unmap_mapping_range is called twice, first simply for
736 	 * efficiency so that truncate_inode_pages does fewer
737 	 * single-page unmaps.  However after this first call, and
738 	 * before truncate_inode_pages finishes, it is possible for
739 	 * private pages to be COWed, which remain after
740 	 * truncate_inode_pages finishes, hence the second
741 	 * unmap_mapping_range call must be made for correctness.
742 	 */
743 	unmap_mapping_range(mapping, holebegin, 0, 1);
744 	truncate_inode_pages(mapping, newsize);
745 	unmap_mapping_range(mapping, holebegin, 0, 1);
746 }
747 EXPORT_SYMBOL(truncate_pagecache);
748 
749 /**
750  * truncate_setsize - update inode and pagecache for a new file size
751  * @inode: inode
752  * @newsize: new file size
753  *
754  * truncate_setsize updates i_size and performs pagecache truncation (if
755  * necessary) to @newsize. It will be typically be called from the filesystem's
756  * setattr function when ATTR_SIZE is passed in.
757  *
758  * Must be called with a lock serializing truncates and writes (generally
759  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
760  * specific block truncation has been performed.
761  */
762 void truncate_setsize(struct inode *inode, loff_t newsize)
763 {
764 	loff_t oldsize = inode->i_size;
765 
766 	i_size_write(inode, newsize);
767 	if (newsize > oldsize)
768 		pagecache_isize_extended(inode, oldsize, newsize);
769 	truncate_pagecache(inode, newsize);
770 }
771 EXPORT_SYMBOL(truncate_setsize);
772 
773 /**
774  * pagecache_isize_extended - update pagecache after extension of i_size
775  * @inode:	inode for which i_size was extended
776  * @from:	original inode size
777  * @to:		new inode size
778  *
779  * Handle extension of inode size either caused by extending truncate or by
780  * write starting after current i_size. We mark the page straddling current
781  * i_size RO so that page_mkwrite() is called on the nearest write access to
782  * the page.  This way filesystem can be sure that page_mkwrite() is called on
783  * the page before user writes to the page via mmap after the i_size has been
784  * changed.
785  *
786  * The function must be called after i_size is updated so that page fault
787  * coming after we unlock the page will already see the new i_size.
788  * The function must be called while we still hold i_rwsem - this not only
789  * makes sure i_size is stable but also that userspace cannot observe new
790  * i_size value before we are prepared to store mmap writes at new inode size.
791  */
792 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
793 {
794 	int bsize = i_blocksize(inode);
795 	loff_t rounded_from;
796 	struct page *page;
797 	pgoff_t index;
798 
799 	WARN_ON(to > inode->i_size);
800 
801 	if (from >= to || bsize == PAGE_SIZE)
802 		return;
803 	/* Page straddling @from will not have any hole block created? */
804 	rounded_from = round_up(from, bsize);
805 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
806 		return;
807 
808 	index = from >> PAGE_SHIFT;
809 	page = find_lock_page(inode->i_mapping, index);
810 	/* Page not cached? Nothing to do */
811 	if (!page)
812 		return;
813 	/*
814 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
815 	 * is needed.
816 	 */
817 	if (page_mkclean(page))
818 		set_page_dirty(page);
819 	unlock_page(page);
820 	put_page(page);
821 }
822 EXPORT_SYMBOL(pagecache_isize_extended);
823 
824 /**
825  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
826  * @inode: inode
827  * @lstart: offset of beginning of hole
828  * @lend: offset of last byte of hole
829  *
830  * This function should typically be called before the filesystem
831  * releases resources associated with the freed range (eg. deallocates
832  * blocks). This way, pagecache will always stay logically coherent
833  * with on-disk format, and the filesystem would not have to deal with
834  * situations such as writepage being called for a page that has already
835  * had its underlying blocks deallocated.
836  */
837 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
838 {
839 	struct address_space *mapping = inode->i_mapping;
840 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
841 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
842 	/*
843 	 * This rounding is currently just for example: unmap_mapping_range
844 	 * expands its hole outwards, whereas we want it to contract the hole
845 	 * inwards.  However, existing callers of truncate_pagecache_range are
846 	 * doing their own page rounding first.  Note that unmap_mapping_range
847 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
848 	 */
849 
850 	/*
851 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
852 	 * once (before truncating pagecache), and without "even_cows" flag:
853 	 * hole-punching should not remove private COWed pages from the hole.
854 	 */
855 	if ((u64)unmap_end > (u64)unmap_start)
856 		unmap_mapping_range(mapping, unmap_start,
857 				    1 + unmap_end - unmap_start, 0);
858 	truncate_inode_pages_range(mapping, lstart, lend);
859 }
860 EXPORT_SYMBOL(truncate_pagecache_range);
861