1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 static void clear_shadow_entries(struct address_space *mapping, 27 unsigned long start, unsigned long max) 28 { 29 XA_STATE(xas, &mapping->i_pages, start); 30 struct folio *folio; 31 32 /* Handled by shmem itself, or for DAX we do nothing. */ 33 if (shmem_mapping(mapping) || dax_mapping(mapping)) 34 return; 35 36 xas_set_update(&xas, workingset_update_node); 37 38 spin_lock(&mapping->host->i_lock); 39 xas_lock_irq(&xas); 40 41 /* Clear all shadow entries from start to max */ 42 xas_for_each(&xas, folio, max) { 43 if (xa_is_value(folio)) 44 xas_store(&xas, NULL); 45 } 46 47 xas_unlock_irq(&xas); 48 if (mapping_shrinkable(mapping)) 49 inode_add_lru(mapping->host); 50 spin_unlock(&mapping->host->i_lock); 51 } 52 53 /* 54 * Unconditionally remove exceptional entries. Usually called from truncate 55 * path. Note that the folio_batch may be altered by this function by removing 56 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 57 * Please note that indices[] has entries in ascending order as guaranteed by 58 * either find_get_entries() or find_lock_entries(). 59 */ 60 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 61 struct folio_batch *fbatch, pgoff_t *indices) 62 { 63 XA_STATE(xas, &mapping->i_pages, indices[0]); 64 int nr = folio_batch_count(fbatch); 65 struct folio *folio; 66 int i, j; 67 68 /* Handled by shmem itself */ 69 if (shmem_mapping(mapping)) 70 return; 71 72 for (j = 0; j < nr; j++) 73 if (xa_is_value(fbatch->folios[j])) 74 break; 75 76 if (j == nr) 77 return; 78 79 if (dax_mapping(mapping)) { 80 for (i = j; i < nr; i++) { 81 if (xa_is_value(fbatch->folios[i])) 82 dax_delete_mapping_entry(mapping, indices[i]); 83 } 84 goto out; 85 } 86 87 xas_set(&xas, indices[j]); 88 xas_set_update(&xas, workingset_update_node); 89 90 spin_lock(&mapping->host->i_lock); 91 xas_lock_irq(&xas); 92 93 xas_for_each(&xas, folio, indices[nr-1]) { 94 if (xa_is_value(folio)) 95 xas_store(&xas, NULL); 96 } 97 98 xas_unlock_irq(&xas); 99 if (mapping_shrinkable(mapping)) 100 inode_add_lru(mapping->host); 101 spin_unlock(&mapping->host->i_lock); 102 out: 103 folio_batch_remove_exceptionals(fbatch); 104 } 105 106 /** 107 * folio_invalidate - Invalidate part or all of a folio. 108 * @folio: The folio which is affected. 109 * @offset: start of the range to invalidate 110 * @length: length of the range to invalidate 111 * 112 * folio_invalidate() is called when all or part of the folio has become 113 * invalidated by a truncate operation. 114 * 115 * folio_invalidate() does not have to release all buffers, but it must 116 * ensure that no dirty buffer is left outside @offset and that no I/O 117 * is underway against any of the blocks which are outside the truncation 118 * point. Because the caller is about to free (and possibly reuse) those 119 * blocks on-disk. 120 */ 121 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 122 { 123 const struct address_space_operations *aops = folio->mapping->a_ops; 124 125 if (aops->invalidate_folio) 126 aops->invalidate_folio(folio, offset, length); 127 } 128 EXPORT_SYMBOL_GPL(folio_invalidate); 129 130 /* 131 * If truncate cannot remove the fs-private metadata from the page, the page 132 * becomes orphaned. It will be left on the LRU and may even be mapped into 133 * user pagetables if we're racing with filemap_fault(). 134 * 135 * We need to bail out if page->mapping is no longer equal to the original 136 * mapping. This happens a) when the VM reclaimed the page while we waited on 137 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 138 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 139 */ 140 static void truncate_cleanup_folio(struct folio *folio) 141 { 142 if (folio_mapped(folio)) 143 unmap_mapping_folio(folio); 144 145 if (folio_needs_release(folio)) 146 folio_invalidate(folio, 0, folio_size(folio)); 147 148 /* 149 * Some filesystems seem to re-dirty the page even after 150 * the VM has canceled the dirty bit (eg ext3 journaling). 151 * Hence dirty accounting check is placed after invalidation. 152 */ 153 folio_cancel_dirty(folio); 154 folio_clear_mappedtodisk(folio); 155 } 156 157 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 158 { 159 if (folio->mapping != mapping) 160 return -EIO; 161 162 truncate_cleanup_folio(folio); 163 filemap_remove_folio(folio); 164 return 0; 165 } 166 167 /* 168 * Handle partial folios. The folio may be entirely within the 169 * range if a split has raced with us. If not, we zero the part of the 170 * folio that's within the [start, end] range, and then split the folio if 171 * it's large. split_page_range() will discard pages which now lie beyond 172 * i_size, and we rely on the caller to discard pages which lie within a 173 * newly created hole. 174 * 175 * Returns false if splitting failed so the caller can avoid 176 * discarding the entire folio which is stubbornly unsplit. 177 */ 178 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 179 { 180 loff_t pos = folio_pos(folio); 181 unsigned int offset, length; 182 183 if (pos < start) 184 offset = start - pos; 185 else 186 offset = 0; 187 length = folio_size(folio); 188 if (pos + length <= (u64)end) 189 length = length - offset; 190 else 191 length = end + 1 - pos - offset; 192 193 folio_wait_writeback(folio); 194 if (length == folio_size(folio)) { 195 truncate_inode_folio(folio->mapping, folio); 196 return true; 197 } 198 199 /* 200 * We may be zeroing pages we're about to discard, but it avoids 201 * doing a complex calculation here, and then doing the zeroing 202 * anyway if the page split fails. 203 */ 204 if (!mapping_inaccessible(folio->mapping)) 205 folio_zero_range(folio, offset, length); 206 207 if (folio_needs_release(folio)) 208 folio_invalidate(folio, offset, length); 209 if (!folio_test_large(folio)) 210 return true; 211 if (split_folio(folio) == 0) 212 return true; 213 if (folio_test_dirty(folio)) 214 return false; 215 truncate_inode_folio(folio->mapping, folio); 216 return true; 217 } 218 219 /* 220 * Used to get rid of pages on hardware memory corruption. 221 */ 222 int generic_error_remove_folio(struct address_space *mapping, 223 struct folio *folio) 224 { 225 if (!mapping) 226 return -EINVAL; 227 /* 228 * Only punch for normal data pages for now. 229 * Handling other types like directories would need more auditing. 230 */ 231 if (!S_ISREG(mapping->host->i_mode)) 232 return -EIO; 233 return truncate_inode_folio(mapping, folio); 234 } 235 EXPORT_SYMBOL(generic_error_remove_folio); 236 237 /** 238 * mapping_evict_folio() - Remove an unused folio from the page-cache. 239 * @mapping: The mapping this folio belongs to. 240 * @folio: The folio to remove. 241 * 242 * Safely remove one folio from the page cache. 243 * It only drops clean, unused folios. 244 * 245 * Context: Folio must be locked. 246 * Return: The number of pages successfully removed. 247 */ 248 long mapping_evict_folio(struct address_space *mapping, struct folio *folio) 249 { 250 /* The page may have been truncated before it was locked */ 251 if (!mapping) 252 return 0; 253 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 254 return 0; 255 /* The refcount will be elevated if any page in the folio is mapped */ 256 if (folio_ref_count(folio) > 257 folio_nr_pages(folio) + folio_has_private(folio) + 1) 258 return 0; 259 if (!filemap_release_folio(folio, 0)) 260 return 0; 261 262 return remove_mapping(mapping, folio); 263 } 264 265 /** 266 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 267 * @mapping: mapping to truncate 268 * @lstart: offset from which to truncate 269 * @lend: offset to which to truncate (inclusive) 270 * 271 * Truncate the page cache, removing the pages that are between 272 * specified offsets (and zeroing out partial pages 273 * if lstart or lend + 1 is not page aligned). 274 * 275 * Truncate takes two passes - the first pass is nonblocking. It will not 276 * block on page locks and it will not block on writeback. The second pass 277 * will wait. This is to prevent as much IO as possible in the affected region. 278 * The first pass will remove most pages, so the search cost of the second pass 279 * is low. 280 * 281 * We pass down the cache-hot hint to the page freeing code. Even if the 282 * mapping is large, it is probably the case that the final pages are the most 283 * recently touched, and freeing happens in ascending file offset order. 284 * 285 * Note that since ->invalidate_folio() accepts range to invalidate 286 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 287 * page aligned properly. 288 */ 289 void truncate_inode_pages_range(struct address_space *mapping, 290 loff_t lstart, loff_t lend) 291 { 292 pgoff_t start; /* inclusive */ 293 pgoff_t end; /* exclusive */ 294 struct folio_batch fbatch; 295 pgoff_t indices[PAGEVEC_SIZE]; 296 pgoff_t index; 297 int i; 298 struct folio *folio; 299 bool same_folio; 300 301 if (mapping_empty(mapping)) 302 return; 303 304 /* 305 * 'start' and 'end' always covers the range of pages to be fully 306 * truncated. Partial pages are covered with 'partial_start' at the 307 * start of the range and 'partial_end' at the end of the range. 308 * Note that 'end' is exclusive while 'lend' is inclusive. 309 */ 310 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 311 if (lend == -1) 312 /* 313 * lend == -1 indicates end-of-file so we have to set 'end' 314 * to the highest possible pgoff_t and since the type is 315 * unsigned we're using -1. 316 */ 317 end = -1; 318 else 319 end = (lend + 1) >> PAGE_SHIFT; 320 321 folio_batch_init(&fbatch); 322 index = start; 323 while (index < end && find_lock_entries(mapping, &index, end - 1, 324 &fbatch, indices)) { 325 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 326 for (i = 0; i < folio_batch_count(&fbatch); i++) 327 truncate_cleanup_folio(fbatch.folios[i]); 328 delete_from_page_cache_batch(mapping, &fbatch); 329 for (i = 0; i < folio_batch_count(&fbatch); i++) 330 folio_unlock(fbatch.folios[i]); 331 folio_batch_release(&fbatch); 332 cond_resched(); 333 } 334 335 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 336 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 337 if (!IS_ERR(folio)) { 338 same_folio = lend < folio_pos(folio) + folio_size(folio); 339 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 340 start = folio_next_index(folio); 341 if (same_folio) 342 end = folio->index; 343 } 344 folio_unlock(folio); 345 folio_put(folio); 346 folio = NULL; 347 } 348 349 if (!same_folio) { 350 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 351 FGP_LOCK, 0); 352 if (!IS_ERR(folio)) { 353 if (!truncate_inode_partial_folio(folio, lstart, lend)) 354 end = folio->index; 355 folio_unlock(folio); 356 folio_put(folio); 357 } 358 } 359 360 index = start; 361 while (index < end) { 362 cond_resched(); 363 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 364 indices)) { 365 /* If all gone from start onwards, we're done */ 366 if (index == start) 367 break; 368 /* Otherwise restart to make sure all gone */ 369 index = start; 370 continue; 371 } 372 373 for (i = 0; i < folio_batch_count(&fbatch); i++) { 374 struct folio *folio = fbatch.folios[i]; 375 376 /* We rely upon deletion not changing page->index */ 377 378 if (xa_is_value(folio)) 379 continue; 380 381 folio_lock(folio); 382 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 383 folio_wait_writeback(folio); 384 truncate_inode_folio(mapping, folio); 385 folio_unlock(folio); 386 } 387 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 388 folio_batch_release(&fbatch); 389 } 390 } 391 EXPORT_SYMBOL(truncate_inode_pages_range); 392 393 /** 394 * truncate_inode_pages - truncate *all* the pages from an offset 395 * @mapping: mapping to truncate 396 * @lstart: offset from which to truncate 397 * 398 * Called under (and serialised by) inode->i_rwsem and 399 * mapping->invalidate_lock. 400 * 401 * Note: When this function returns, there can be a page in the process of 402 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 403 * mapping->nrpages can be non-zero when this function returns even after 404 * truncation of the whole mapping. 405 */ 406 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 407 { 408 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 409 } 410 EXPORT_SYMBOL(truncate_inode_pages); 411 412 /** 413 * truncate_inode_pages_final - truncate *all* pages before inode dies 414 * @mapping: mapping to truncate 415 * 416 * Called under (and serialized by) inode->i_rwsem. 417 * 418 * Filesystems have to use this in the .evict_inode path to inform the 419 * VM that this is the final truncate and the inode is going away. 420 */ 421 void truncate_inode_pages_final(struct address_space *mapping) 422 { 423 /* 424 * Page reclaim can not participate in regular inode lifetime 425 * management (can't call iput()) and thus can race with the 426 * inode teardown. Tell it when the address space is exiting, 427 * so that it does not install eviction information after the 428 * final truncate has begun. 429 */ 430 mapping_set_exiting(mapping); 431 432 if (!mapping_empty(mapping)) { 433 /* 434 * As truncation uses a lockless tree lookup, cycle 435 * the tree lock to make sure any ongoing tree 436 * modification that does not see AS_EXITING is 437 * completed before starting the final truncate. 438 */ 439 xa_lock_irq(&mapping->i_pages); 440 xa_unlock_irq(&mapping->i_pages); 441 } 442 443 truncate_inode_pages(mapping, 0); 444 } 445 EXPORT_SYMBOL(truncate_inode_pages_final); 446 447 /** 448 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 449 * @mapping: the address_space which holds the folios to invalidate 450 * @start: the offset 'from' which to invalidate 451 * @end: the offset 'to' which to invalidate (inclusive) 452 * @nr_failed: How many folio invalidations failed 453 * 454 * This function is similar to invalidate_mapping_pages(), except that it 455 * returns the number of folios which could not be evicted in @nr_failed. 456 */ 457 unsigned long mapping_try_invalidate(struct address_space *mapping, 458 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 459 { 460 pgoff_t indices[PAGEVEC_SIZE]; 461 struct folio_batch fbatch; 462 pgoff_t index = start; 463 unsigned long ret; 464 unsigned long count = 0; 465 int i; 466 467 folio_batch_init(&fbatch); 468 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 469 bool xa_has_values = false; 470 int nr = folio_batch_count(&fbatch); 471 472 for (i = 0; i < nr; i++) { 473 struct folio *folio = fbatch.folios[i]; 474 475 /* We rely upon deletion not changing folio->index */ 476 477 if (xa_is_value(folio)) { 478 xa_has_values = true; 479 count++; 480 continue; 481 } 482 483 ret = mapping_evict_folio(mapping, folio); 484 folio_unlock(folio); 485 /* 486 * Invalidation is a hint that the folio is no longer 487 * of interest and try to speed up its reclaim. 488 */ 489 if (!ret) { 490 deactivate_file_folio(folio); 491 /* Likely in the lru cache of a remote CPU */ 492 if (nr_failed) 493 (*nr_failed)++; 494 } 495 count += ret; 496 } 497 498 if (xa_has_values) 499 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 500 501 folio_batch_remove_exceptionals(&fbatch); 502 folio_batch_release(&fbatch); 503 cond_resched(); 504 } 505 return count; 506 } 507 508 /** 509 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 510 * @mapping: the address_space which holds the cache to invalidate 511 * @start: the offset 'from' which to invalidate 512 * @end: the offset 'to' which to invalidate (inclusive) 513 * 514 * This function removes pages that are clean, unmapped and unlocked, 515 * as well as shadow entries. It will not block on IO activity. 516 * 517 * If you want to remove all the pages of one inode, regardless of 518 * their use and writeback state, use truncate_inode_pages(). 519 * 520 * Return: The number of indices that had their contents invalidated 521 */ 522 unsigned long invalidate_mapping_pages(struct address_space *mapping, 523 pgoff_t start, pgoff_t end) 524 { 525 return mapping_try_invalidate(mapping, start, end, NULL); 526 } 527 EXPORT_SYMBOL(invalidate_mapping_pages); 528 529 /* 530 * This is like mapping_evict_folio(), except it ignores the folio's 531 * refcount. We do this because invalidate_inode_pages2() needs stronger 532 * invalidation guarantees, and cannot afford to leave folios behind because 533 * shrink_folio_list() has a temp ref on them, or because they're transiently 534 * sitting in the folio_add_lru() caches. 535 */ 536 static int invalidate_complete_folio2(struct address_space *mapping, 537 struct folio *folio) 538 { 539 if (folio->mapping != mapping) 540 return 0; 541 542 if (!filemap_release_folio(folio, GFP_KERNEL)) 543 return 0; 544 545 spin_lock(&mapping->host->i_lock); 546 xa_lock_irq(&mapping->i_pages); 547 if (folio_test_dirty(folio)) 548 goto failed; 549 550 BUG_ON(folio_has_private(folio)); 551 __filemap_remove_folio(folio, NULL); 552 xa_unlock_irq(&mapping->i_pages); 553 if (mapping_shrinkable(mapping)) 554 inode_add_lru(mapping->host); 555 spin_unlock(&mapping->host->i_lock); 556 557 filemap_free_folio(mapping, folio); 558 return 1; 559 failed: 560 xa_unlock_irq(&mapping->i_pages); 561 spin_unlock(&mapping->host->i_lock); 562 return 0; 563 } 564 565 static int folio_launder(struct address_space *mapping, struct folio *folio) 566 { 567 if (!folio_test_dirty(folio)) 568 return 0; 569 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 570 return 0; 571 return mapping->a_ops->launder_folio(folio); 572 } 573 574 /** 575 * invalidate_inode_pages2_range - remove range of pages from an address_space 576 * @mapping: the address_space 577 * @start: the page offset 'from' which to invalidate 578 * @end: the page offset 'to' which to invalidate (inclusive) 579 * 580 * Any pages which are found to be mapped into pagetables are unmapped prior to 581 * invalidation. 582 * 583 * Return: -EBUSY if any pages could not be invalidated. 584 */ 585 int invalidate_inode_pages2_range(struct address_space *mapping, 586 pgoff_t start, pgoff_t end) 587 { 588 pgoff_t indices[PAGEVEC_SIZE]; 589 struct folio_batch fbatch; 590 pgoff_t index; 591 int i; 592 int ret = 0; 593 int ret2 = 0; 594 int did_range_unmap = 0; 595 596 if (mapping_empty(mapping)) 597 return 0; 598 599 folio_batch_init(&fbatch); 600 index = start; 601 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 602 bool xa_has_values = false; 603 int nr = folio_batch_count(&fbatch); 604 605 for (i = 0; i < nr; i++) { 606 struct folio *folio = fbatch.folios[i]; 607 608 /* We rely upon deletion not changing folio->index */ 609 610 if (xa_is_value(folio)) { 611 xa_has_values = true; 612 if (dax_mapping(mapping) && 613 !dax_invalidate_mapping_entry_sync(mapping, indices[i])) 614 ret = -EBUSY; 615 continue; 616 } 617 618 if (!did_range_unmap && folio_mapped(folio)) { 619 /* 620 * If folio is mapped, before taking its lock, 621 * zap the rest of the file in one hit. 622 */ 623 unmap_mapping_pages(mapping, indices[i], 624 (1 + end - indices[i]), false); 625 did_range_unmap = 1; 626 } 627 628 folio_lock(folio); 629 if (unlikely(folio->mapping != mapping)) { 630 folio_unlock(folio); 631 continue; 632 } 633 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 634 folio_wait_writeback(folio); 635 636 if (folio_mapped(folio)) 637 unmap_mapping_folio(folio); 638 BUG_ON(folio_mapped(folio)); 639 640 ret2 = folio_launder(mapping, folio); 641 if (ret2 == 0) { 642 if (!invalidate_complete_folio2(mapping, folio)) 643 ret2 = -EBUSY; 644 } 645 if (ret2 < 0) 646 ret = ret2; 647 folio_unlock(folio); 648 } 649 650 if (xa_has_values) 651 clear_shadow_entries(mapping, indices[0], indices[nr-1]); 652 653 folio_batch_remove_exceptionals(&fbatch); 654 folio_batch_release(&fbatch); 655 cond_resched(); 656 } 657 /* 658 * For DAX we invalidate page tables after invalidating page cache. We 659 * could invalidate page tables while invalidating each entry however 660 * that would be expensive. And doing range unmapping before doesn't 661 * work as we have no cheap way to find whether page cache entry didn't 662 * get remapped later. 663 */ 664 if (dax_mapping(mapping)) { 665 unmap_mapping_pages(mapping, start, end - start + 1, false); 666 } 667 return ret; 668 } 669 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 670 671 /** 672 * invalidate_inode_pages2 - remove all pages from an address_space 673 * @mapping: the address_space 674 * 675 * Any pages which are found to be mapped into pagetables are unmapped prior to 676 * invalidation. 677 * 678 * Return: -EBUSY if any pages could not be invalidated. 679 */ 680 int invalidate_inode_pages2(struct address_space *mapping) 681 { 682 return invalidate_inode_pages2_range(mapping, 0, -1); 683 } 684 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 685 686 /** 687 * truncate_pagecache - unmap and remove pagecache that has been truncated 688 * @inode: inode 689 * @newsize: new file size 690 * 691 * inode's new i_size must already be written before truncate_pagecache 692 * is called. 693 * 694 * This function should typically be called before the filesystem 695 * releases resources associated with the freed range (eg. deallocates 696 * blocks). This way, pagecache will always stay logically coherent 697 * with on-disk format, and the filesystem would not have to deal with 698 * situations such as writepage being called for a page that has already 699 * had its underlying blocks deallocated. 700 */ 701 void truncate_pagecache(struct inode *inode, loff_t newsize) 702 { 703 struct address_space *mapping = inode->i_mapping; 704 loff_t holebegin = round_up(newsize, PAGE_SIZE); 705 706 /* 707 * unmap_mapping_range is called twice, first simply for 708 * efficiency so that truncate_inode_pages does fewer 709 * single-page unmaps. However after this first call, and 710 * before truncate_inode_pages finishes, it is possible for 711 * private pages to be COWed, which remain after 712 * truncate_inode_pages finishes, hence the second 713 * unmap_mapping_range call must be made for correctness. 714 */ 715 unmap_mapping_range(mapping, holebegin, 0, 1); 716 truncate_inode_pages(mapping, newsize); 717 unmap_mapping_range(mapping, holebegin, 0, 1); 718 } 719 EXPORT_SYMBOL(truncate_pagecache); 720 721 /** 722 * truncate_setsize - update inode and pagecache for a new file size 723 * @inode: inode 724 * @newsize: new file size 725 * 726 * truncate_setsize updates i_size and performs pagecache truncation (if 727 * necessary) to @newsize. It will be typically be called from the filesystem's 728 * setattr function when ATTR_SIZE is passed in. 729 * 730 * Must be called with a lock serializing truncates and writes (generally 731 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 732 * specific block truncation has been performed. 733 */ 734 void truncate_setsize(struct inode *inode, loff_t newsize) 735 { 736 loff_t oldsize = inode->i_size; 737 738 i_size_write(inode, newsize); 739 if (newsize > oldsize) 740 pagecache_isize_extended(inode, oldsize, newsize); 741 truncate_pagecache(inode, newsize); 742 } 743 EXPORT_SYMBOL(truncate_setsize); 744 745 /** 746 * pagecache_isize_extended - update pagecache after extension of i_size 747 * @inode: inode for which i_size was extended 748 * @from: original inode size 749 * @to: new inode size 750 * 751 * Handle extension of inode size either caused by extending truncate or 752 * by write starting after current i_size. We mark the page straddling 753 * current i_size RO so that page_mkwrite() is called on the first 754 * write access to the page. The filesystem will update its per-block 755 * information before user writes to the page via mmap after the i_size 756 * has been changed. 757 * 758 * The function must be called after i_size is updated so that page fault 759 * coming after we unlock the folio will already see the new i_size. 760 * The function must be called while we still hold i_rwsem - this not only 761 * makes sure i_size is stable but also that userspace cannot observe new 762 * i_size value before we are prepared to store mmap writes at new inode size. 763 */ 764 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 765 { 766 int bsize = i_blocksize(inode); 767 loff_t rounded_from; 768 struct folio *folio; 769 770 WARN_ON(to > inode->i_size); 771 772 if (from >= to || bsize >= PAGE_SIZE) 773 return; 774 /* Page straddling @from will not have any hole block created? */ 775 rounded_from = round_up(from, bsize); 776 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 777 return; 778 779 folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE); 780 /* Folio not cached? Nothing to do */ 781 if (IS_ERR(folio)) 782 return; 783 /* 784 * See folio_clear_dirty_for_io() for details why folio_mark_dirty() 785 * is needed. 786 */ 787 if (folio_mkclean(folio)) 788 folio_mark_dirty(folio); 789 folio_unlock(folio); 790 folio_put(folio); 791 } 792 EXPORT_SYMBOL(pagecache_isize_extended); 793 794 /** 795 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 796 * @inode: inode 797 * @lstart: offset of beginning of hole 798 * @lend: offset of last byte of hole 799 * 800 * This function should typically be called before the filesystem 801 * releases resources associated with the freed range (eg. deallocates 802 * blocks). This way, pagecache will always stay logically coherent 803 * with on-disk format, and the filesystem would not have to deal with 804 * situations such as writepage being called for a page that has already 805 * had its underlying blocks deallocated. 806 */ 807 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 808 { 809 struct address_space *mapping = inode->i_mapping; 810 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 811 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 812 /* 813 * This rounding is currently just for example: unmap_mapping_range 814 * expands its hole outwards, whereas we want it to contract the hole 815 * inwards. However, existing callers of truncate_pagecache_range are 816 * doing their own page rounding first. Note that unmap_mapping_range 817 * allows holelen 0 for all, and we allow lend -1 for end of file. 818 */ 819 820 /* 821 * Unlike in truncate_pagecache, unmap_mapping_range is called only 822 * once (before truncating pagecache), and without "even_cows" flag: 823 * hole-punching should not remove private COWed pages from the hole. 824 */ 825 if ((u64)unmap_end > (u64)unmap_start) 826 unmap_mapping_range(mapping, unmap_start, 827 1 + unmap_end - unmap_start, 0); 828 truncate_inode_pages_range(mapping, lstart, lend); 829 } 830 EXPORT_SYMBOL(truncate_pagecache_range); 831