xref: /linux/mm/truncate.c (revision 1553a1c48281243359a9529a10ddb551f3b967ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25 
26 /*
27  * Regular page slots are stabilized by the page lock even without the tree
28  * itself locked.  These unlocked entries need verification under the tree
29  * lock.
30  */
31 static inline void __clear_shadow_entry(struct address_space *mapping,
32 				pgoff_t index, void *entry)
33 {
34 	XA_STATE(xas, &mapping->i_pages, index);
35 
36 	xas_set_update(&xas, workingset_update_node);
37 	if (xas_load(&xas) != entry)
38 		return;
39 	xas_store(&xas, NULL);
40 }
41 
42 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
43 			       void *entry)
44 {
45 	spin_lock(&mapping->host->i_lock);
46 	xa_lock_irq(&mapping->i_pages);
47 	__clear_shadow_entry(mapping, index, entry);
48 	xa_unlock_irq(&mapping->i_pages);
49 	if (mapping_shrinkable(mapping))
50 		inode_add_lru(mapping->host);
51 	spin_unlock(&mapping->host->i_lock);
52 }
53 
54 /*
55  * Unconditionally remove exceptional entries. Usually called from truncate
56  * path. Note that the folio_batch may be altered by this function by removing
57  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
58  */
59 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
60 				struct folio_batch *fbatch, pgoff_t *indices)
61 {
62 	int i, j;
63 	bool dax;
64 
65 	/* Handled by shmem itself */
66 	if (shmem_mapping(mapping))
67 		return;
68 
69 	for (j = 0; j < folio_batch_count(fbatch); j++)
70 		if (xa_is_value(fbatch->folios[j]))
71 			break;
72 
73 	if (j == folio_batch_count(fbatch))
74 		return;
75 
76 	dax = dax_mapping(mapping);
77 	if (!dax) {
78 		spin_lock(&mapping->host->i_lock);
79 		xa_lock_irq(&mapping->i_pages);
80 	}
81 
82 	for (i = j; i < folio_batch_count(fbatch); i++) {
83 		struct folio *folio = fbatch->folios[i];
84 		pgoff_t index = indices[i];
85 
86 		if (!xa_is_value(folio)) {
87 			fbatch->folios[j++] = folio;
88 			continue;
89 		}
90 
91 		if (unlikely(dax)) {
92 			dax_delete_mapping_entry(mapping, index);
93 			continue;
94 		}
95 
96 		__clear_shadow_entry(mapping, index, folio);
97 	}
98 
99 	if (!dax) {
100 		xa_unlock_irq(&mapping->i_pages);
101 		if (mapping_shrinkable(mapping))
102 			inode_add_lru(mapping->host);
103 		spin_unlock(&mapping->host->i_lock);
104 	}
105 	fbatch->nr = j;
106 }
107 
108 /*
109  * Invalidate exceptional entry if easily possible. This handles exceptional
110  * entries for invalidate_inode_pages().
111  */
112 static int invalidate_exceptional_entry(struct address_space *mapping,
113 					pgoff_t index, void *entry)
114 {
115 	/* Handled by shmem itself, or for DAX we do nothing. */
116 	if (shmem_mapping(mapping) || dax_mapping(mapping))
117 		return 1;
118 	clear_shadow_entry(mapping, index, entry);
119 	return 1;
120 }
121 
122 /*
123  * Invalidate exceptional entry if clean. This handles exceptional entries for
124  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
125  */
126 static int invalidate_exceptional_entry2(struct address_space *mapping,
127 					 pgoff_t index, void *entry)
128 {
129 	/* Handled by shmem itself */
130 	if (shmem_mapping(mapping))
131 		return 1;
132 	if (dax_mapping(mapping))
133 		return dax_invalidate_mapping_entry_sync(mapping, index);
134 	clear_shadow_entry(mapping, index, entry);
135 	return 1;
136 }
137 
138 /**
139  * folio_invalidate - Invalidate part or all of a folio.
140  * @folio: The folio which is affected.
141  * @offset: start of the range to invalidate
142  * @length: length of the range to invalidate
143  *
144  * folio_invalidate() is called when all or part of the folio has become
145  * invalidated by a truncate operation.
146  *
147  * folio_invalidate() does not have to release all buffers, but it must
148  * ensure that no dirty buffer is left outside @offset and that no I/O
149  * is underway against any of the blocks which are outside the truncation
150  * point.  Because the caller is about to free (and possibly reuse) those
151  * blocks on-disk.
152  */
153 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
154 {
155 	const struct address_space_operations *aops = folio->mapping->a_ops;
156 
157 	if (aops->invalidate_folio)
158 		aops->invalidate_folio(folio, offset, length);
159 }
160 EXPORT_SYMBOL_GPL(folio_invalidate);
161 
162 /*
163  * If truncate cannot remove the fs-private metadata from the page, the page
164  * becomes orphaned.  It will be left on the LRU and may even be mapped into
165  * user pagetables if we're racing with filemap_fault().
166  *
167  * We need to bail out if page->mapping is no longer equal to the original
168  * mapping.  This happens a) when the VM reclaimed the page while we waited on
169  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
170  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
171  */
172 static void truncate_cleanup_folio(struct folio *folio)
173 {
174 	if (folio_mapped(folio))
175 		unmap_mapping_folio(folio);
176 
177 	if (folio_has_private(folio))
178 		folio_invalidate(folio, 0, folio_size(folio));
179 
180 	/*
181 	 * Some filesystems seem to re-dirty the page even after
182 	 * the VM has canceled the dirty bit (eg ext3 journaling).
183 	 * Hence dirty accounting check is placed after invalidation.
184 	 */
185 	folio_cancel_dirty(folio);
186 	folio_clear_mappedtodisk(folio);
187 }
188 
189 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
190 {
191 	if (folio->mapping != mapping)
192 		return -EIO;
193 
194 	truncate_cleanup_folio(folio);
195 	filemap_remove_folio(folio);
196 	return 0;
197 }
198 
199 /*
200  * Handle partial folios.  The folio may be entirely within the
201  * range if a split has raced with us.  If not, we zero the part of the
202  * folio that's within the [start, end] range, and then split the folio if
203  * it's large.  split_page_range() will discard pages which now lie beyond
204  * i_size, and we rely on the caller to discard pages which lie within a
205  * newly created hole.
206  *
207  * Returns false if splitting failed so the caller can avoid
208  * discarding the entire folio which is stubbornly unsplit.
209  */
210 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
211 {
212 	loff_t pos = folio_pos(folio);
213 	unsigned int offset, length;
214 
215 	if (pos < start)
216 		offset = start - pos;
217 	else
218 		offset = 0;
219 	length = folio_size(folio);
220 	if (pos + length <= (u64)end)
221 		length = length - offset;
222 	else
223 		length = end + 1 - pos - offset;
224 
225 	folio_wait_writeback(folio);
226 	if (length == folio_size(folio)) {
227 		truncate_inode_folio(folio->mapping, folio);
228 		return true;
229 	}
230 
231 	/*
232 	 * We may be zeroing pages we're about to discard, but it avoids
233 	 * doing a complex calculation here, and then doing the zeroing
234 	 * anyway if the page split fails.
235 	 */
236 	folio_zero_range(folio, offset, length);
237 
238 	if (folio_has_private(folio))
239 		folio_invalidate(folio, offset, length);
240 	if (!folio_test_large(folio))
241 		return true;
242 	if (split_folio(folio) == 0)
243 		return true;
244 	if (folio_test_dirty(folio))
245 		return false;
246 	truncate_inode_folio(folio->mapping, folio);
247 	return true;
248 }
249 
250 /*
251  * Used to get rid of pages on hardware memory corruption.
252  */
253 int generic_error_remove_folio(struct address_space *mapping,
254 		struct folio *folio)
255 {
256 	if (!mapping)
257 		return -EINVAL;
258 	/*
259 	 * Only punch for normal data pages for now.
260 	 * Handling other types like directories would need more auditing.
261 	 */
262 	if (!S_ISREG(mapping->host->i_mode))
263 		return -EIO;
264 	return truncate_inode_folio(mapping, folio);
265 }
266 EXPORT_SYMBOL(generic_error_remove_folio);
267 
268 /**
269  * mapping_evict_folio() - Remove an unused folio from the page-cache.
270  * @mapping: The mapping this folio belongs to.
271  * @folio: The folio to remove.
272  *
273  * Safely remove one folio from the page cache.
274  * It only drops clean, unused folios.
275  *
276  * Context: Folio must be locked.
277  * Return: The number of pages successfully removed.
278  */
279 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
280 {
281 	/* The page may have been truncated before it was locked */
282 	if (!mapping)
283 		return 0;
284 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
285 		return 0;
286 	/* The refcount will be elevated if any page in the folio is mapped */
287 	if (folio_ref_count(folio) >
288 			folio_nr_pages(folio) + folio_has_private(folio) + 1)
289 		return 0;
290 	if (!filemap_release_folio(folio, 0))
291 		return 0;
292 
293 	return remove_mapping(mapping, folio);
294 }
295 
296 /**
297  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
298  * @mapping: mapping to truncate
299  * @lstart: offset from which to truncate
300  * @lend: offset to which to truncate (inclusive)
301  *
302  * Truncate the page cache, removing the pages that are between
303  * specified offsets (and zeroing out partial pages
304  * if lstart or lend + 1 is not page aligned).
305  *
306  * Truncate takes two passes - the first pass is nonblocking.  It will not
307  * block on page locks and it will not block on writeback.  The second pass
308  * will wait.  This is to prevent as much IO as possible in the affected region.
309  * The first pass will remove most pages, so the search cost of the second pass
310  * is low.
311  *
312  * We pass down the cache-hot hint to the page freeing code.  Even if the
313  * mapping is large, it is probably the case that the final pages are the most
314  * recently touched, and freeing happens in ascending file offset order.
315  *
316  * Note that since ->invalidate_folio() accepts range to invalidate
317  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
318  * page aligned properly.
319  */
320 void truncate_inode_pages_range(struct address_space *mapping,
321 				loff_t lstart, loff_t lend)
322 {
323 	pgoff_t		start;		/* inclusive */
324 	pgoff_t		end;		/* exclusive */
325 	struct folio_batch fbatch;
326 	pgoff_t		indices[PAGEVEC_SIZE];
327 	pgoff_t		index;
328 	int		i;
329 	struct folio	*folio;
330 	bool		same_folio;
331 
332 	if (mapping_empty(mapping))
333 		return;
334 
335 	/*
336 	 * 'start' and 'end' always covers the range of pages to be fully
337 	 * truncated. Partial pages are covered with 'partial_start' at the
338 	 * start of the range and 'partial_end' at the end of the range.
339 	 * Note that 'end' is exclusive while 'lend' is inclusive.
340 	 */
341 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
342 	if (lend == -1)
343 		/*
344 		 * lend == -1 indicates end-of-file so we have to set 'end'
345 		 * to the highest possible pgoff_t and since the type is
346 		 * unsigned we're using -1.
347 		 */
348 		end = -1;
349 	else
350 		end = (lend + 1) >> PAGE_SHIFT;
351 
352 	folio_batch_init(&fbatch);
353 	index = start;
354 	while (index < end && find_lock_entries(mapping, &index, end - 1,
355 			&fbatch, indices)) {
356 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
357 		for (i = 0; i < folio_batch_count(&fbatch); i++)
358 			truncate_cleanup_folio(fbatch.folios[i]);
359 		delete_from_page_cache_batch(mapping, &fbatch);
360 		for (i = 0; i < folio_batch_count(&fbatch); i++)
361 			folio_unlock(fbatch.folios[i]);
362 		folio_batch_release(&fbatch);
363 		cond_resched();
364 	}
365 
366 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
367 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
368 	if (!IS_ERR(folio)) {
369 		same_folio = lend < folio_pos(folio) + folio_size(folio);
370 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
371 			start = folio_next_index(folio);
372 			if (same_folio)
373 				end = folio->index;
374 		}
375 		folio_unlock(folio);
376 		folio_put(folio);
377 		folio = NULL;
378 	}
379 
380 	if (!same_folio) {
381 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
382 						FGP_LOCK, 0);
383 		if (!IS_ERR(folio)) {
384 			if (!truncate_inode_partial_folio(folio, lstart, lend))
385 				end = folio->index;
386 			folio_unlock(folio);
387 			folio_put(folio);
388 		}
389 	}
390 
391 	index = start;
392 	while (index < end) {
393 		cond_resched();
394 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
395 				indices)) {
396 			/* If all gone from start onwards, we're done */
397 			if (index == start)
398 				break;
399 			/* Otherwise restart to make sure all gone */
400 			index = start;
401 			continue;
402 		}
403 
404 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
405 			struct folio *folio = fbatch.folios[i];
406 
407 			/* We rely upon deletion not changing page->index */
408 
409 			if (xa_is_value(folio))
410 				continue;
411 
412 			folio_lock(folio);
413 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
414 			folio_wait_writeback(folio);
415 			truncate_inode_folio(mapping, folio);
416 			folio_unlock(folio);
417 		}
418 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
419 		folio_batch_release(&fbatch);
420 	}
421 }
422 EXPORT_SYMBOL(truncate_inode_pages_range);
423 
424 /**
425  * truncate_inode_pages - truncate *all* the pages from an offset
426  * @mapping: mapping to truncate
427  * @lstart: offset from which to truncate
428  *
429  * Called under (and serialised by) inode->i_rwsem and
430  * mapping->invalidate_lock.
431  *
432  * Note: When this function returns, there can be a page in the process of
433  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
434  * mapping->nrpages can be non-zero when this function returns even after
435  * truncation of the whole mapping.
436  */
437 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
438 {
439 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
440 }
441 EXPORT_SYMBOL(truncate_inode_pages);
442 
443 /**
444  * truncate_inode_pages_final - truncate *all* pages before inode dies
445  * @mapping: mapping to truncate
446  *
447  * Called under (and serialized by) inode->i_rwsem.
448  *
449  * Filesystems have to use this in the .evict_inode path to inform the
450  * VM that this is the final truncate and the inode is going away.
451  */
452 void truncate_inode_pages_final(struct address_space *mapping)
453 {
454 	/*
455 	 * Page reclaim can not participate in regular inode lifetime
456 	 * management (can't call iput()) and thus can race with the
457 	 * inode teardown.  Tell it when the address space is exiting,
458 	 * so that it does not install eviction information after the
459 	 * final truncate has begun.
460 	 */
461 	mapping_set_exiting(mapping);
462 
463 	if (!mapping_empty(mapping)) {
464 		/*
465 		 * As truncation uses a lockless tree lookup, cycle
466 		 * the tree lock to make sure any ongoing tree
467 		 * modification that does not see AS_EXITING is
468 		 * completed before starting the final truncate.
469 		 */
470 		xa_lock_irq(&mapping->i_pages);
471 		xa_unlock_irq(&mapping->i_pages);
472 	}
473 
474 	truncate_inode_pages(mapping, 0);
475 }
476 EXPORT_SYMBOL(truncate_inode_pages_final);
477 
478 /**
479  * mapping_try_invalidate - Invalidate all the evictable folios of one inode
480  * @mapping: the address_space which holds the folios to invalidate
481  * @start: the offset 'from' which to invalidate
482  * @end: the offset 'to' which to invalidate (inclusive)
483  * @nr_failed: How many folio invalidations failed
484  *
485  * This function is similar to invalidate_mapping_pages(), except that it
486  * returns the number of folios which could not be evicted in @nr_failed.
487  */
488 unsigned long mapping_try_invalidate(struct address_space *mapping,
489 		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
490 {
491 	pgoff_t indices[PAGEVEC_SIZE];
492 	struct folio_batch fbatch;
493 	pgoff_t index = start;
494 	unsigned long ret;
495 	unsigned long count = 0;
496 	int i;
497 
498 	folio_batch_init(&fbatch);
499 	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
500 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
501 			struct folio *folio = fbatch.folios[i];
502 
503 			/* We rely upon deletion not changing folio->index */
504 
505 			if (xa_is_value(folio)) {
506 				count += invalidate_exceptional_entry(mapping,
507 							     indices[i], folio);
508 				continue;
509 			}
510 
511 			ret = mapping_evict_folio(mapping, folio);
512 			folio_unlock(folio);
513 			/*
514 			 * Invalidation is a hint that the folio is no longer
515 			 * of interest and try to speed up its reclaim.
516 			 */
517 			if (!ret) {
518 				deactivate_file_folio(folio);
519 				/* Likely in the lru cache of a remote CPU */
520 				if (nr_failed)
521 					(*nr_failed)++;
522 			}
523 			count += ret;
524 		}
525 		folio_batch_remove_exceptionals(&fbatch);
526 		folio_batch_release(&fbatch);
527 		cond_resched();
528 	}
529 	return count;
530 }
531 
532 /**
533  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
534  * @mapping: the address_space which holds the cache to invalidate
535  * @start: the offset 'from' which to invalidate
536  * @end: the offset 'to' which to invalidate (inclusive)
537  *
538  * This function removes pages that are clean, unmapped and unlocked,
539  * as well as shadow entries. It will not block on IO activity.
540  *
541  * If you want to remove all the pages of one inode, regardless of
542  * their use and writeback state, use truncate_inode_pages().
543  *
544  * Return: The number of indices that had their contents invalidated
545  */
546 unsigned long invalidate_mapping_pages(struct address_space *mapping,
547 		pgoff_t start, pgoff_t end)
548 {
549 	return mapping_try_invalidate(mapping, start, end, NULL);
550 }
551 EXPORT_SYMBOL(invalidate_mapping_pages);
552 
553 /*
554  * This is like mapping_evict_folio(), except it ignores the folio's
555  * refcount.  We do this because invalidate_inode_pages2() needs stronger
556  * invalidation guarantees, and cannot afford to leave folios behind because
557  * shrink_page_list() has a temp ref on them, or because they're transiently
558  * sitting in the folio_add_lru() caches.
559  */
560 static int invalidate_complete_folio2(struct address_space *mapping,
561 					struct folio *folio)
562 {
563 	if (folio->mapping != mapping)
564 		return 0;
565 
566 	if (!filemap_release_folio(folio, GFP_KERNEL))
567 		return 0;
568 
569 	spin_lock(&mapping->host->i_lock);
570 	xa_lock_irq(&mapping->i_pages);
571 	if (folio_test_dirty(folio))
572 		goto failed;
573 
574 	BUG_ON(folio_has_private(folio));
575 	__filemap_remove_folio(folio, NULL);
576 	xa_unlock_irq(&mapping->i_pages);
577 	if (mapping_shrinkable(mapping))
578 		inode_add_lru(mapping->host);
579 	spin_unlock(&mapping->host->i_lock);
580 
581 	filemap_free_folio(mapping, folio);
582 	return 1;
583 failed:
584 	xa_unlock_irq(&mapping->i_pages);
585 	spin_unlock(&mapping->host->i_lock);
586 	return 0;
587 }
588 
589 static int folio_launder(struct address_space *mapping, struct folio *folio)
590 {
591 	if (!folio_test_dirty(folio))
592 		return 0;
593 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
594 		return 0;
595 	return mapping->a_ops->launder_folio(folio);
596 }
597 
598 /**
599  * invalidate_inode_pages2_range - remove range of pages from an address_space
600  * @mapping: the address_space
601  * @start: the page offset 'from' which to invalidate
602  * @end: the page offset 'to' which to invalidate (inclusive)
603  *
604  * Any pages which are found to be mapped into pagetables are unmapped prior to
605  * invalidation.
606  *
607  * Return: -EBUSY if any pages could not be invalidated.
608  */
609 int invalidate_inode_pages2_range(struct address_space *mapping,
610 				  pgoff_t start, pgoff_t end)
611 {
612 	pgoff_t indices[PAGEVEC_SIZE];
613 	struct folio_batch fbatch;
614 	pgoff_t index;
615 	int i;
616 	int ret = 0;
617 	int ret2 = 0;
618 	int did_range_unmap = 0;
619 
620 	if (mapping_empty(mapping))
621 		return 0;
622 
623 	folio_batch_init(&fbatch);
624 	index = start;
625 	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
626 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
627 			struct folio *folio = fbatch.folios[i];
628 
629 			/* We rely upon deletion not changing folio->index */
630 
631 			if (xa_is_value(folio)) {
632 				if (!invalidate_exceptional_entry2(mapping,
633 						indices[i], folio))
634 					ret = -EBUSY;
635 				continue;
636 			}
637 
638 			if (!did_range_unmap && folio_mapped(folio)) {
639 				/*
640 				 * If folio is mapped, before taking its lock,
641 				 * zap the rest of the file in one hit.
642 				 */
643 				unmap_mapping_pages(mapping, indices[i],
644 						(1 + end - indices[i]), false);
645 				did_range_unmap = 1;
646 			}
647 
648 			folio_lock(folio);
649 			if (unlikely(folio->mapping != mapping)) {
650 				folio_unlock(folio);
651 				continue;
652 			}
653 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
654 			folio_wait_writeback(folio);
655 
656 			if (folio_mapped(folio))
657 				unmap_mapping_folio(folio);
658 			BUG_ON(folio_mapped(folio));
659 
660 			ret2 = folio_launder(mapping, folio);
661 			if (ret2 == 0) {
662 				if (!invalidate_complete_folio2(mapping, folio))
663 					ret2 = -EBUSY;
664 			}
665 			if (ret2 < 0)
666 				ret = ret2;
667 			folio_unlock(folio);
668 		}
669 		folio_batch_remove_exceptionals(&fbatch);
670 		folio_batch_release(&fbatch);
671 		cond_resched();
672 	}
673 	/*
674 	 * For DAX we invalidate page tables after invalidating page cache.  We
675 	 * could invalidate page tables while invalidating each entry however
676 	 * that would be expensive. And doing range unmapping before doesn't
677 	 * work as we have no cheap way to find whether page cache entry didn't
678 	 * get remapped later.
679 	 */
680 	if (dax_mapping(mapping)) {
681 		unmap_mapping_pages(mapping, start, end - start + 1, false);
682 	}
683 	return ret;
684 }
685 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
686 
687 /**
688  * invalidate_inode_pages2 - remove all pages from an address_space
689  * @mapping: the address_space
690  *
691  * Any pages which are found to be mapped into pagetables are unmapped prior to
692  * invalidation.
693  *
694  * Return: -EBUSY if any pages could not be invalidated.
695  */
696 int invalidate_inode_pages2(struct address_space *mapping)
697 {
698 	return invalidate_inode_pages2_range(mapping, 0, -1);
699 }
700 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
701 
702 /**
703  * truncate_pagecache - unmap and remove pagecache that has been truncated
704  * @inode: inode
705  * @newsize: new file size
706  *
707  * inode's new i_size must already be written before truncate_pagecache
708  * is called.
709  *
710  * This function should typically be called before the filesystem
711  * releases resources associated with the freed range (eg. deallocates
712  * blocks). This way, pagecache will always stay logically coherent
713  * with on-disk format, and the filesystem would not have to deal with
714  * situations such as writepage being called for a page that has already
715  * had its underlying blocks deallocated.
716  */
717 void truncate_pagecache(struct inode *inode, loff_t newsize)
718 {
719 	struct address_space *mapping = inode->i_mapping;
720 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
721 
722 	/*
723 	 * unmap_mapping_range is called twice, first simply for
724 	 * efficiency so that truncate_inode_pages does fewer
725 	 * single-page unmaps.  However after this first call, and
726 	 * before truncate_inode_pages finishes, it is possible for
727 	 * private pages to be COWed, which remain after
728 	 * truncate_inode_pages finishes, hence the second
729 	 * unmap_mapping_range call must be made for correctness.
730 	 */
731 	unmap_mapping_range(mapping, holebegin, 0, 1);
732 	truncate_inode_pages(mapping, newsize);
733 	unmap_mapping_range(mapping, holebegin, 0, 1);
734 }
735 EXPORT_SYMBOL(truncate_pagecache);
736 
737 /**
738  * truncate_setsize - update inode and pagecache for a new file size
739  * @inode: inode
740  * @newsize: new file size
741  *
742  * truncate_setsize updates i_size and performs pagecache truncation (if
743  * necessary) to @newsize. It will be typically be called from the filesystem's
744  * setattr function when ATTR_SIZE is passed in.
745  *
746  * Must be called with a lock serializing truncates and writes (generally
747  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
748  * specific block truncation has been performed.
749  */
750 void truncate_setsize(struct inode *inode, loff_t newsize)
751 {
752 	loff_t oldsize = inode->i_size;
753 
754 	i_size_write(inode, newsize);
755 	if (newsize > oldsize)
756 		pagecache_isize_extended(inode, oldsize, newsize);
757 	truncate_pagecache(inode, newsize);
758 }
759 EXPORT_SYMBOL(truncate_setsize);
760 
761 /**
762  * pagecache_isize_extended - update pagecache after extension of i_size
763  * @inode:	inode for which i_size was extended
764  * @from:	original inode size
765  * @to:		new inode size
766  *
767  * Handle extension of inode size either caused by extending truncate or by
768  * write starting after current i_size. We mark the page straddling current
769  * i_size RO so that page_mkwrite() is called on the nearest write access to
770  * the page.  This way filesystem can be sure that page_mkwrite() is called on
771  * the page before user writes to the page via mmap after the i_size has been
772  * changed.
773  *
774  * The function must be called after i_size is updated so that page fault
775  * coming after we unlock the page will already see the new i_size.
776  * The function must be called while we still hold i_rwsem - this not only
777  * makes sure i_size is stable but also that userspace cannot observe new
778  * i_size value before we are prepared to store mmap writes at new inode size.
779  */
780 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
781 {
782 	int bsize = i_blocksize(inode);
783 	loff_t rounded_from;
784 	struct page *page;
785 	pgoff_t index;
786 
787 	WARN_ON(to > inode->i_size);
788 
789 	if (from >= to || bsize == PAGE_SIZE)
790 		return;
791 	/* Page straddling @from will not have any hole block created? */
792 	rounded_from = round_up(from, bsize);
793 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
794 		return;
795 
796 	index = from >> PAGE_SHIFT;
797 	page = find_lock_page(inode->i_mapping, index);
798 	/* Page not cached? Nothing to do */
799 	if (!page)
800 		return;
801 	/*
802 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
803 	 * is needed.
804 	 */
805 	if (page_mkclean(page))
806 		set_page_dirty(page);
807 	unlock_page(page);
808 	put_page(page);
809 }
810 EXPORT_SYMBOL(pagecache_isize_extended);
811 
812 /**
813  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
814  * @inode: inode
815  * @lstart: offset of beginning of hole
816  * @lend: offset of last byte of hole
817  *
818  * This function should typically be called before the filesystem
819  * releases resources associated with the freed range (eg. deallocates
820  * blocks). This way, pagecache will always stay logically coherent
821  * with on-disk format, and the filesystem would not have to deal with
822  * situations such as writepage being called for a page that has already
823  * had its underlying blocks deallocated.
824  */
825 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
826 {
827 	struct address_space *mapping = inode->i_mapping;
828 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
829 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
830 	/*
831 	 * This rounding is currently just for example: unmap_mapping_range
832 	 * expands its hole outwards, whereas we want it to contract the hole
833 	 * inwards.  However, existing callers of truncate_pagecache_range are
834 	 * doing their own page rounding first.  Note that unmap_mapping_range
835 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
836 	 */
837 
838 	/*
839 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
840 	 * once (before truncating pagecache), and without "even_cows" flag:
841 	 * hole-punching should not remove private COWed pages from the hole.
842 	 */
843 	if ((u64)unmap_end > (u64)unmap_start)
844 		unmap_mapping_range(mapping, unmap_start,
845 				    1 + unmap_end - unmap_start, 0);
846 	truncate_inode_pages_range(mapping, lstart, lend);
847 }
848 EXPORT_SYMBOL(truncate_pagecache_range);
849