xref: /linux/mm/truncate.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	akpm@zip.com.au
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
16 				   do_invalidatepage */
17 
18 
19 static inline void truncate_partial_page(struct page *page, unsigned partial)
20 {
21 	memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);
22 	if (PagePrivate(page))
23 		do_invalidatepage(page, partial);
24 }
25 
26 /*
27  * If truncate cannot remove the fs-private metadata from the page, the page
28  * becomes anonymous.  It will be left on the LRU and may even be mapped into
29  * user pagetables if we're racing with filemap_nopage().
30  *
31  * We need to bale out if page->mapping is no longer equal to the original
32  * mapping.  This happens a) when the VM reclaimed the page while we waited on
33  * its lock, b) when a concurrent invalidate_inode_pages got there first and
34  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
35  */
36 static void
37 truncate_complete_page(struct address_space *mapping, struct page *page)
38 {
39 	if (page->mapping != mapping)
40 		return;
41 
42 	if (PagePrivate(page))
43 		do_invalidatepage(page, 0);
44 
45 	clear_page_dirty(page);
46 	ClearPageUptodate(page);
47 	ClearPageMappedToDisk(page);
48 	remove_from_page_cache(page);
49 	page_cache_release(page);	/* pagecache ref */
50 }
51 
52 /*
53  * This is for invalidate_inode_pages().  That function can be called at
54  * any time, and is not supposed to throw away dirty pages.  But pages can
55  * be marked dirty at any time too.  So we re-check the dirtiness inside
56  * ->tree_lock.  That provides exclusion against the __set_page_dirty
57  * functions.
58  *
59  * Returns non-zero if the page was successfully invalidated.
60  */
61 static int
62 invalidate_complete_page(struct address_space *mapping, struct page *page)
63 {
64 	if (page->mapping != mapping)
65 		return 0;
66 
67 	if (PagePrivate(page) && !try_to_release_page(page, 0))
68 		return 0;
69 
70 	write_lock_irq(&mapping->tree_lock);
71 	if (PageDirty(page)) {
72 		write_unlock_irq(&mapping->tree_lock);
73 		return 0;
74 	}
75 
76 	BUG_ON(PagePrivate(page));
77 	__remove_from_page_cache(page);
78 	write_unlock_irq(&mapping->tree_lock);
79 	ClearPageUptodate(page);
80 	page_cache_release(page);	/* pagecache ref */
81 	return 1;
82 }
83 
84 /**
85  * truncate_inode_pages - truncate range of pages specified by start and
86  * end byte offsets
87  * @mapping: mapping to truncate
88  * @lstart: offset from which to truncate
89  * @lend: offset to which to truncate
90  *
91  * Truncate the page cache, removing the pages that are between
92  * specified offsets (and zeroing out partial page
93  * (if lstart is not page aligned)).
94  *
95  * Truncate takes two passes - the first pass is nonblocking.  It will not
96  * block on page locks and it will not block on writeback.  The second pass
97  * will wait.  This is to prevent as much IO as possible in the affected region.
98  * The first pass will remove most pages, so the search cost of the second pass
99  * is low.
100  *
101  * When looking at page->index outside the page lock we need to be careful to
102  * copy it into a local to avoid races (it could change at any time).
103  *
104  * We pass down the cache-hot hint to the page freeing code.  Even if the
105  * mapping is large, it is probably the case that the final pages are the most
106  * recently touched, and freeing happens in ascending file offset order.
107  */
108 void truncate_inode_pages_range(struct address_space *mapping,
109 				loff_t lstart, loff_t lend)
110 {
111 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
112 	pgoff_t end;
113 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
114 	struct pagevec pvec;
115 	pgoff_t next;
116 	int i;
117 
118 	if (mapping->nrpages == 0)
119 		return;
120 
121 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
122 	end = (lend >> PAGE_CACHE_SHIFT);
123 
124 	pagevec_init(&pvec, 0);
125 	next = start;
126 	while (next <= end &&
127 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
128 		for (i = 0; i < pagevec_count(&pvec); i++) {
129 			struct page *page = pvec.pages[i];
130 			pgoff_t page_index = page->index;
131 
132 			if (page_index > end) {
133 				next = page_index;
134 				break;
135 			}
136 
137 			if (page_index > next)
138 				next = page_index;
139 			next++;
140 			if (TestSetPageLocked(page))
141 				continue;
142 			if (PageWriteback(page)) {
143 				unlock_page(page);
144 				continue;
145 			}
146 			truncate_complete_page(mapping, page);
147 			unlock_page(page);
148 		}
149 		pagevec_release(&pvec);
150 		cond_resched();
151 	}
152 
153 	if (partial) {
154 		struct page *page = find_lock_page(mapping, start - 1);
155 		if (page) {
156 			wait_on_page_writeback(page);
157 			truncate_partial_page(page, partial);
158 			unlock_page(page);
159 			page_cache_release(page);
160 		}
161 	}
162 
163 	next = start;
164 	for ( ; ; ) {
165 		cond_resched();
166 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
167 			if (next == start)
168 				break;
169 			next = start;
170 			continue;
171 		}
172 		if (pvec.pages[0]->index > end) {
173 			pagevec_release(&pvec);
174 			break;
175 		}
176 		for (i = 0; i < pagevec_count(&pvec); i++) {
177 			struct page *page = pvec.pages[i];
178 
179 			if (page->index > end)
180 				break;
181 			lock_page(page);
182 			wait_on_page_writeback(page);
183 			if (page->index > next)
184 				next = page->index;
185 			next++;
186 			truncate_complete_page(mapping, page);
187 			unlock_page(page);
188 		}
189 		pagevec_release(&pvec);
190 	}
191 }
192 EXPORT_SYMBOL(truncate_inode_pages_range);
193 
194 /**
195  * truncate_inode_pages - truncate *all* the pages from an offset
196  * @mapping: mapping to truncate
197  * @lstart: offset from which to truncate
198  *
199  * Called under (and serialised by) inode->i_mutex.
200  */
201 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
202 {
203 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
204 }
205 EXPORT_SYMBOL(truncate_inode_pages);
206 
207 /**
208  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
209  * @mapping: the address_space which holds the pages to invalidate
210  * @start: the offset 'from' which to invalidate
211  * @end: the offset 'to' which to invalidate (inclusive)
212  *
213  * This function only removes the unlocked pages, if you want to
214  * remove all the pages of one inode, you must call truncate_inode_pages.
215  *
216  * invalidate_mapping_pages() will not block on IO activity. It will not
217  * invalidate pages which are dirty, locked, under writeback or mapped into
218  * pagetables.
219  */
220 unsigned long invalidate_mapping_pages(struct address_space *mapping,
221 				pgoff_t start, pgoff_t end)
222 {
223 	struct pagevec pvec;
224 	pgoff_t next = start;
225 	unsigned long ret = 0;
226 	int i;
227 
228 	pagevec_init(&pvec, 0);
229 	while (next <= end &&
230 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
231 		for (i = 0; i < pagevec_count(&pvec); i++) {
232 			struct page *page = pvec.pages[i];
233 			pgoff_t index;
234 			int lock_failed;
235 
236 			lock_failed = TestSetPageLocked(page);
237 
238 			/*
239 			 * We really shouldn't be looking at the ->index of an
240 			 * unlocked page.  But we're not allowed to lock these
241 			 * pages.  So we rely upon nobody altering the ->index
242 			 * of this (pinned-by-us) page.
243 			 */
244 			index = page->index;
245 			if (index > next)
246 				next = index;
247 			next++;
248 			if (lock_failed)
249 				continue;
250 
251 			if (PageDirty(page) || PageWriteback(page))
252 				goto unlock;
253 			if (page_mapped(page))
254 				goto unlock;
255 			ret += invalidate_complete_page(mapping, page);
256 unlock:
257 			unlock_page(page);
258 			if (next > end)
259 				break;
260 		}
261 		pagevec_release(&pvec);
262 	}
263 	return ret;
264 }
265 
266 unsigned long invalidate_inode_pages(struct address_space *mapping)
267 {
268 	return invalidate_mapping_pages(mapping, 0, ~0UL);
269 }
270 
271 EXPORT_SYMBOL(invalidate_inode_pages);
272 
273 /**
274  * invalidate_inode_pages2_range - remove range of pages from an address_space
275  * @mapping: the address_space
276  * @start: the page offset 'from' which to invalidate
277  * @end: the page offset 'to' which to invalidate (inclusive)
278  *
279  * Any pages which are found to be mapped into pagetables are unmapped prior to
280  * invalidation.
281  *
282  * Returns -EIO if any pages could not be invalidated.
283  */
284 int invalidate_inode_pages2_range(struct address_space *mapping,
285 				  pgoff_t start, pgoff_t end)
286 {
287 	struct pagevec pvec;
288 	pgoff_t next;
289 	int i;
290 	int ret = 0;
291 	int did_range_unmap = 0;
292 	int wrapped = 0;
293 
294 	pagevec_init(&pvec, 0);
295 	next = start;
296 	while (next <= end && !ret && !wrapped &&
297 		pagevec_lookup(&pvec, mapping, next,
298 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
299 		for (i = 0; !ret && i < pagevec_count(&pvec); i++) {
300 			struct page *page = pvec.pages[i];
301 			pgoff_t page_index;
302 			int was_dirty;
303 
304 			lock_page(page);
305 			if (page->mapping != mapping) {
306 				unlock_page(page);
307 				continue;
308 			}
309 			page_index = page->index;
310 			next = page_index + 1;
311 			if (next == 0)
312 				wrapped = 1;
313 			if (page_index > end) {
314 				unlock_page(page);
315 				break;
316 			}
317 			wait_on_page_writeback(page);
318 			while (page_mapped(page)) {
319 				if (!did_range_unmap) {
320 					/*
321 					 * Zap the rest of the file in one hit.
322 					 */
323 					unmap_mapping_range(mapping,
324 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
325 					   (loff_t)(end - page_index + 1)
326 							<< PAGE_CACHE_SHIFT,
327 					    0);
328 					did_range_unmap = 1;
329 				} else {
330 					/*
331 					 * Just zap this page
332 					 */
333 					unmap_mapping_range(mapping,
334 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
335 					  PAGE_CACHE_SIZE, 0);
336 				}
337 			}
338 			was_dirty = test_clear_page_dirty(page);
339 			if (!invalidate_complete_page(mapping, page)) {
340 				if (was_dirty)
341 					set_page_dirty(page);
342 				ret = -EIO;
343 			}
344 			unlock_page(page);
345 		}
346 		pagevec_release(&pvec);
347 		cond_resched();
348 	}
349 	return ret;
350 }
351 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
352 
353 /**
354  * invalidate_inode_pages2 - remove all pages from an address_space
355  * @mapping: the address_space
356  *
357  * Any pages which are found to be mapped into pagetables are unmapped prior to
358  * invalidation.
359  *
360  * Returns -EIO if any pages could not be invalidated.
361  */
362 int invalidate_inode_pages2(struct address_space *mapping)
363 {
364 	return invalidate_inode_pages2_range(mapping, 0, -1);
365 }
366 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
367