1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/cleancache.h> 24 #include <linux/rmap.h> 25 #include "internal.h" 26 27 static void clear_exceptional_entry(struct address_space *mapping, 28 pgoff_t index, void *entry) 29 { 30 struct radix_tree_node *node; 31 void **slot; 32 33 /* Handled by shmem itself */ 34 if (shmem_mapping(mapping)) 35 return; 36 37 spin_lock_irq(&mapping->tree_lock); 38 39 if (dax_mapping(mapping)) { 40 if (radix_tree_delete_item(&mapping->page_tree, index, entry)) 41 mapping->nrexceptional--; 42 } else { 43 /* 44 * Regular page slots are stabilized by the page lock even 45 * without the tree itself locked. These unlocked entries 46 * need verification under the tree lock. 47 */ 48 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, 49 &slot)) 50 goto unlock; 51 if (*slot != entry) 52 goto unlock; 53 radix_tree_replace_slot(slot, NULL); 54 mapping->nrexceptional--; 55 if (!node) 56 goto unlock; 57 workingset_node_shadows_dec(node); 58 /* 59 * Don't track node without shadow entries. 60 * 61 * Avoid acquiring the list_lru lock if already untracked. 62 * The list_empty() test is safe as node->private_list is 63 * protected by mapping->tree_lock. 64 */ 65 if (!workingset_node_shadows(node) && 66 !list_empty(&node->private_list)) 67 list_lru_del(&workingset_shadow_nodes, 68 &node->private_list); 69 __radix_tree_delete_node(&mapping->page_tree, node); 70 } 71 unlock: 72 spin_unlock_irq(&mapping->tree_lock); 73 } 74 75 /** 76 * do_invalidatepage - invalidate part or all of a page 77 * @page: the page which is affected 78 * @offset: start of the range to invalidate 79 * @length: length of the range to invalidate 80 * 81 * do_invalidatepage() is called when all or part of the page has become 82 * invalidated by a truncate operation. 83 * 84 * do_invalidatepage() does not have to release all buffers, but it must 85 * ensure that no dirty buffer is left outside @offset and that no I/O 86 * is underway against any of the blocks which are outside the truncation 87 * point. Because the caller is about to free (and possibly reuse) those 88 * blocks on-disk. 89 */ 90 void do_invalidatepage(struct page *page, unsigned int offset, 91 unsigned int length) 92 { 93 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 94 95 invalidatepage = page->mapping->a_ops->invalidatepage; 96 #ifdef CONFIG_BLOCK 97 if (!invalidatepage) 98 invalidatepage = block_invalidatepage; 99 #endif 100 if (invalidatepage) 101 (*invalidatepage)(page, offset, length); 102 } 103 104 /* 105 * If truncate cannot remove the fs-private metadata from the page, the page 106 * becomes orphaned. It will be left on the LRU and may even be mapped into 107 * user pagetables if we're racing with filemap_fault(). 108 * 109 * We need to bale out if page->mapping is no longer equal to the original 110 * mapping. This happens a) when the VM reclaimed the page while we waited on 111 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 112 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 113 */ 114 static int 115 truncate_complete_page(struct address_space *mapping, struct page *page) 116 { 117 if (page->mapping != mapping) 118 return -EIO; 119 120 if (page_has_private(page)) 121 do_invalidatepage(page, 0, PAGE_SIZE); 122 123 /* 124 * Some filesystems seem to re-dirty the page even after 125 * the VM has canceled the dirty bit (eg ext3 journaling). 126 * Hence dirty accounting check is placed after invalidation. 127 */ 128 cancel_dirty_page(page); 129 ClearPageMappedToDisk(page); 130 delete_from_page_cache(page); 131 return 0; 132 } 133 134 /* 135 * This is for invalidate_mapping_pages(). That function can be called at 136 * any time, and is not supposed to throw away dirty pages. But pages can 137 * be marked dirty at any time too, so use remove_mapping which safely 138 * discards clean, unused pages. 139 * 140 * Returns non-zero if the page was successfully invalidated. 141 */ 142 static int 143 invalidate_complete_page(struct address_space *mapping, struct page *page) 144 { 145 int ret; 146 147 if (page->mapping != mapping) 148 return 0; 149 150 if (page_has_private(page) && !try_to_release_page(page, 0)) 151 return 0; 152 153 ret = remove_mapping(mapping, page); 154 155 return ret; 156 } 157 158 int truncate_inode_page(struct address_space *mapping, struct page *page) 159 { 160 if (page_mapped(page)) { 161 unmap_mapping_range(mapping, 162 (loff_t)page->index << PAGE_SHIFT, 163 PAGE_SIZE, 0); 164 } 165 return truncate_complete_page(mapping, page); 166 } 167 168 /* 169 * Used to get rid of pages on hardware memory corruption. 170 */ 171 int generic_error_remove_page(struct address_space *mapping, struct page *page) 172 { 173 if (!mapping) 174 return -EINVAL; 175 /* 176 * Only punch for normal data pages for now. 177 * Handling other types like directories would need more auditing. 178 */ 179 if (!S_ISREG(mapping->host->i_mode)) 180 return -EIO; 181 return truncate_inode_page(mapping, page); 182 } 183 EXPORT_SYMBOL(generic_error_remove_page); 184 185 /* 186 * Safely invalidate one page from its pagecache mapping. 187 * It only drops clean, unused pages. The page must be locked. 188 * 189 * Returns 1 if the page is successfully invalidated, otherwise 0. 190 */ 191 int invalidate_inode_page(struct page *page) 192 { 193 struct address_space *mapping = page_mapping(page); 194 if (!mapping) 195 return 0; 196 if (PageDirty(page) || PageWriteback(page)) 197 return 0; 198 if (page_mapped(page)) 199 return 0; 200 return invalidate_complete_page(mapping, page); 201 } 202 203 /** 204 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 205 * @mapping: mapping to truncate 206 * @lstart: offset from which to truncate 207 * @lend: offset to which to truncate (inclusive) 208 * 209 * Truncate the page cache, removing the pages that are between 210 * specified offsets (and zeroing out partial pages 211 * if lstart or lend + 1 is not page aligned). 212 * 213 * Truncate takes two passes - the first pass is nonblocking. It will not 214 * block on page locks and it will not block on writeback. The second pass 215 * will wait. This is to prevent as much IO as possible in the affected region. 216 * The first pass will remove most pages, so the search cost of the second pass 217 * is low. 218 * 219 * We pass down the cache-hot hint to the page freeing code. Even if the 220 * mapping is large, it is probably the case that the final pages are the most 221 * recently touched, and freeing happens in ascending file offset order. 222 * 223 * Note that since ->invalidatepage() accepts range to invalidate 224 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 225 * page aligned properly. 226 */ 227 void truncate_inode_pages_range(struct address_space *mapping, 228 loff_t lstart, loff_t lend) 229 { 230 pgoff_t start; /* inclusive */ 231 pgoff_t end; /* exclusive */ 232 unsigned int partial_start; /* inclusive */ 233 unsigned int partial_end; /* exclusive */ 234 struct pagevec pvec; 235 pgoff_t indices[PAGEVEC_SIZE]; 236 pgoff_t index; 237 int i; 238 239 cleancache_invalidate_inode(mapping); 240 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 241 return; 242 243 /* Offsets within partial pages */ 244 partial_start = lstart & (PAGE_SIZE - 1); 245 partial_end = (lend + 1) & (PAGE_SIZE - 1); 246 247 /* 248 * 'start' and 'end' always covers the range of pages to be fully 249 * truncated. Partial pages are covered with 'partial_start' at the 250 * start of the range and 'partial_end' at the end of the range. 251 * Note that 'end' is exclusive while 'lend' is inclusive. 252 */ 253 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 254 if (lend == -1) 255 /* 256 * lend == -1 indicates end-of-file so we have to set 'end' 257 * to the highest possible pgoff_t and since the type is 258 * unsigned we're using -1. 259 */ 260 end = -1; 261 else 262 end = (lend + 1) >> PAGE_SHIFT; 263 264 pagevec_init(&pvec, 0); 265 index = start; 266 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 267 min(end - index, (pgoff_t)PAGEVEC_SIZE), 268 indices)) { 269 for (i = 0; i < pagevec_count(&pvec); i++) { 270 struct page *page = pvec.pages[i]; 271 272 /* We rely upon deletion not changing page->index */ 273 index = indices[i]; 274 if (index >= end) 275 break; 276 277 if (radix_tree_exceptional_entry(page)) { 278 clear_exceptional_entry(mapping, index, page); 279 continue; 280 } 281 282 if (!trylock_page(page)) 283 continue; 284 WARN_ON(page->index != index); 285 if (PageWriteback(page)) { 286 unlock_page(page); 287 continue; 288 } 289 truncate_inode_page(mapping, page); 290 unlock_page(page); 291 } 292 pagevec_remove_exceptionals(&pvec); 293 pagevec_release(&pvec); 294 cond_resched(); 295 index++; 296 } 297 298 if (partial_start) { 299 struct page *page = find_lock_page(mapping, start - 1); 300 if (page) { 301 unsigned int top = PAGE_SIZE; 302 if (start > end) { 303 /* Truncation within a single page */ 304 top = partial_end; 305 partial_end = 0; 306 } 307 wait_on_page_writeback(page); 308 zero_user_segment(page, partial_start, top); 309 cleancache_invalidate_page(mapping, page); 310 if (page_has_private(page)) 311 do_invalidatepage(page, partial_start, 312 top - partial_start); 313 unlock_page(page); 314 put_page(page); 315 } 316 } 317 if (partial_end) { 318 struct page *page = find_lock_page(mapping, end); 319 if (page) { 320 wait_on_page_writeback(page); 321 zero_user_segment(page, 0, partial_end); 322 cleancache_invalidate_page(mapping, page); 323 if (page_has_private(page)) 324 do_invalidatepage(page, 0, 325 partial_end); 326 unlock_page(page); 327 put_page(page); 328 } 329 } 330 /* 331 * If the truncation happened within a single page no pages 332 * will be released, just zeroed, so we can bail out now. 333 */ 334 if (start >= end) 335 return; 336 337 index = start; 338 for ( ; ; ) { 339 cond_resched(); 340 if (!pagevec_lookup_entries(&pvec, mapping, index, 341 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 342 /* If all gone from start onwards, we're done */ 343 if (index == start) 344 break; 345 /* Otherwise restart to make sure all gone */ 346 index = start; 347 continue; 348 } 349 if (index == start && indices[0] >= end) { 350 /* All gone out of hole to be punched, we're done */ 351 pagevec_remove_exceptionals(&pvec); 352 pagevec_release(&pvec); 353 break; 354 } 355 for (i = 0; i < pagevec_count(&pvec); i++) { 356 struct page *page = pvec.pages[i]; 357 358 /* We rely upon deletion not changing page->index */ 359 index = indices[i]; 360 if (index >= end) { 361 /* Restart punch to make sure all gone */ 362 index = start - 1; 363 break; 364 } 365 366 if (radix_tree_exceptional_entry(page)) { 367 clear_exceptional_entry(mapping, index, page); 368 continue; 369 } 370 371 lock_page(page); 372 WARN_ON(page->index != index); 373 wait_on_page_writeback(page); 374 truncate_inode_page(mapping, page); 375 unlock_page(page); 376 } 377 pagevec_remove_exceptionals(&pvec); 378 pagevec_release(&pvec); 379 index++; 380 } 381 cleancache_invalidate_inode(mapping); 382 } 383 EXPORT_SYMBOL(truncate_inode_pages_range); 384 385 /** 386 * truncate_inode_pages - truncate *all* the pages from an offset 387 * @mapping: mapping to truncate 388 * @lstart: offset from which to truncate 389 * 390 * Called under (and serialised by) inode->i_mutex. 391 * 392 * Note: When this function returns, there can be a page in the process of 393 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 394 * mapping->nrpages can be non-zero when this function returns even after 395 * truncation of the whole mapping. 396 */ 397 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 398 { 399 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 400 } 401 EXPORT_SYMBOL(truncate_inode_pages); 402 403 /** 404 * truncate_inode_pages_final - truncate *all* pages before inode dies 405 * @mapping: mapping to truncate 406 * 407 * Called under (and serialized by) inode->i_mutex. 408 * 409 * Filesystems have to use this in the .evict_inode path to inform the 410 * VM that this is the final truncate and the inode is going away. 411 */ 412 void truncate_inode_pages_final(struct address_space *mapping) 413 { 414 unsigned long nrexceptional; 415 unsigned long nrpages; 416 417 /* 418 * Page reclaim can not participate in regular inode lifetime 419 * management (can't call iput()) and thus can race with the 420 * inode teardown. Tell it when the address space is exiting, 421 * so that it does not install eviction information after the 422 * final truncate has begun. 423 */ 424 mapping_set_exiting(mapping); 425 426 /* 427 * When reclaim installs eviction entries, it increases 428 * nrexceptional first, then decreases nrpages. Make sure we see 429 * this in the right order or we might miss an entry. 430 */ 431 nrpages = mapping->nrpages; 432 smp_rmb(); 433 nrexceptional = mapping->nrexceptional; 434 435 if (nrpages || nrexceptional) { 436 /* 437 * As truncation uses a lockless tree lookup, cycle 438 * the tree lock to make sure any ongoing tree 439 * modification that does not see AS_EXITING is 440 * completed before starting the final truncate. 441 */ 442 spin_lock_irq(&mapping->tree_lock); 443 spin_unlock_irq(&mapping->tree_lock); 444 445 truncate_inode_pages(mapping, 0); 446 } 447 } 448 EXPORT_SYMBOL(truncate_inode_pages_final); 449 450 /** 451 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 452 * @mapping: the address_space which holds the pages to invalidate 453 * @start: the offset 'from' which to invalidate 454 * @end: the offset 'to' which to invalidate (inclusive) 455 * 456 * This function only removes the unlocked pages, if you want to 457 * remove all the pages of one inode, you must call truncate_inode_pages. 458 * 459 * invalidate_mapping_pages() will not block on IO activity. It will not 460 * invalidate pages which are dirty, locked, under writeback or mapped into 461 * pagetables. 462 */ 463 unsigned long invalidate_mapping_pages(struct address_space *mapping, 464 pgoff_t start, pgoff_t end) 465 { 466 pgoff_t indices[PAGEVEC_SIZE]; 467 struct pagevec pvec; 468 pgoff_t index = start; 469 unsigned long ret; 470 unsigned long count = 0; 471 int i; 472 473 pagevec_init(&pvec, 0); 474 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 475 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 476 indices)) { 477 for (i = 0; i < pagevec_count(&pvec); i++) { 478 struct page *page = pvec.pages[i]; 479 480 /* We rely upon deletion not changing page->index */ 481 index = indices[i]; 482 if (index > end) 483 break; 484 485 if (radix_tree_exceptional_entry(page)) { 486 clear_exceptional_entry(mapping, index, page); 487 continue; 488 } 489 490 if (!trylock_page(page)) 491 continue; 492 WARN_ON(page->index != index); 493 ret = invalidate_inode_page(page); 494 unlock_page(page); 495 /* 496 * Invalidation is a hint that the page is no longer 497 * of interest and try to speed up its reclaim. 498 */ 499 if (!ret) 500 deactivate_file_page(page); 501 count += ret; 502 } 503 pagevec_remove_exceptionals(&pvec); 504 pagevec_release(&pvec); 505 cond_resched(); 506 index++; 507 } 508 return count; 509 } 510 EXPORT_SYMBOL(invalidate_mapping_pages); 511 512 /* 513 * This is like invalidate_complete_page(), except it ignores the page's 514 * refcount. We do this because invalidate_inode_pages2() needs stronger 515 * invalidation guarantees, and cannot afford to leave pages behind because 516 * shrink_page_list() has a temp ref on them, or because they're transiently 517 * sitting in the lru_cache_add() pagevecs. 518 */ 519 static int 520 invalidate_complete_page2(struct address_space *mapping, struct page *page) 521 { 522 unsigned long flags; 523 524 if (page->mapping != mapping) 525 return 0; 526 527 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 528 return 0; 529 530 spin_lock_irqsave(&mapping->tree_lock, flags); 531 if (PageDirty(page)) 532 goto failed; 533 534 BUG_ON(page_has_private(page)); 535 __delete_from_page_cache(page, NULL); 536 spin_unlock_irqrestore(&mapping->tree_lock, flags); 537 538 if (mapping->a_ops->freepage) 539 mapping->a_ops->freepage(page); 540 541 put_page(page); /* pagecache ref */ 542 return 1; 543 failed: 544 spin_unlock_irqrestore(&mapping->tree_lock, flags); 545 return 0; 546 } 547 548 static int do_launder_page(struct address_space *mapping, struct page *page) 549 { 550 if (!PageDirty(page)) 551 return 0; 552 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 553 return 0; 554 return mapping->a_ops->launder_page(page); 555 } 556 557 /** 558 * invalidate_inode_pages2_range - remove range of pages from an address_space 559 * @mapping: the address_space 560 * @start: the page offset 'from' which to invalidate 561 * @end: the page offset 'to' which to invalidate (inclusive) 562 * 563 * Any pages which are found to be mapped into pagetables are unmapped prior to 564 * invalidation. 565 * 566 * Returns -EBUSY if any pages could not be invalidated. 567 */ 568 int invalidate_inode_pages2_range(struct address_space *mapping, 569 pgoff_t start, pgoff_t end) 570 { 571 pgoff_t indices[PAGEVEC_SIZE]; 572 struct pagevec pvec; 573 pgoff_t index; 574 int i; 575 int ret = 0; 576 int ret2 = 0; 577 int did_range_unmap = 0; 578 579 cleancache_invalidate_inode(mapping); 580 pagevec_init(&pvec, 0); 581 index = start; 582 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 583 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 584 indices)) { 585 for (i = 0; i < pagevec_count(&pvec); i++) { 586 struct page *page = pvec.pages[i]; 587 588 /* We rely upon deletion not changing page->index */ 589 index = indices[i]; 590 if (index > end) 591 break; 592 593 if (radix_tree_exceptional_entry(page)) { 594 clear_exceptional_entry(mapping, index, page); 595 continue; 596 } 597 598 lock_page(page); 599 WARN_ON(page->index != index); 600 if (page->mapping != mapping) { 601 unlock_page(page); 602 continue; 603 } 604 wait_on_page_writeback(page); 605 if (page_mapped(page)) { 606 if (!did_range_unmap) { 607 /* 608 * Zap the rest of the file in one hit. 609 */ 610 unmap_mapping_range(mapping, 611 (loff_t)index << PAGE_SHIFT, 612 (loff_t)(1 + end - index) 613 << PAGE_SHIFT, 614 0); 615 did_range_unmap = 1; 616 } else { 617 /* 618 * Just zap this page 619 */ 620 unmap_mapping_range(mapping, 621 (loff_t)index << PAGE_SHIFT, 622 PAGE_SIZE, 0); 623 } 624 } 625 BUG_ON(page_mapped(page)); 626 ret2 = do_launder_page(mapping, page); 627 if (ret2 == 0) { 628 if (!invalidate_complete_page2(mapping, page)) 629 ret2 = -EBUSY; 630 } 631 if (ret2 < 0) 632 ret = ret2; 633 unlock_page(page); 634 } 635 pagevec_remove_exceptionals(&pvec); 636 pagevec_release(&pvec); 637 cond_resched(); 638 index++; 639 } 640 cleancache_invalidate_inode(mapping); 641 return ret; 642 } 643 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 644 645 /** 646 * invalidate_inode_pages2 - remove all pages from an address_space 647 * @mapping: the address_space 648 * 649 * Any pages which are found to be mapped into pagetables are unmapped prior to 650 * invalidation. 651 * 652 * Returns -EBUSY if any pages could not be invalidated. 653 */ 654 int invalidate_inode_pages2(struct address_space *mapping) 655 { 656 return invalidate_inode_pages2_range(mapping, 0, -1); 657 } 658 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 659 660 /** 661 * truncate_pagecache - unmap and remove pagecache that has been truncated 662 * @inode: inode 663 * @newsize: new file size 664 * 665 * inode's new i_size must already be written before truncate_pagecache 666 * is called. 667 * 668 * This function should typically be called before the filesystem 669 * releases resources associated with the freed range (eg. deallocates 670 * blocks). This way, pagecache will always stay logically coherent 671 * with on-disk format, and the filesystem would not have to deal with 672 * situations such as writepage being called for a page that has already 673 * had its underlying blocks deallocated. 674 */ 675 void truncate_pagecache(struct inode *inode, loff_t newsize) 676 { 677 struct address_space *mapping = inode->i_mapping; 678 loff_t holebegin = round_up(newsize, PAGE_SIZE); 679 680 /* 681 * unmap_mapping_range is called twice, first simply for 682 * efficiency so that truncate_inode_pages does fewer 683 * single-page unmaps. However after this first call, and 684 * before truncate_inode_pages finishes, it is possible for 685 * private pages to be COWed, which remain after 686 * truncate_inode_pages finishes, hence the second 687 * unmap_mapping_range call must be made for correctness. 688 */ 689 unmap_mapping_range(mapping, holebegin, 0, 1); 690 truncate_inode_pages(mapping, newsize); 691 unmap_mapping_range(mapping, holebegin, 0, 1); 692 } 693 EXPORT_SYMBOL(truncate_pagecache); 694 695 /** 696 * truncate_setsize - update inode and pagecache for a new file size 697 * @inode: inode 698 * @newsize: new file size 699 * 700 * truncate_setsize updates i_size and performs pagecache truncation (if 701 * necessary) to @newsize. It will be typically be called from the filesystem's 702 * setattr function when ATTR_SIZE is passed in. 703 * 704 * Must be called with a lock serializing truncates and writes (generally 705 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 706 * specific block truncation has been performed. 707 */ 708 void truncate_setsize(struct inode *inode, loff_t newsize) 709 { 710 loff_t oldsize = inode->i_size; 711 712 i_size_write(inode, newsize); 713 if (newsize > oldsize) 714 pagecache_isize_extended(inode, oldsize, newsize); 715 truncate_pagecache(inode, newsize); 716 } 717 EXPORT_SYMBOL(truncate_setsize); 718 719 /** 720 * pagecache_isize_extended - update pagecache after extension of i_size 721 * @inode: inode for which i_size was extended 722 * @from: original inode size 723 * @to: new inode size 724 * 725 * Handle extension of inode size either caused by extending truncate or by 726 * write starting after current i_size. We mark the page straddling current 727 * i_size RO so that page_mkwrite() is called on the nearest write access to 728 * the page. This way filesystem can be sure that page_mkwrite() is called on 729 * the page before user writes to the page via mmap after the i_size has been 730 * changed. 731 * 732 * The function must be called after i_size is updated so that page fault 733 * coming after we unlock the page will already see the new i_size. 734 * The function must be called while we still hold i_mutex - this not only 735 * makes sure i_size is stable but also that userspace cannot observe new 736 * i_size value before we are prepared to store mmap writes at new inode size. 737 */ 738 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 739 { 740 int bsize = 1 << inode->i_blkbits; 741 loff_t rounded_from; 742 struct page *page; 743 pgoff_t index; 744 745 WARN_ON(to > inode->i_size); 746 747 if (from >= to || bsize == PAGE_SIZE) 748 return; 749 /* Page straddling @from will not have any hole block created? */ 750 rounded_from = round_up(from, bsize); 751 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 752 return; 753 754 index = from >> PAGE_SHIFT; 755 page = find_lock_page(inode->i_mapping, index); 756 /* Page not cached? Nothing to do */ 757 if (!page) 758 return; 759 /* 760 * See clear_page_dirty_for_io() for details why set_page_dirty() 761 * is needed. 762 */ 763 if (page_mkclean(page)) 764 set_page_dirty(page); 765 unlock_page(page); 766 put_page(page); 767 } 768 EXPORT_SYMBOL(pagecache_isize_extended); 769 770 /** 771 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 772 * @inode: inode 773 * @lstart: offset of beginning of hole 774 * @lend: offset of last byte of hole 775 * 776 * This function should typically be called before the filesystem 777 * releases resources associated with the freed range (eg. deallocates 778 * blocks). This way, pagecache will always stay logically coherent 779 * with on-disk format, and the filesystem would not have to deal with 780 * situations such as writepage being called for a page that has already 781 * had its underlying blocks deallocated. 782 */ 783 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 784 { 785 struct address_space *mapping = inode->i_mapping; 786 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 787 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 788 /* 789 * This rounding is currently just for example: unmap_mapping_range 790 * expands its hole outwards, whereas we want it to contract the hole 791 * inwards. However, existing callers of truncate_pagecache_range are 792 * doing their own page rounding first. Note that unmap_mapping_range 793 * allows holelen 0 for all, and we allow lend -1 for end of file. 794 */ 795 796 /* 797 * Unlike in truncate_pagecache, unmap_mapping_range is called only 798 * once (before truncating pagecache), and without "even_cows" flag: 799 * hole-punching should not remove private COWed pages from the hole. 800 */ 801 if ((u64)unmap_end > (u64)unmap_start) 802 unmap_mapping_range(mapping, unmap_start, 803 1 + unmap_end - unmap_start, 0); 804 truncate_inode_pages_range(mapping, lstart, lend); 805 } 806 EXPORT_SYMBOL(truncate_pagecache_range); 807