xref: /linux/mm/truncate.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/truncate.c - code for taking down pages from address_spaces
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 10Sep2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/rmap.h>
24 #include "internal.h"
25 
26 /*
27  * Regular page slots are stabilized by the page lock even without the tree
28  * itself locked.  These unlocked entries need verification under the tree
29  * lock.
30  */
31 static inline void __clear_shadow_entry(struct address_space *mapping,
32 				pgoff_t index, void *entry)
33 {
34 	XA_STATE(xas, &mapping->i_pages, index);
35 
36 	xas_set_update(&xas, workingset_update_node);
37 	if (xas_load(&xas) != entry)
38 		return;
39 	xas_store(&xas, NULL);
40 }
41 
42 static void clear_shadow_entries(struct address_space *mapping,
43 				 struct folio_batch *fbatch, pgoff_t *indices)
44 {
45 	int i;
46 
47 	/* Handled by shmem itself, or for DAX we do nothing. */
48 	if (shmem_mapping(mapping) || dax_mapping(mapping))
49 		return;
50 
51 	spin_lock(&mapping->host->i_lock);
52 	xa_lock_irq(&mapping->i_pages);
53 
54 	for (i = 0; i < folio_batch_count(fbatch); i++) {
55 		struct folio *folio = fbatch->folios[i];
56 
57 		if (xa_is_value(folio))
58 			__clear_shadow_entry(mapping, indices[i], folio);
59 	}
60 
61 	xa_unlock_irq(&mapping->i_pages);
62 	if (mapping_shrinkable(mapping))
63 		inode_add_lru(mapping->host);
64 	spin_unlock(&mapping->host->i_lock);
65 }
66 
67 /*
68  * Unconditionally remove exceptional entries. Usually called from truncate
69  * path. Note that the folio_batch may be altered by this function by removing
70  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
71  */
72 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
73 				struct folio_batch *fbatch, pgoff_t *indices)
74 {
75 	int i, j;
76 	bool dax;
77 
78 	/* Handled by shmem itself */
79 	if (shmem_mapping(mapping))
80 		return;
81 
82 	for (j = 0; j < folio_batch_count(fbatch); j++)
83 		if (xa_is_value(fbatch->folios[j]))
84 			break;
85 
86 	if (j == folio_batch_count(fbatch))
87 		return;
88 
89 	dax = dax_mapping(mapping);
90 	if (!dax) {
91 		spin_lock(&mapping->host->i_lock);
92 		xa_lock_irq(&mapping->i_pages);
93 	}
94 
95 	for (i = j; i < folio_batch_count(fbatch); i++) {
96 		struct folio *folio = fbatch->folios[i];
97 		pgoff_t index = indices[i];
98 
99 		if (!xa_is_value(folio)) {
100 			fbatch->folios[j++] = folio;
101 			continue;
102 		}
103 
104 		if (unlikely(dax)) {
105 			dax_delete_mapping_entry(mapping, index);
106 			continue;
107 		}
108 
109 		__clear_shadow_entry(mapping, index, folio);
110 	}
111 
112 	if (!dax) {
113 		xa_unlock_irq(&mapping->i_pages);
114 		if (mapping_shrinkable(mapping))
115 			inode_add_lru(mapping->host);
116 		spin_unlock(&mapping->host->i_lock);
117 	}
118 	fbatch->nr = j;
119 }
120 
121 /**
122  * folio_invalidate - Invalidate part or all of a folio.
123  * @folio: The folio which is affected.
124  * @offset: start of the range to invalidate
125  * @length: length of the range to invalidate
126  *
127  * folio_invalidate() is called when all or part of the folio has become
128  * invalidated by a truncate operation.
129  *
130  * folio_invalidate() does not have to release all buffers, but it must
131  * ensure that no dirty buffer is left outside @offset and that no I/O
132  * is underway against any of the blocks which are outside the truncation
133  * point.  Because the caller is about to free (and possibly reuse) those
134  * blocks on-disk.
135  */
136 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
137 {
138 	const struct address_space_operations *aops = folio->mapping->a_ops;
139 
140 	if (aops->invalidate_folio)
141 		aops->invalidate_folio(folio, offset, length);
142 }
143 EXPORT_SYMBOL_GPL(folio_invalidate);
144 
145 /*
146  * If truncate cannot remove the fs-private metadata from the page, the page
147  * becomes orphaned.  It will be left on the LRU and may even be mapped into
148  * user pagetables if we're racing with filemap_fault().
149  *
150  * We need to bail out if page->mapping is no longer equal to the original
151  * mapping.  This happens a) when the VM reclaimed the page while we waited on
152  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
153  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
154  */
155 static void truncate_cleanup_folio(struct folio *folio)
156 {
157 	if (folio_mapped(folio))
158 		unmap_mapping_folio(folio);
159 
160 	if (folio_needs_release(folio))
161 		folio_invalidate(folio, 0, folio_size(folio));
162 
163 	/*
164 	 * Some filesystems seem to re-dirty the page even after
165 	 * the VM has canceled the dirty bit (eg ext3 journaling).
166 	 * Hence dirty accounting check is placed after invalidation.
167 	 */
168 	folio_cancel_dirty(folio);
169 	folio_clear_mappedtodisk(folio);
170 }
171 
172 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
173 {
174 	if (folio->mapping != mapping)
175 		return -EIO;
176 
177 	truncate_cleanup_folio(folio);
178 	filemap_remove_folio(folio);
179 	return 0;
180 }
181 
182 /*
183  * Handle partial folios.  The folio may be entirely within the
184  * range if a split has raced with us.  If not, we zero the part of the
185  * folio that's within the [start, end] range, and then split the folio if
186  * it's large.  split_page_range() will discard pages which now lie beyond
187  * i_size, and we rely on the caller to discard pages which lie within a
188  * newly created hole.
189  *
190  * Returns false if splitting failed so the caller can avoid
191  * discarding the entire folio which is stubbornly unsplit.
192  */
193 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
194 {
195 	loff_t pos = folio_pos(folio);
196 	unsigned int offset, length;
197 
198 	if (pos < start)
199 		offset = start - pos;
200 	else
201 		offset = 0;
202 	length = folio_size(folio);
203 	if (pos + length <= (u64)end)
204 		length = length - offset;
205 	else
206 		length = end + 1 - pos - offset;
207 
208 	folio_wait_writeback(folio);
209 	if (length == folio_size(folio)) {
210 		truncate_inode_folio(folio->mapping, folio);
211 		return true;
212 	}
213 
214 	/*
215 	 * We may be zeroing pages we're about to discard, but it avoids
216 	 * doing a complex calculation here, and then doing the zeroing
217 	 * anyway if the page split fails.
218 	 */
219 	if (!mapping_inaccessible(folio->mapping))
220 		folio_zero_range(folio, offset, length);
221 
222 	if (folio_needs_release(folio))
223 		folio_invalidate(folio, offset, length);
224 	if (!folio_test_large(folio))
225 		return true;
226 	if (split_folio(folio) == 0)
227 		return true;
228 	if (folio_test_dirty(folio))
229 		return false;
230 	truncate_inode_folio(folio->mapping, folio);
231 	return true;
232 }
233 
234 /*
235  * Used to get rid of pages on hardware memory corruption.
236  */
237 int generic_error_remove_folio(struct address_space *mapping,
238 		struct folio *folio)
239 {
240 	if (!mapping)
241 		return -EINVAL;
242 	/*
243 	 * Only punch for normal data pages for now.
244 	 * Handling other types like directories would need more auditing.
245 	 */
246 	if (!S_ISREG(mapping->host->i_mode))
247 		return -EIO;
248 	return truncate_inode_folio(mapping, folio);
249 }
250 EXPORT_SYMBOL(generic_error_remove_folio);
251 
252 /**
253  * mapping_evict_folio() - Remove an unused folio from the page-cache.
254  * @mapping: The mapping this folio belongs to.
255  * @folio: The folio to remove.
256  *
257  * Safely remove one folio from the page cache.
258  * It only drops clean, unused folios.
259  *
260  * Context: Folio must be locked.
261  * Return: The number of pages successfully removed.
262  */
263 long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
264 {
265 	/* The page may have been truncated before it was locked */
266 	if (!mapping)
267 		return 0;
268 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
269 		return 0;
270 	/* The refcount will be elevated if any page in the folio is mapped */
271 	if (folio_ref_count(folio) >
272 			folio_nr_pages(folio) + folio_has_private(folio) + 1)
273 		return 0;
274 	if (!filemap_release_folio(folio, 0))
275 		return 0;
276 
277 	return remove_mapping(mapping, folio);
278 }
279 
280 /**
281  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
282  * @mapping: mapping to truncate
283  * @lstart: offset from which to truncate
284  * @lend: offset to which to truncate (inclusive)
285  *
286  * Truncate the page cache, removing the pages that are between
287  * specified offsets (and zeroing out partial pages
288  * if lstart or lend + 1 is not page aligned).
289  *
290  * Truncate takes two passes - the first pass is nonblocking.  It will not
291  * block on page locks and it will not block on writeback.  The second pass
292  * will wait.  This is to prevent as much IO as possible in the affected region.
293  * The first pass will remove most pages, so the search cost of the second pass
294  * is low.
295  *
296  * We pass down the cache-hot hint to the page freeing code.  Even if the
297  * mapping is large, it is probably the case that the final pages are the most
298  * recently touched, and freeing happens in ascending file offset order.
299  *
300  * Note that since ->invalidate_folio() accepts range to invalidate
301  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
302  * page aligned properly.
303  */
304 void truncate_inode_pages_range(struct address_space *mapping,
305 				loff_t lstart, loff_t lend)
306 {
307 	pgoff_t		start;		/* inclusive */
308 	pgoff_t		end;		/* exclusive */
309 	struct folio_batch fbatch;
310 	pgoff_t		indices[PAGEVEC_SIZE];
311 	pgoff_t		index;
312 	int		i;
313 	struct folio	*folio;
314 	bool		same_folio;
315 
316 	if (mapping_empty(mapping))
317 		return;
318 
319 	/*
320 	 * 'start' and 'end' always covers the range of pages to be fully
321 	 * truncated. Partial pages are covered with 'partial_start' at the
322 	 * start of the range and 'partial_end' at the end of the range.
323 	 * Note that 'end' is exclusive while 'lend' is inclusive.
324 	 */
325 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
326 	if (lend == -1)
327 		/*
328 		 * lend == -1 indicates end-of-file so we have to set 'end'
329 		 * to the highest possible pgoff_t and since the type is
330 		 * unsigned we're using -1.
331 		 */
332 		end = -1;
333 	else
334 		end = (lend + 1) >> PAGE_SHIFT;
335 
336 	folio_batch_init(&fbatch);
337 	index = start;
338 	while (index < end && find_lock_entries(mapping, &index, end - 1,
339 			&fbatch, indices)) {
340 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
341 		for (i = 0; i < folio_batch_count(&fbatch); i++)
342 			truncate_cleanup_folio(fbatch.folios[i]);
343 		delete_from_page_cache_batch(mapping, &fbatch);
344 		for (i = 0; i < folio_batch_count(&fbatch); i++)
345 			folio_unlock(fbatch.folios[i]);
346 		folio_batch_release(&fbatch);
347 		cond_resched();
348 	}
349 
350 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
351 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
352 	if (!IS_ERR(folio)) {
353 		same_folio = lend < folio_pos(folio) + folio_size(folio);
354 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
355 			start = folio_next_index(folio);
356 			if (same_folio)
357 				end = folio->index;
358 		}
359 		folio_unlock(folio);
360 		folio_put(folio);
361 		folio = NULL;
362 	}
363 
364 	if (!same_folio) {
365 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
366 						FGP_LOCK, 0);
367 		if (!IS_ERR(folio)) {
368 			if (!truncate_inode_partial_folio(folio, lstart, lend))
369 				end = folio->index;
370 			folio_unlock(folio);
371 			folio_put(folio);
372 		}
373 	}
374 
375 	index = start;
376 	while (index < end) {
377 		cond_resched();
378 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
379 				indices)) {
380 			/* If all gone from start onwards, we're done */
381 			if (index == start)
382 				break;
383 			/* Otherwise restart to make sure all gone */
384 			index = start;
385 			continue;
386 		}
387 
388 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
389 			struct folio *folio = fbatch.folios[i];
390 
391 			/* We rely upon deletion not changing page->index */
392 
393 			if (xa_is_value(folio))
394 				continue;
395 
396 			folio_lock(folio);
397 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
398 			folio_wait_writeback(folio);
399 			truncate_inode_folio(mapping, folio);
400 			folio_unlock(folio);
401 		}
402 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
403 		folio_batch_release(&fbatch);
404 	}
405 }
406 EXPORT_SYMBOL(truncate_inode_pages_range);
407 
408 /**
409  * truncate_inode_pages - truncate *all* the pages from an offset
410  * @mapping: mapping to truncate
411  * @lstart: offset from which to truncate
412  *
413  * Called under (and serialised by) inode->i_rwsem and
414  * mapping->invalidate_lock.
415  *
416  * Note: When this function returns, there can be a page in the process of
417  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
418  * mapping->nrpages can be non-zero when this function returns even after
419  * truncation of the whole mapping.
420  */
421 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
422 {
423 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
424 }
425 EXPORT_SYMBOL(truncate_inode_pages);
426 
427 /**
428  * truncate_inode_pages_final - truncate *all* pages before inode dies
429  * @mapping: mapping to truncate
430  *
431  * Called under (and serialized by) inode->i_rwsem.
432  *
433  * Filesystems have to use this in the .evict_inode path to inform the
434  * VM that this is the final truncate and the inode is going away.
435  */
436 void truncate_inode_pages_final(struct address_space *mapping)
437 {
438 	/*
439 	 * Page reclaim can not participate in regular inode lifetime
440 	 * management (can't call iput()) and thus can race with the
441 	 * inode teardown.  Tell it when the address space is exiting,
442 	 * so that it does not install eviction information after the
443 	 * final truncate has begun.
444 	 */
445 	mapping_set_exiting(mapping);
446 
447 	if (!mapping_empty(mapping)) {
448 		/*
449 		 * As truncation uses a lockless tree lookup, cycle
450 		 * the tree lock to make sure any ongoing tree
451 		 * modification that does not see AS_EXITING is
452 		 * completed before starting the final truncate.
453 		 */
454 		xa_lock_irq(&mapping->i_pages);
455 		xa_unlock_irq(&mapping->i_pages);
456 	}
457 
458 	truncate_inode_pages(mapping, 0);
459 }
460 EXPORT_SYMBOL(truncate_inode_pages_final);
461 
462 /**
463  * mapping_try_invalidate - Invalidate all the evictable folios of one inode
464  * @mapping: the address_space which holds the folios to invalidate
465  * @start: the offset 'from' which to invalidate
466  * @end: the offset 'to' which to invalidate (inclusive)
467  * @nr_failed: How many folio invalidations failed
468  *
469  * This function is similar to invalidate_mapping_pages(), except that it
470  * returns the number of folios which could not be evicted in @nr_failed.
471  */
472 unsigned long mapping_try_invalidate(struct address_space *mapping,
473 		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
474 {
475 	pgoff_t indices[PAGEVEC_SIZE];
476 	struct folio_batch fbatch;
477 	pgoff_t index = start;
478 	unsigned long ret;
479 	unsigned long count = 0;
480 	int i;
481 	bool xa_has_values = false;
482 
483 	folio_batch_init(&fbatch);
484 	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
485 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
486 			struct folio *folio = fbatch.folios[i];
487 
488 			/* We rely upon deletion not changing folio->index */
489 
490 			if (xa_is_value(folio)) {
491 				xa_has_values = true;
492 				count++;
493 				continue;
494 			}
495 
496 			ret = mapping_evict_folio(mapping, folio);
497 			folio_unlock(folio);
498 			/*
499 			 * Invalidation is a hint that the folio is no longer
500 			 * of interest and try to speed up its reclaim.
501 			 */
502 			if (!ret) {
503 				deactivate_file_folio(folio);
504 				/* Likely in the lru cache of a remote CPU */
505 				if (nr_failed)
506 					(*nr_failed)++;
507 			}
508 			count += ret;
509 		}
510 
511 		if (xa_has_values)
512 			clear_shadow_entries(mapping, &fbatch, indices);
513 
514 		folio_batch_remove_exceptionals(&fbatch);
515 		folio_batch_release(&fbatch);
516 		cond_resched();
517 	}
518 	return count;
519 }
520 
521 /**
522  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
523  * @mapping: the address_space which holds the cache to invalidate
524  * @start: the offset 'from' which to invalidate
525  * @end: the offset 'to' which to invalidate (inclusive)
526  *
527  * This function removes pages that are clean, unmapped and unlocked,
528  * as well as shadow entries. It will not block on IO activity.
529  *
530  * If you want to remove all the pages of one inode, regardless of
531  * their use and writeback state, use truncate_inode_pages().
532  *
533  * Return: The number of indices that had their contents invalidated
534  */
535 unsigned long invalidate_mapping_pages(struct address_space *mapping,
536 		pgoff_t start, pgoff_t end)
537 {
538 	return mapping_try_invalidate(mapping, start, end, NULL);
539 }
540 EXPORT_SYMBOL(invalidate_mapping_pages);
541 
542 /*
543  * This is like mapping_evict_folio(), except it ignores the folio's
544  * refcount.  We do this because invalidate_inode_pages2() needs stronger
545  * invalidation guarantees, and cannot afford to leave folios behind because
546  * shrink_folio_list() has a temp ref on them, or because they're transiently
547  * sitting in the folio_add_lru() caches.
548  */
549 static int invalidate_complete_folio2(struct address_space *mapping,
550 					struct folio *folio)
551 {
552 	if (folio->mapping != mapping)
553 		return 0;
554 
555 	if (!filemap_release_folio(folio, GFP_KERNEL))
556 		return 0;
557 
558 	spin_lock(&mapping->host->i_lock);
559 	xa_lock_irq(&mapping->i_pages);
560 	if (folio_test_dirty(folio))
561 		goto failed;
562 
563 	BUG_ON(folio_has_private(folio));
564 	__filemap_remove_folio(folio, NULL);
565 	xa_unlock_irq(&mapping->i_pages);
566 	if (mapping_shrinkable(mapping))
567 		inode_add_lru(mapping->host);
568 	spin_unlock(&mapping->host->i_lock);
569 
570 	filemap_free_folio(mapping, folio);
571 	return 1;
572 failed:
573 	xa_unlock_irq(&mapping->i_pages);
574 	spin_unlock(&mapping->host->i_lock);
575 	return 0;
576 }
577 
578 static int folio_launder(struct address_space *mapping, struct folio *folio)
579 {
580 	if (!folio_test_dirty(folio))
581 		return 0;
582 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
583 		return 0;
584 	return mapping->a_ops->launder_folio(folio);
585 }
586 
587 /**
588  * invalidate_inode_pages2_range - remove range of pages from an address_space
589  * @mapping: the address_space
590  * @start: the page offset 'from' which to invalidate
591  * @end: the page offset 'to' which to invalidate (inclusive)
592  *
593  * Any pages which are found to be mapped into pagetables are unmapped prior to
594  * invalidation.
595  *
596  * Return: -EBUSY if any pages could not be invalidated.
597  */
598 int invalidate_inode_pages2_range(struct address_space *mapping,
599 				  pgoff_t start, pgoff_t end)
600 {
601 	pgoff_t indices[PAGEVEC_SIZE];
602 	struct folio_batch fbatch;
603 	pgoff_t index;
604 	int i;
605 	int ret = 0;
606 	int ret2 = 0;
607 	int did_range_unmap = 0;
608 	bool xa_has_values = false;
609 
610 	if (mapping_empty(mapping))
611 		return 0;
612 
613 	folio_batch_init(&fbatch);
614 	index = start;
615 	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
616 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
617 			struct folio *folio = fbatch.folios[i];
618 
619 			/* We rely upon deletion not changing folio->index */
620 
621 			if (xa_is_value(folio)) {
622 				xa_has_values = true;
623 				if (dax_mapping(mapping) &&
624 				    !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
625 					ret = -EBUSY;
626 				continue;
627 			}
628 
629 			if (!did_range_unmap && folio_mapped(folio)) {
630 				/*
631 				 * If folio is mapped, before taking its lock,
632 				 * zap the rest of the file in one hit.
633 				 */
634 				unmap_mapping_pages(mapping, indices[i],
635 						(1 + end - indices[i]), false);
636 				did_range_unmap = 1;
637 			}
638 
639 			folio_lock(folio);
640 			if (unlikely(folio->mapping != mapping)) {
641 				folio_unlock(folio);
642 				continue;
643 			}
644 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
645 			folio_wait_writeback(folio);
646 
647 			if (folio_mapped(folio))
648 				unmap_mapping_folio(folio);
649 			BUG_ON(folio_mapped(folio));
650 
651 			ret2 = folio_launder(mapping, folio);
652 			if (ret2 == 0) {
653 				if (!invalidate_complete_folio2(mapping, folio))
654 					ret2 = -EBUSY;
655 			}
656 			if (ret2 < 0)
657 				ret = ret2;
658 			folio_unlock(folio);
659 		}
660 
661 		if (xa_has_values)
662 			clear_shadow_entries(mapping, &fbatch, indices);
663 
664 		folio_batch_remove_exceptionals(&fbatch);
665 		folio_batch_release(&fbatch);
666 		cond_resched();
667 	}
668 	/*
669 	 * For DAX we invalidate page tables after invalidating page cache.  We
670 	 * could invalidate page tables while invalidating each entry however
671 	 * that would be expensive. And doing range unmapping before doesn't
672 	 * work as we have no cheap way to find whether page cache entry didn't
673 	 * get remapped later.
674 	 */
675 	if (dax_mapping(mapping)) {
676 		unmap_mapping_pages(mapping, start, end - start + 1, false);
677 	}
678 	return ret;
679 }
680 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
681 
682 /**
683  * invalidate_inode_pages2 - remove all pages from an address_space
684  * @mapping: the address_space
685  *
686  * Any pages which are found to be mapped into pagetables are unmapped prior to
687  * invalidation.
688  *
689  * Return: -EBUSY if any pages could not be invalidated.
690  */
691 int invalidate_inode_pages2(struct address_space *mapping)
692 {
693 	return invalidate_inode_pages2_range(mapping, 0, -1);
694 }
695 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
696 
697 /**
698  * truncate_pagecache - unmap and remove pagecache that has been truncated
699  * @inode: inode
700  * @newsize: new file size
701  *
702  * inode's new i_size must already be written before truncate_pagecache
703  * is called.
704  *
705  * This function should typically be called before the filesystem
706  * releases resources associated with the freed range (eg. deallocates
707  * blocks). This way, pagecache will always stay logically coherent
708  * with on-disk format, and the filesystem would not have to deal with
709  * situations such as writepage being called for a page that has already
710  * had its underlying blocks deallocated.
711  */
712 void truncate_pagecache(struct inode *inode, loff_t newsize)
713 {
714 	struct address_space *mapping = inode->i_mapping;
715 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
716 
717 	/*
718 	 * unmap_mapping_range is called twice, first simply for
719 	 * efficiency so that truncate_inode_pages does fewer
720 	 * single-page unmaps.  However after this first call, and
721 	 * before truncate_inode_pages finishes, it is possible for
722 	 * private pages to be COWed, which remain after
723 	 * truncate_inode_pages finishes, hence the second
724 	 * unmap_mapping_range call must be made for correctness.
725 	 */
726 	unmap_mapping_range(mapping, holebegin, 0, 1);
727 	truncate_inode_pages(mapping, newsize);
728 	unmap_mapping_range(mapping, holebegin, 0, 1);
729 }
730 EXPORT_SYMBOL(truncate_pagecache);
731 
732 /**
733  * truncate_setsize - update inode and pagecache for a new file size
734  * @inode: inode
735  * @newsize: new file size
736  *
737  * truncate_setsize updates i_size and performs pagecache truncation (if
738  * necessary) to @newsize. It will be typically be called from the filesystem's
739  * setattr function when ATTR_SIZE is passed in.
740  *
741  * Must be called with a lock serializing truncates and writes (generally
742  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
743  * specific block truncation has been performed.
744  */
745 void truncate_setsize(struct inode *inode, loff_t newsize)
746 {
747 	loff_t oldsize = inode->i_size;
748 
749 	i_size_write(inode, newsize);
750 	if (newsize > oldsize)
751 		pagecache_isize_extended(inode, oldsize, newsize);
752 	truncate_pagecache(inode, newsize);
753 }
754 EXPORT_SYMBOL(truncate_setsize);
755 
756 /**
757  * pagecache_isize_extended - update pagecache after extension of i_size
758  * @inode:	inode for which i_size was extended
759  * @from:	original inode size
760  * @to:		new inode size
761  *
762  * Handle extension of inode size either caused by extending truncate or
763  * by write starting after current i_size.  We mark the page straddling
764  * current i_size RO so that page_mkwrite() is called on the first
765  * write access to the page.  The filesystem will update its per-block
766  * information before user writes to the page via mmap after the i_size
767  * has been changed.
768  *
769  * The function must be called after i_size is updated so that page fault
770  * coming after we unlock the folio will already see the new i_size.
771  * The function must be called while we still hold i_rwsem - this not only
772  * makes sure i_size is stable but also that userspace cannot observe new
773  * i_size value before we are prepared to store mmap writes at new inode size.
774  */
775 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
776 {
777 	int bsize = i_blocksize(inode);
778 	loff_t rounded_from;
779 	struct folio *folio;
780 
781 	WARN_ON(to > inode->i_size);
782 
783 	if (from >= to || bsize >= PAGE_SIZE)
784 		return;
785 	/* Page straddling @from will not have any hole block created? */
786 	rounded_from = round_up(from, bsize);
787 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
788 		return;
789 
790 	folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
791 	/* Folio not cached? Nothing to do */
792 	if (IS_ERR(folio))
793 		return;
794 	/*
795 	 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
796 	 * is needed.
797 	 */
798 	if (folio_mkclean(folio))
799 		folio_mark_dirty(folio);
800 	folio_unlock(folio);
801 	folio_put(folio);
802 }
803 EXPORT_SYMBOL(pagecache_isize_extended);
804 
805 /**
806  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
807  * @inode: inode
808  * @lstart: offset of beginning of hole
809  * @lend: offset of last byte of hole
810  *
811  * This function should typically be called before the filesystem
812  * releases resources associated with the freed range (eg. deallocates
813  * blocks). This way, pagecache will always stay logically coherent
814  * with on-disk format, and the filesystem would not have to deal with
815  * situations such as writepage being called for a page that has already
816  * had its underlying blocks deallocated.
817  */
818 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
819 {
820 	struct address_space *mapping = inode->i_mapping;
821 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
822 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
823 	/*
824 	 * This rounding is currently just for example: unmap_mapping_range
825 	 * expands its hole outwards, whereas we want it to contract the hole
826 	 * inwards.  However, existing callers of truncate_pagecache_range are
827 	 * doing their own page rounding first.  Note that unmap_mapping_range
828 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
829 	 */
830 
831 	/*
832 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
833 	 * once (before truncating pagecache), and without "even_cows" flag:
834 	 * hole-punching should not remove private COWed pages from the hole.
835 	 */
836 	if ((u64)unmap_end > (u64)unmap_start)
837 		unmap_mapping_range(mapping, unmap_start,
838 				    1 + unmap_end - unmap_start, 0);
839 	truncate_inode_pages_range(mapping, lstart, lend);
840 }
841 EXPORT_SYMBOL(truncate_pagecache_range);
842